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Quandles

Definition (D. Joyce, S.V. Matveev)
A quandle is a set A equipped with two binary operations � and �−1

satisfying the following identities :

I a � a = a ;
I (a � b) �−1 b = a, (a �−1 b) � b = a ;
I (a � b) � c = (a � c) � (b � c).

If A and B are quandles, a quandle homomorphism f : A→ B is a
function such that

f (a � a′) = f (a) � f (a′), f (a �−1 a′) = f (a) �−1 f (a′).

We write Qnd for the category of quandles.

4/33



Quandles

Definition (D. Joyce, S.V. Matveev)
A quandle is a set A equipped with two binary operations � and �−1

satisfying the following identities :
I a � a = a ;
I (a � b) �−1 b = a, (a �−1 b) � b = a ;
I (a � b) � c = (a � c) � (b � c).

If A and B are quandles, a quandle homomorphism f : A→ B is a
function such that

f (a � a′) = f (a) � f (a′), f (a �−1 a′) = f (a) �−1 f (a′).

We write Qnd for the category of quandles.

4/33



Quandles

Definition (D. Joyce, S.V. Matveev)
A quandle is a set A equipped with two binary operations � and �−1

satisfying the following identities :
I a � a = a ;
I (a � b) �−1 b = a, (a �−1 b) � b = a ;
I (a � b) � c = (a � c) � (b � c).

If A and B are quandles, a quandle homomorphism f : A→ B is a
function such that

f (a � a′) = f (a) � f (a′), f (a �−1 a′) = f (a) �−1 f (a′).

We write Qnd for the category of quandles.

4/33



Quandles

Definition (D. Joyce, S.V. Matveev)
A quandle is a set A equipped with two binary operations � and �−1

satisfying the following identities :
I a � a = a ;
I (a � b) �−1 b = a, (a �−1 b) � b = a ;
I (a � b) � c = (a � c) � (b � c).

If A and B are quandles, a quandle homomorphism f : A→ B is a
function such that

f (a � a′) = f (a) � f (a′), f (a �−1 a′) = f (a) �−1 f (a′).

We write Qnd for the category of quandles.

4/33



Trivial quandles

Example

I Any set A has a natural quandle structure :

one defines

a � b = a, a �−1 b = a, ∀a, b ∈ A.

I This yields a trivial quandle structure (A,�,�−1) on A.

We write Qnd∗ for the category of trivial quandles.
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Quandle associated with a group

Example
If (G, ·,1) is a group, one sets

g � h = h−1 · g · h, g �−1 h = h · g · h−1 ∀g, h ∈ G.

This defines a quandle Conj(G) = (G,�,�−1), called the conjugation
quandle of G.

Remark
A quandle can be seen as ... “what remains of a group when one only
keeps the conjugation operation”.

Any identity holding in Conj(G) for all G ∈ Grp also holds in Qnd.
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Connected components of a quandle

For b in a quandle (A,�,�−1), the right translation

ρb : A→ A

defined by
ρb(a) = a � b, ∀a ∈ A

is an automorphism.

Let Inn(A) be the subgroup of Aut(A) generated by the right
translations ρb :

Inn(A) = 〈{ρb | b ∈ A}〉Aut(A)
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A connected component of A is an orbit under the action of Inn(A).

Two elements a and b of a quandle A are in the same connected
component if there are a1, a2, . . . ,an ∈ A, �αi ∈ {�,�−1} such that

(. . . ((a �α1 a1) �α2 a2) . . . ) �αn an = b.

A quandle A is algebraically connected if it has one connected
component.

For any A, the set π0(A) of connected components is a trivial quandle.
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The adjunction between Qnd and Qnd∗

The functor π0 : Qnd→ Qnd∗ is left adjoint to the inclusion functor
U : Qnd∗ → Qnd

Qnd

π0

))
⊥ Qnd∗

U

ii

Trivial quandles are determined by the additional identities

a � b = a = a �−1 b.
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V. Even (2014) proved that the adjunction

Qnd

π0

))
⊥ Qnd∗

U

ii

is admissible from the point of view of Categorical Galois Theory :

the reflection π0 : Qnd→ Qnd∗ preserves all pullbacks of the form

A×U(C) U(B)

π1

��

π2 // U(B)

U(g)
����

A
f
// // U(C)

where g : B → C is a surjective homomorphism in Qnd∗,
and f : A→ U(C) is a surjective homomorphism in Qnd.
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The categorical notion of covering arising from the adjunction

Qnd

π0

))
⊥ Qnd∗

U

ii

gives back the notion of covering introduced by M. Eisermann (2014) :

a surjective homomorphism f : A→ B with the property that

f (x) = f (y) implies that a � x = a � y , for any a ∈ A.
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Local permutability of congruences

Qnd is not a Mal’tsev category :

if R and S are congruences on a quandle A,

R ◦ S 6= S ◦ R,

in general.
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However, a special type of congruences permute in Qnd.

For a normal subgroup N of Inn(A) one defines a congruence ∼N on
the quandle A :

Definition
(a,b) ∈∼N if and only if a and b belong to the same orbit under the

action of N on A.

Lemma (Even-Gran, 2014)
Let A be a quandle, R a congruence on A and N / Inn(A). Then

∼N ◦R = R◦ ∼N
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Corollary
Let

A f // //

g
����

B

g
����

C
f
// // D

be a pushout of surjective homomorphisms in Qnd,
Eq(g) = {(a,a′) | g(a) = g(a′)} = ∼N ,

for a normal subgroup N / Inn(A).

Then the induced morphism (g, f ) : A→ C ×D B is surjective :

A
f

%% %%
g

�� ��

(g,f )
## ##

C ×D B // //

����

B

g
����

C
f
// // D
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Example
The kernel pair of the unit ηA

∼Inn(A)= Eq(ηA)
π1 //

π2
// A

ηA // Uπ0(A)

is such a congruence.

