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Motivation

In [Bentley et al., 1991] the authors state in their Introduction:

. . . to obtain useful results, topologists have often forced
properties of spaces or maps in the sense of adding
supplementary and extraneous conditions or even chang-
ing the definition of a property altogether, and left cat-
egorically defined constructions well alone, i.e.,
essentially continued working in Top.
Our aim in this paper is to provide evidence that doing pre-
cisely the opposite, i.e., leaving concepts as they are but
stepping outside Top and thereby changing constructions
in an appropriate way will illuminate the situation and pro-
vide a natural setting or solution for problems for which no
decent solution in Top or any reasonable subcategory of
Top seems to exist. . . .

[Bentley et al., 1991]

Bentley, L., Herrlich, H., and Lowen, R. (1991).

Improving constructions in topology.
In Herrlich, H. and Porst, H., editors, Category Theory at Work, volume 18 of Research Expositions in Mathematics, pages 3–20.
Heldermann, Berlin.
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Motivation

Extensions of Top

psTop prTop Top

Set

reflective reflective

topological topological topological

prTop is the category of pretopological spaces
psTop is the category of pseudotopological spaces
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Motivation

Purpose of this Talk
Extend this construction to a more general context of a well behaved finitely
complete category A.
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in a special
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including
when

A = Set
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Brief Review of Known Facts

Topological Spaces I

Theorem 2.1
Given any set X and a function X

ξ−→ Fil(X ) from the set X to the set Fil(X )
of all filters on X with the properties:

U ∈ ξ(x)⇒ x ∈ U (1)

and

U ∈ ξ(x)⇒ (∃V ∈ ξ(x))
(
y ∈ V ⇒ U ∈ ξ(y)

)
(2)

there exists a unique topology Ξ on X such that for each x ∈ X , ξ(x) is the set
of all neighbourhoods of the point x in the topological space (X , Ξ).

Moral:
There is a one-to-one correspondence between topologies on X and functions

X
ξ−→ Fil(X ) satisfying (1), (2).
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Brief Review of Known Facts

Understanding Condition (2)

U ∈ ξ(x)⇒ (∃V ∈ ξ(x))
(
y ∈ V ⇒ U ∈ ξ(y)

)

Condition (2) is equivalent to:

F ⊇ ξ(x),Gp ⊇ ξ(p)⇒
⋃

F∈F

⋂
p∈F
Gp ⊇ ξ(x) (3)

in topological spaces, define F → x if F ⊇ ξ(x){
F : F → x

}
is a filter of filters

(3) is now completely in terms of lattice operations on Fil(X ) . . .
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Condition (2) is the fil-
ter version of this famil-
iar fact for sequences of
numbers
henceforth called
the sequence condition
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Brief Review of Known Facts

Topological Spaces II
Theorem 2.2 ([Kowalsky, 1965, §5])

Given any set X and a function X
Γ−→ Fil(Fil(X )) such that:

ẋ =
{
A ⊆ X : x ∈ A

}
∈ Γ (x), (4)

a ⊆ Γ (x)⇒
⋂

a ∈ Γ (x), (5)

and

F ∈ Γ (x),Gp ∈ Γ (p)⇒
⋃

F∈F

⋂
p∈F
Gp ∈ Γ (x) (6)

there exists a unique topology Ξ on X such that for each x ∈ X the set
γ(x) =

⋂
Γ (x) ∈ Γ (x) is the set of all neighbourhoods of x in the topological

space (X , Ξ).

this formulation leads to successive extensions of Top . . .

[Kowalsky, 1965]

Kowalsky, H. (1965).

General Topology.
Academic Press, New York.
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Brief Review of Known Facts

Pretopological Spaces

Definition 2.3 (Pretopological Space (see [Bentley et al., 1991],
[Herrlich et al., 1991]))

A pretopological space is a pair (X , Γ ),

where X is a set, X
Γ−→ Fil(Fil(X )) is

a function such that for each x ∈ X , ẋ ∈ Γ (x) and Γ (x) is closed under
intersections.

[Bentley et al., 1991] [Herrlich et al., 1991]

Bentley, L., Herrlich, H., and Lowen, R. (1991).

Improving constructions in topology.
In Herrlich, H. and Porst, H., editors, Category Theory at Work, volume 18 of Research Expositions in Mathematics, pages 3–20.
Heldermann, Berlin.

Herrlich, H., Lowen-Colebunders, E., and Schwarz, F. (1991).

Improving Top: PrTop and PsTop.
In Herrlich, H. and Porst, H., editors, Category Theory at Work, volume 18 of Research Expositions in Mathematics, pages 21–34.
Heldermann, Berlin.
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Brief Review of Known Facts

Pretopological Spaces

For any function X
f−→ Y and any F ∈ Fil(X ):

→
f F =

{
B ⊆ Y : f −1B ∈ F

}
.
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Brief Review of Known Facts

Pretopological Spaces

For any function X
f−→ Y and any F ∈ Fil(X ):

→
f F =

{
B ⊆ Y : f −1B ∈ F

}
.

Clearly,
→
f F is the filter on Y generated by the images f (A), A ∈ F .
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Brief Review of Known Facts

Pretopological Spaces

Definition 2.3 (Pretopological Morphism (see [Bentley et al., 1991],
[Herrlich et al., 1991]))

Given the pretopological spaces (X , Γ ) and (Y , Φ),

a function X
f−→ Y is said to

be a pretopological morphism, if

[Bentley et al., 1991] [Herrlich et al., 1991]

Bentley, L., Herrlich, H., and Lowen, R. (1991).

Improving constructions in topology.
In Herrlich, H. and Porst, H., editors, Category Theory at Work, volume 18 of Research Expositions in Mathematics, pages 3–20.
Heldermann, Berlin.

Herrlich, H., Lowen-Colebunders, E., and Schwarz, F. (1991).

Improving Top: PrTop and PsTop.
In Herrlich, H. and Porst, H., editors, Category Theory at Work, volume 18 of Research Expositions in Mathematics, pages 21–34.
Heldermann, Berlin.
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Pseudotopological Spaces

Definition 2.4 (Pseudotopological Space (see [Bentley et al., 1991],
[Herrlich et al., 1991]))

A pseudotopological space is a pair (X , Γ ),

where X is a set,

X
Γ−→ Fil(Fil(X )) is a function such that for each x ∈ X , ẋ ∈ Γ (x) and for

each filter F on X , maximal filter U on X :(
F ⊆ U ⇒ U ∈ Γ (x)
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⇒ F ∈ Γ (x).
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Extending to the General Case

Key Issues for Generalisation

A. main focus is on the lattice of subobjects

B. one needs to avoid the atomicity present for sets

C. filters can be defined on any semilattice

D. known from [Iberkleid and McGovern, 2009]: a lattice L is distributive, if
and only if, Fil(L) is a coherent frame

A frame is coherent if it is compact, algebraic and binary meets of compact
elements is compact.

E. one needs a nice factorisation of morphisms

[Iberkleid and McGovern, 2009]

Iberkleid, W. and McGovern, W. W. (2009).

A Natural Equivalence for the Category of Coherent Frames.
Alg. Univ., 62:247–258.
available at: http://home.fau.edu/wmcgove1/web/Papers/WolfNatEq.pdf.
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Extending to the General Case

Our Setup

1. A is a finitely complete category

2. A has a proper factorisation system (E,M) (see [Carboni et al., 1997, §2]
for details on factorisation systems)

3. Each SubM (X ) is a distributive complete lattice

[Carboni et al., 1997]

Carboni, A., Janelidze, G., Kelly, G. M., and Pare, R. (1997).

On localization and stabilization for factorization systems.
Appl. Categ. Str., 5(1):1 – 58.

[Carboni et al., 1993]

Carboni, A., Lack, S., and Walters, R. (1993).

Introduction to Extensive and Distributive Categories.
Jr. Pure Appl. Alg., 84:145 – 158.

[Clementino et al., 2004]

Clementino, M. M., Giuli, E., and Tholen, W. (2004).

A Functional Approach to General Topology.
In Categorical Foundations, number 97 in Encyclopedia Math. Appl., pages 103–163. Cambridge University Press.
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Extending to the General Case

Neighbourhoods of all Sorts

Definition 3.1 (Pre- & Weak Neighbourhoods on an Object)

A pre-neighbourhood on an object X is an order preserving map

SubM (X )op
µ−→ Fil(X ) such that:

n ∈ µ(m)⇒ m ≤ n.

A pre-neighbourhood µ on X such that:

µ(m) =
⋃

p∈µ(m)

µ(p)

is a weak neighbourhood on X .
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Extending to the General Case

Neighbourhoods of all Sorts

m

n

p weak neighbourhoods
are precisely the
interpolative pre-
neighbourhoods
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Extending to the General Case

Neighbourhoods of all Sorts

Definition 3.1 (Neighbourhoods on an Object)

A weak neighbourhood µ on X such that:

µ(
∨

G ) =
⋂
g∈G

µ(g), for all G ⊆ SubM (X )

is a neighbourhood on X .