This fact plays a crucial role in the study of the Galois structure

Qnd

π0

))
⊥ Qnd∗

U

ii
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Central extensions in the variety of quandles

The subvariety of symmetric quandles
Qnd contains the subvariety SymQnd of symmetric quandles :

Qnd

sym
**

⊥ SymQnd

U

ii

A quandle Q is symmetric if it satisfies the additional identity

a � b = b � a, ∀a,b ∈ Q.
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Lemma
The variety SymQnd of symmetric quandles is a Mal’tsev variety.

Proof
Let p be the ternary term defined by

p(a,b, c) = (a � c) �−1 b.

Then :

p(a,a,b) = (a � b) �−1 a = (b � a) �−1 a = b,

p(a,b,b) = (a � b) �−1 b = a.

�
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Abelian quandles
A quandle A is abelian (or medial ) if

(a � b) � (c � d) = (a � c) � (b � d).

Remark
The notions of symmetric quandle and of abelian quandle are
independent.

Not all abelian quandles are symmetric :

for a counter-example, take the trivial quandle on A = {a,b}.

Not all symmetric quandles are abelian :

the smallest counter-example has 81 elements (J.-P. Soublin).
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The variety of abelian symmetric quandles
The Mal’tsev variety SymQnd contains the subvariety AbSymQnd of
abelian symmetric quandles determined by the identity

(a � b) � (c � d) = (a � c) � (b � d).

Remark
AbSymQnd ∼= Mal(SymQnd)

Lemma
AbSymQnd is a naturally Mal’tsev category (in the sense of P.
Johnstone, 1989) :
any A ∈ AbSymQnd has a natural Mal’tsev operation

p : A× A× A→ A.
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There is a reflection

Qnd

sym
**

⊥ SymQnd

V

ii

ab
++

⊥ AbSymQnd

U

kk

similar to

V

I
((

⊥ Vab

U

gg

where V is a modular variety, Vab its subvariety of abelian algebras.
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Lemma
The reflection

Qnd

sym
**

⊥ SymQnd

V

ii

ab
++

⊥ AbSymQnd

U

kk

is admissible for Categorical Galois Theory.

This means that the reflector ab ◦ sym : Qnd→ AbSymQnd
preserves the pullbacks of the form

A×(V◦U)(C) (V ◦ U)(B)

π1

��

π2 // (V ◦ U)(B)

(V◦U)(g)
����

A
f

// // (V ◦ U)(C)
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Given a quandle homomorphism f : A→ B, each fiber f−1(b) is a
subquandle of A.

Indeed, each b of B determines a subquandle {b} of B :

f−1(b) //

��

A

f
��

{b} // B

We say that f : A→ B has abelian symmetric fibers if each fiber
f−1(b) is in AbSymQnd.
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Fact :
If f : A→ B has abelian symmetric fibers, then

Eq(f ) ◦ R = R ◦ Eq(f )

for any congruence R on A.

This also follows from a result by D. Bourn (2015) concerning some
“partial Mal’tsev” properties of Qnd.
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Definition
If R and S are equivalence relations on A, a double equivalence
relation C on R and S

C
p1 //
p2

//

π2

��
π1

��

S

s2

��
s1

��
R

r1 //
r2

// A

is called a centralizing relation if the square

C
p2 //

π1

��

S

s1

��
R r2

// A

is a pullback.
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In a Mal’tsev variety the existence of a centralizing relation C on R
and S

C
p1 //
p2

//

π2

��
π1

��

S

s2

��
s1

��
R

r1 //
r2

// A

is equivalent to the triviality of the Smith commutator :

[R,S] = ∆A,

and to the existence of a partial Mal’tsev operation p : R ×A S → A :

p(x , y , y) = x , p(x , x , y) = y .
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Definition
A surjective quandle homomorphism f : A→ B is an algebraically
central extension if there is a centralizing relation on Eq(f ) and A×A :

C // //

����

A× A

p2

��
p1

��
Eq(f )

f1 //
f2

// A f // B

Lemma

I For a quandle homomorphism f : A→ B with abelian symmetric
fibers such a centralizing relation is unique, when it exists.

I When this is the case, one can prove that

Eq(f ) ∼= A×Q

where Q is an abelian symmetric quandle.
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This type of products

A×Q // //

����

Q

����
A // // {?} = 1

is preserved by the reflector ab ◦ sym : Qnd→ AbSymQnd.

This follows from the surjectivity of Q → 1, and the fact that it lies in
AbSymQnd.
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A surjective homomorphism f : A→ B in Qnd is a trivial covering if the
commutative square induced by the units of the reflection

A f // //

ηA

����

B

ηB

����
(ab ◦ sym)(A)

(ab◦sym)(f )
// // (ab ◦ sym)(B)

is a pullback.

A surjective homomorphism f : A→ B is a covering if there is a
surjective homomorphism p : E → B such that π1 : E ×B A→ E in

E ×B A

π1
����

π2 // // A

f
����

E p
// // B

is a trivial covering.
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Theorem (Even, Gran, Montoli, 2016)
Given a surjective homomorphism f : A→ B in Qnd, the following
conditions are equivalent :

1. f is a covering for the reflection

Qnd

sym
**

⊥ SymQnd

V

ii

ab
++

⊥ AbSymQnd

U

kk (1)

2. f is a normal covering for the reflection (1)

3. f is an algebraically central extension with abelian symmetric
fibers

Remark
For a homomorphism the two conditions “being algebraically central”
and “having abelian symmetric fibers” are independent.
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This theorem opens the way to the study of higher-order coverings.

Other results concern closure operators in Qnd

X

M

and factorization systems associated with reflective subcategories.
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