Neighbourhoods are meet preserving weak neighbourhoods.
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Extending to the General Case

Interior and Open

Theorem 3.2 (µ-Interior and µ-Open)

Given a pre-neighbourhood µ on X let:

Oµ = {p ∈ SubM (X ) : p ∈ µ(p)}, (7)

and

intµ(m) =
∨{

p ∈ Oµ : p ≤ m
}
. (8)

Then:

(a) Oµ is closed under finite meets.

(b) Oµ is closed under arbitrary joins, if and only if, µ preserve meets.

(c) If µ is a neighbourhood on X then m 7→ intµ(m) is a Kuratowski interior
operator and:

p ∈ µ(m)⇔ m ≤ intµ(p).
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Extending to the General Case

Interior and Open

weak neighbourhoods are not neighbourhoods. . .
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Extending to the General Case

Interior and Open

Example 3.2 (Weak neighbourhood not a neighbourhood)

Let X = [0, 2] and a0 = 0, an = 1− 1
n , n ≥ 1.
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Extending to the General Case

Interior and Open

Example 3.2 (Weak neighbourhood not a neighbourhood)

Let X = [0, 2] and a0 = 0, an = 1− 1
n , n ≥ 1.

For A ⊆ X , if supA < 1 let nA be the smallest n ≥ 1 such that:

x ∈ A⇒ x ≤ 1− 1

nA
.
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Interior and Open

Example 3.2 (Weak neighbourhood not a neighbourhood)

Let X = [0, 2] and a0 = 0, an = 1− 1
n , n ≥ 1.

For A ⊆ X , if supA < 1 let nA be the smallest n ≥ 1 such that:

x ∈ A⇒ x ≤ 1− 1

nA
.

Put:

µ(A) =

{
{X}, if A ∩ [1, 2] 6= ∅ or supA = 1{
T ⊆ X : [0, 1− 1

nA
] ⊆ T

}
, otherwise
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Extending to the General Case

Interior and Open

Example 3.2 (Weak neighbourhood not a neighbourhood)

Let X = [0, 2] and a0 = 0, an = 1− 1
n , n ≥ 1.

For A ⊆ X , if supA < 1 let nA be the smallest n ≥ 1 such that:

x ∈ A⇒ x ≤ 1− 1

nA
.

Put:

µ(A) =

{
{X}, if A ∩ [1, 2] 6= ∅ or supA = 1{
T ⊆ X : [0, 1− 1

nA
] ⊆ T

}
, otherwise

Clearly µ is a pre-neighbourhood on X .
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Extending to the General Case

Interior and Open

Example 3.2 (Weak neighbourhood not a neighbourhood)

Let X = [0, 2] and a0 = 0, an = 1− 1
n , n ≥ 1.

For A ⊆ X , if supA < 1 let nA be the smallest n ≥ 1 such that:

x ∈ A⇒ x ≤ 1− 1
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.

Put:

µ(A) =

{
{X}, if A ∩ [1, 2] 6= ∅ or supA = 1{
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}
, otherwise

Further:

Oµ =

{[
0, 1− 1

n

]
: n ≥ 1

}
∪ {X}.
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Extending to the General Case

Interior and Open

Example 3.2 (Weak neighbourhood not a neighbourhood)

Let X = [0, 2] and a0 = 0, an = 1− 1
n , n ≥ 1.

For A ⊆ X , if supA < 1 let nA be the smallest n ≥ 1 such that:

x ∈ A⇒ x ≤ 1− 1

nA
.

Put:

µ(A) =

{
{X}, if A ∩ [1, 2] 6= ∅ or supA = 1{
T ⊆ X : [0, 1− 1

nA
] ⊆ T

}
, otherwise

Further:

Oµ =

{[
0, 1− 1

n

]
: n ≥ 1

}
∪ {X}.

Hence: µ is a weak neighbourhood.
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,

Extending to the General Case

Interior and Open

Example 3.2 (Weak neighbourhood not a neighbourhood)

Let X = [0, 2] and a0 = 0, an = 1− 1
n , n ≥ 1.

For A ⊆ X , if supA < 1 let nA be the smallest n ≥ 1 such that:

x ∈ A⇒ x ≤ 1− 1

nA
.

Put:

µ(A) =

{
{X}, if A ∩ [1, 2] 6= ∅ or supA = 1{
T ⊆ X : [0, 1− 1

nA
] ⊆ T

}
, otherwise

Further:

Oµ =

{[
0, 1− 1

n

]
: n ≥ 1

}
∪ {X}.

But:

{X} = µ([0, 1)) = µ
(⋃
n≥1

[0, 1− 1

n
]
)
⊂
⋂
n≥1

µ([0, 1− 1

n
]),
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,

Extending to the General Case

Interior and Open

Example 3.2 (Weak neighbourhood not a neighbourhood)

Let X = [0, 2] and a0 = 0, an = 1− 1
n , n ≥ 1.

For A ⊆ X , if supA < 1 let nA be the smallest n ≥ 1 such that:

x ∈ A⇒ x ≤ 1− 1

nA
.

Put:

µ(A) =

{
{X}, if A ∩ [1, 2] 6= ∅ or supA = 1{
T ⊆ X : [0, 1− 1

nA
] ⊆ T

}
, otherwise

Further:

Oµ =

{[
0, 1− 1

n

]
: n ≥ 1

}
∪ {X}.

Hence µ is not a neighbourhood.
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Extending to the General Case

Interior and Open

a pre-neighbourhood µ such that:
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Extending to the General Case

Interior and Open

a pre-neighbourhood µ such that:

p ∈ µ(m)⇔ m ≤ intµ(p)
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,

Extending to the General Case

Interior and Open

a pre-neighbourhood µ such that:

p ∈ µ(m)⇔ m ≤ intµ(p)

is a weak neighbourhood, but may not be a neighbourhood!
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Extending to the General Case

Interior and Open

Example 3.2 (A weak neighbourhood with interior property not a
neighbourhood)
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Extending to the General Case

Interior and Open

Example 3.2 (A weak neighbourhood with interior property not a
neighbourhood)

Let (X , T ) be a topological space with C its set of closed sets.
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Extending to the General Case

Interior and Open

Example 3.2 (A weak neighbourhood with interior property not a
neighbourhood)

Let (X , T ) be a topological space with C its set of closed sets.
Define:

µ(A) =
{
V ⊆ X : (∃C ∈ C)(A ⊆ C ⊆ V )

}
.
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,

Extending to the General Case

Interior and Open

Example 3.2 (A weak neighbourhood with interior property not a
neighbourhood)

Let (X , T ) be a topological space with C its set of closed sets.
Define:

µ(A) =
{
V ⊆ X : (∃C ∈ C)(A ⊆ C ⊆ V )

}
.

µ is a pre-neighbourhood.
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,

Extending to the General Case

Interior and Open

Example 3.2 (A weak neighbourhood with interior property not a
neighbourhood)

Let (X , T ) be a topological space with C its set of closed sets.
Define:

µ(A) =
{
V ⊆ X : (∃C ∈ C)(A ⊆ C ⊆ V )

}
.

Oµ = C.
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,

Extending to the General Case

Interior and Open

Example 3.2 (A weak neighbourhood with interior property not a
neighbourhood)

Let (X , T ) be a topological space with C its set of closed sets.
Define:

µ(A) =
{
V ⊆ X : (∃C ∈ C)(A ⊆ C ⊆ V )

}
.

Oµ = C.
Hence µ satisfies the interior property.
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,

Extending to the General Case

Interior and Open

Example 3.2 (A weak neighbourhood with interior property not a
neighbourhood)

Let (X , T ) be a topological space with C its set of closed sets.
Define:

µ(A) =
{
V ⊆ X : (∃C ∈ C)(A ⊆ C ⊆ V )

}
.

If C be not closed under arbitrary joins then µ is not a neighbourhood.
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Extending to the General Case

Morphisms

Given any morphism X
f−→ Y one obtains:

(a)

(b)

[Holgate and Slapal, 2011]

Holgate, D. and Slapal, J. (2011).

Categorical neighborhood operators.
Top. Appl., 158:2356–2365.
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Extending to the General Case

Morphisms

Given any morphism X
f−→ Y one obtains:

(a) from the (E,M) factorisation the image-preimage adjunction:

(b)

[Holgate and Slapal, 2011]

Holgate, D. and Slapal, J. (2011).

Categorical neighborhood operators.
Top. Appl., 158:2356–2365.
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,

Extending to the General Case

Morphisms

Given any morphism X
f−→ Y one obtains:

(a) from the (E,M) factorisation the image-preimage adjunction:

SubM (X )

∃
f ,,

jj

f
−1

⊥ SubM (Y )

(b)

[Holgate and Slapal, 2011]

Holgate, D. and Slapal, J. (2011).

Categorical neighborhood operators.
Top. Appl., 158:2356–2365.
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Extending to the General Case

Morphisms

Given any morphism X
f−→ Y one obtains:

(a) given m ∈ SubM (X ), y ∈ SubM (Y ):

(b)

[Holgate and Slapal, 2011]

Holgate, D. and Slapal, J. (2011).

Categorical neighborhood operators.
Top. Appl., 158:2356–2365.
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,

Extending to the General Case

Morphisms

Given any morphism X
f−→ Y one obtains:

(a) given m ∈ SubM (X ), y ∈ SubM (Y ):

f
−1
N

fn //

f
−1
n

��

N

n

��
X

f
// Y

pullback along f defines n 7→ f
−1
n

(b)

[Holgate and Slapal, 2011]

Holgate, D. and Slapal, J. (2011).

Categorical neighborhood operators.
Top. Appl., 158:2356–2365.
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,

Extending to the General Case

Morphisms
Given any morphism X

f−→ Y one obtains:

(a) given m ∈ SubM (X ), y ∈ SubM (Y ):

M
f
∣∣
M //

m

��

∃
f
M

∃
f
m

��
X

f
// Y

the (E, M) factorisation of f ◦m produces m 7→ ∃
f
m

(b)

[Holgate and Slapal, 2011]

Holgate, D. and Slapal, J. (2011).

Categorical neighborhood operators.
Top. Appl., 158:2356–2365.
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,

Extending to the General Case

Morphisms

Given any morphism X
f−→ Y one obtains:

(a)

(b) since ∃
f

and f
−1

are both order preserving maps, one has the further
adjunction:

[Holgate and Slapal, 2011]

Holgate, D. and Slapal, J. (2011).

Categorical neighborhood operators.
Top. Appl., 158:2356–2365.
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,

Extending to the General Case

Morphisms

Given any morphism X
f−→ Y one obtains:

(a)

(b) since ∃
f

and f
−1

are both order preserving maps, one has the further
adjunction:

Fil(X )
ss

←
f

→
f

44
⊥ Fil(Y ) ,

[Holgate and Slapal, 2011]

Holgate, D. and Slapal, J. (2011).

Categorical neighborhood operators.
Top. Appl., 158:2356–2365.
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,

Extending to the General Case

Morphisms

Given any morphism X
f−→ Y one obtains:

(a)

(b) where:

→
f A =

{
y ∈ SubM (Y ) : f

−1
y ∈ A

}
, for A ∈ Fil(X ) (7)

and

←
f B =

{
x ∈ SubM (X ) : (∃b ∈ B)(f

−1
b ≤ x)

}
, for B ∈ Fil(Y ), (8)

Clearly:
→
f A is the filter generated by the images ∃

f
a (a ∈ A), and

←
f B is

the filter generated by the preimages f
−1
b (b ∈ B).

[Holgate and Slapal, 2011]

Holgate, D. and Slapal, J. (2011).

Categorical neighborhood operators.
Top. Appl., 158:2356–2365.
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,

Extending to the General Case

Morphisms

Definition 3.3 (Pre-neighbourhood Morphisms)

Given the pre-neighbourhoods µ on X and φ on Y , a morphism X
f−→ Y is a

pre-neighbourhood morphism if:

[Holgate and Slapal, 2011]

Holgate, D. and Slapal, J. (2011).

Categorical neighborhood operators.
Top. Appl., 158:2356–2365.
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,

Extending to the General Case

Morphisms

Definition 3.3 (Pre-neighbourhood Morphisms)

Given the pre-neighbourhoods µ on X and φ on Y , a morphism X
f−→ Y is a

pre-neighbourhood morphism if:

p ∈ φ(n)⇒ f
−1
p ∈ µ(f

−1
n). (7)

[Holgate and Slapal, 2011]

Holgate, D. and Slapal, J. (2011).

Categorical neighborhood operators.
Top. Appl., 158:2356–2365.
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,

Extending to the General Case

Morphisms

Theorem 3.3 ([Holgate and Slapal, 2011, §3])

Given pre-neighbourhood structures µ on X and ν on Y , the following are
equivalent :

(a) for each n ∈ SubM (Y ), p ∈ φ(n)⇒ f
−1
p ∈ µ(f

−1
n)

(b) for each n ∈ SubM (Y ),
←
f φ(n) ⊆ µ(f

−1
n)

(c) for each n ∈ SubM (Y ), φ(n) ⊆
→
f µ(f

−1
n)

(d) for each m ∈ SubM (X ),
←
f φ(∃

f
m) ≤ µ(m)

[Holgate and Slapal, 2011]

Holgate, D. and Slapal, J. (2011).

Categorical neighborhood operators.
Top. Appl., 158:2356–2365.
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,

Extending to the General Case

Morphisms

Theorem 3.3 ([Holgate and Slapal, 2011, §3])

Given pre-neighbourhood structures µ on X and ν on Y , the following are
equivalent :

(a) for each n ∈ SubM (Y ), p ∈ φ(n)⇒ f
−1
p ∈ µ(f

−1
n)

(b) for each n ∈ SubM (Y ),
←
f φ(n) ⊆ µ(f

−1
n)

(c) for each n ∈ SubM (Y ), φ(n) ⊆
→
f µ(f

−1
n)

(d) for each m ∈ SubM (X ),
←
f φ(∃

f
m) ≤ µ(m)

[Holgate and Slapal, 2011]

Holgate, D. and Slapal, J. (2011).

Categorical neighborhood operators.
Top. Appl., 158:2356–2365.
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,

Extending to the General Case

Morphisms
Theorem 3.3 ([Holgate and Slapal, 2011, §3])

given the order preserving maps:

Fil(X ) Fil(Y )

SubM (X )op SubM (Y )op

µ φ

∃
f

→
f

f
−1

←
f

⊥

⊥

[Holgate and Slapal, 2011]

Holgate, D. and Slapal, J. (2011).

Categorical neighborhood operators.
Top. Appl., 158:2356–2365.
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,

Extending to the General Case

Morphisms
Theorem 3.3 ([Holgate and Slapal, 2011, §3])

given the order preserving maps:

Fil(X ) Fil(Y )

SubM (X )op SubM (Y )op

µ φ

∃
f

→
f

f
−1

←
f

⊥

⊥

[Holgate and Slapal, 2011]

Holgate, D. and Slapal, J. (2011).

Categorical neighborhood operators.
Top. Appl., 158:2356–2365.
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,

Extending to the General Case

Morphisms
Theorem 3.3 ([Holgate and Slapal, 2011, §3])

given the order preserving maps:

Fil(X ) Fil(Y )

SubM (X )op SubM (Y )op

µ φ

∃
f

→
f

f
−1

←
f

⊥

⊥

≥

[Holgate and Slapal, 2011]

Holgate, D. and Slapal, J. (2011).

Categorical neighborhood operators.
Top. Appl., 158:2356–2365.
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Categories of Internal Neighbourhood Structures

Internal Neighbourhood Structures

Definition 4.1 (Internal Weak Neighbourhood Spaces)

wNbd[A] is the category whose objects are (X , µ), where µ is a weak

neighbourhood on X and morphisms are (X , µ)
f−→ (X , φ) where f is a

pre-neighbourhood morphism.
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Categories of Internal Neighbourhood Structures

Internal Neighbourhood Structures

Definition 4.1 (Internal Pretopological Spaces)

pre[A] is the category whose objects are (X , µ), where µ is a pre-neighbourhood

on X and morphisms are (X , µ)
f−→ (X , φ) where f is a pre-neighbourhood

morphism.
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,

Categories of Internal Neighbourhood Structures

Internal Neighbourhood Structures

Definition 4.1 (Internal Pseudotopological Spaces)

pse[A] is the category whose:

(a)

(b) morphisms are (X , Γ )
f−→ (Y , Φ) where:

A ∈ Γ (m)⇒
→
f A ∈ Φ(∃

f
m).
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Categories of Internal Neighbourhood Structures

Internal Neighbourhood Structures

Definition 4.1 (Internal Pseudotopological Spaces)

(a) objects are (X , Γ ),

(b) morphisms are (X , Γ )
f−→ (Y , Φ) where:

A ∈ Γ (m)⇒
→
f A ∈ Φ(∃

f
m).
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Categories of Internal Neighbourhood Structures

Internal Neighbourhood Structures

Definition 4.1 (Internal Pseudotopological Spaces)

(a) objects are (X , Γ ), where SubM (X )
Γ−→ Fil(Fil(X )) is an order

preserving map such that for each m ∈ SubM (X ):

(b) morphisms are (X , Γ )
f−→ (Y , Φ) where:

A ∈ Γ (m)⇒
→
f A ∈ Φ(∃

f
m).

Internal Neighbourhood Spaces Partha Pratim Ghosh Frame 15 of 20. . .



,

Categories of Internal Neighbourhood Structures

Internal Neighbourhood Structures

Definition 4.1 (Internal Pseudotopological Spaces)

(a) objects are (X , Γ ), where SubM (X )
Γ−→ Fil(Fil(X )) is an order

preserving map such that for each m ∈ SubM (X ):

↑ m ∈ Γ (m) (7)

and

(b) morphisms are (X , Γ )
f−→ (Y , Φ) where:

A ∈ Γ (m)⇒
→
f A ∈ Φ(∃

f
m).
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,

Categories of Internal Neighbourhood Structures

Internal Neighbourhood Structures
Definition 4.1 (Internal Pseudotopological Spaces)

(a) objects are (X , Γ ), where SubM (X )
Γ−→ Fil(Fil(X )) is an order

preserving map such that for each m ∈ SubM (X ):

↑ m ∈ Γ (m) (7)

and

(∀A ∈ Fil(X ))

[
(∀U ∈Max[X ])(

A ⊆ U ⇒ U ∈ Γ (m)
)

⇒ A ∈ Γ (m)

]
(8)

(b) morphisms are (X , Γ )
f−→ (Y , Φ) where:

A ∈ Γ (m)⇒
→
f A ∈ Φ(∃

f
m).

Internal Neighbourhood Spaces Partha Pratim Ghosh Frame 15 of 20. . .



,

Categories of Internal Neighbourhood Structures

Internal Neighbourhood Structures

Definition 4.1 (Internal Pseudotopological Spaces)

(a)

(b) morphisms are (X , Γ )
f−→ (Y , Φ) where:

A ∈ Γ (m)⇒
→
f A ∈ Φ(∃

f
m).

Internal Neighbourhood Spaces Partha Pratim Ghosh Frame 15 of 20. . .



,

Categories of Internal Neighbourhood Structures

Internal Neighbourhood Structures

Definition 4.1 (Internal Neighbourhood Spaces)

Nbd[A] is the category whose objects are (X , µ), where µ is a neighbourhood

on X and morphisms are (X , µ)
f−→ (Y , φ), where f is a pre-neighbourhood

morphism such that f
−1

preserve arbitrary joins.
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Categories of Internal Neighbourhood Structures

Internal Neighbourhood Structures

Theorem 4.1 (Equivalents of Pre-image Preserving Joins)

the following are equivalent for any morphism X
f−→ Y :

(a) SubM (Y )

f
−1

''

gg

∀f

⊥ SubM (X )

(b) f
−1

preserve joins.

(c)
←
f preserve meets.

(d) Fil(X )

t
f

&&

ff
←
f

⊥ Fil(Y )
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Categories of Internal Neighbourhood Structures

Internal Neighbourhood Structures

Theorem 4.1 (Equivalents of Pre-image Preserving Joins)

the following are equivalent for any morphism X
f−→ Y :

(a) SubM (Y )

f
−1

''

gg

∀f

⊥ SubM (X )

(b) f
−1

preserve joins.

(c)
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(d) Fil(X )

t
f

&&

ff
←
f

⊥ Fil(Y )

Internal Neighbourhood Spaces Partha Pratim Ghosh Frame 15 of 20. . .



,

Categories of Internal Neighbourhood Structures

Internal Neighbourhood Structures

SubM (X )SubM (Y ) f
−1

Fil(X )Fil(Y )
←
f
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Categories of Internal Neighbourhood Structures

Internal Neighbourhood Structures

SubM (X )SubM (Y ) f
−1

Fil(X )Fil(Y )
←
f

∃
f

⊥

→
f

⊥
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Categories of Internal Neighbourhood Structures

Internal Neighbourhood Structures

SubM (X )SubM (Y ) f
−1

Fil(X )Fil(Y )
←
f

∃
f

⊥

→
f

⊥

∀f
⊥ t

f

⊥
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Categories of Internal Neighbourhood Structures

Internal Neighbourhood Structures

SubM (X )SubM (Y ) f
−1

Fil(X )Fil(Y )
←
f

∃
f

⊥

→
f

⊥

∀f
⊥ t

f

⊥

∀f x =
∨{

y ∈ SubM (Y ) : f
−1
y ≤ x

}

t
f A =

{
y ∈ SubM (Y ) : (∃a ∈ A)(∀f a ≤ y)

}
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Categories of Internal Neighbourhood Structures

Internal Neighbourhood Structures

Definition 4.1 (Internal Topological Spaces)

An internal topological space is an internal neighbourhood space (X , µ) in which
Oµ is a frame in the partial order of SubM (X ).
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Categories of Internal Neighbourhood Structures

Internal Neighbourhood Structures

Definition 4.1 (Internal Topological Spaces)

Top[A] is the full subcategory of Nbd[A] consisting of internal topological
spaces.
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Categories of Internal Neighbourhood Structures

Internal Neighbourhood Structures

Definition 4.1 (The Non-full Subcategory of Preimage Preserve Joins)

Appj is the (non-full) subcategory of A whose objects are same as of A and

morphisms are those morphisms f from A for which f
−1

preserve joins.
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Reflective Extensions and Topologicity

Reflectivity & Topologicity Chart

pse[A] pre[A] wNbd[A] Nbd[A]

Top[A]

A Appj

non-full

subcategory

non-full
subcategory
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Reflective Extensions and Topologicity

Reflectivity & Topologicity Chart

pse[A] pre[A] wNbd[A] Nbd[A]

Top[A]

A Appj

non-full

subcategory

non-full
subcategory

reflective

topological

topological topological
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Reflective Extensions and Topologicity

Reflectivity & Topologicity Chart

pse[A] pre[A] wNbd[A] Nbd[A]

Top[A]

A Appj

non-full

subcategory

non-full
subcategory

reflective

topological

topological topological

reflective

x ∧ ¬x = 0
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Reflective Extensions and Topologicity

Reflectivity & Topologicity Chart

Theorem 5.1 (Reflective Inclusion of pre[A] in pse[A])

If: each SubM (X ) is further assumed to be pseudocomplemented,

Internal Neighbourhood Spaces Partha Pratim Ghosh Frame 16 of 20. . .



,

Reflective Extensions and Topologicity

Reflectivity & Topologicity Chart

Theorem 5.1 (Reflective Inclusion of pre[A] in pse[A])

If: each SubM (X ) is further assumed to be pseudocomplemented,
then: pre[A] is a reflective full subcategory of pse[A].
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A Appj
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If for every morphism X
f−→ Y of A, each x ∈ SubM (X ) and y ∈ SubM (Y ):

x ∧ f
−1
y = 0⇒ ∃

f
x ∧ y = 0

then, pse[A] is topological over A.
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If for every morphism X
f−→ Y of A, each x ∈ SubM (X ) and y ∈ SubM (Y ):

x ∧ f
−1
y = 0⇒ ∃

f
x ∧ y = 0

then, pse[A] is topological over A.

Condition x ∧ f
−1
y = 0⇒ ∃

f
x ∧ y = 0
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Theorem 5.1 (Topologicity of pse[A])

If for every morphism X
f−→ Y of A, each x ∈ SubM (X ) and y ∈ SubM (Y ):

x ∧ f
−1
y = 0⇒ ∃

f
x ∧ y = 0

then, pse[A] is topological over A.

Condition x ∧ f
−1
y = 0⇒ ∃

f
x ∧ y = 0 yields:

(a) For every proper filter A ∈ Fil(X ), B ∈ Fil(Y ):

→
f A ⊆ B ⇒ (∃C ∈ Fil(X ))

(
A ⊆ C and B ⊆

→
f C
)
.

(b) For every maximal filter U ∈Max[X ],
→
f U is a maximal filter on Y .

(c) (X , Γ )
f−→ (Y , Φ) is a pseudotopological morphism, if and only if:

U ∈Max[X ] ∩ Γ (m)⇒
→
f U ∈Max[Y ] ∩ Φ(∃

f
m).
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Reflectivity & Topologicity Chart

pse[A] pre[A] wNbd[A] Nbd[A]

Top[A]

A Appj

non-full

subcategory

non-full
subcategory

reflective

topological

topological topological

reflective

x ∧ ¬x = 0

topological

x ∧ f
−1
y = 0 ⇒

∃
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x ∧ y = 0

reflective

topological

existence
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Reflective Extensions and Topologicity

Reflectivity & Topologicity Chart

Theorem 5.1 (Reflective Inclusion of Top[A] and topologicity)

the following are equivalent :

(a) For every object X , there exists a largest internal topology on X .

(b) Top[A] is a full reflective subcategory of Nbd[A].

(c) Top[A] is topological over Appj .
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Reflective Extensions and Topologicity

Reflectivity & Topologicity Chart

Theorem 5.1 (Reflectivity of Nbd[A] in wNbd[A])

If for every morphism X
f−→ Y of A f

−1
preserve joins then Nbd[A] is a full

reflective subcategory of wNbd[A].
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Regular Epimorphisms

Regular Epimorphisms of Internal Pretopological
Spaces

Theorem 6.1
If the forgetful functor pre[A]

V−→ A create kernel pairs and preserve coequalisers

then a morphism (X , γ)
f−→ (Y , φ) of pre[A] is a regular epimorphism, if and

only if, X
f−→ Y is a regular epimorphism of A and:

φ(y) =
{
u ∈ SubM (Y ) : y ≤ u and f

−1
u ∈ γ(f

−1
y)
}
.
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Regular Epimorphisms

Regular Epimorphisms of Internal
Pseudotopological Spaces

Theorem 6.2
If the forgetful functor pre[A]

W−→ A is topological then a morphism

(X , Γ )
f−→ (Y , Φ) of pre[A] is a regular epimorphism, if and only if, X

f−→ Y is a
regular epimorphism of A and:

(∀y ∈ SubM (Y ))(∀V ∈Max[Y ] ∩ Φ(y))

(∃x ∈ f
−1
y)(∃U ∈Max[X ] ∩ Γ (x)) (

V =
→
f U
)
.
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Concluding Remarks

Way Forward. . .

(a) regular epimorphisms of internal neighbourhood spaces. . .

(b) how good are the extensions — topological hull? or quasi-topos hull? . . .

(c) effective descent morphisms of the internal neighbourhood spaces

(d) possibilities of a general structure (B,B F−→ A . . . ) where F is a fibration
and . . .
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Concluding Remarks

THANK YOU
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