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Motivation (part I)

F. William Lawvere (1973). “Metric spaces, generalized logic, and closed
categories”. In: Rendiconti del Seminario Matemàtico e Fisico di Milano
43.(1), pp. 135–166. Republished in: Reprints in Theory and Applications
of Categories, No. 1 (2002), 1–37.

“While listening to a 1967 lecture of Richard Swan, which included a
discussion of the relative codimension of pairs of subvarieties, I noticed the
analogy between the triangle inequality and a categorical composition law.

Later I saw that Hausdorff had mentioned the analogy between metric
spaces and posets.”

Ordered sets and metric spaces

> =⇒ (x ≤ x), (x ≤ y & y ≤ z) =⇒ x ≤ z
0 > d(x , x), d(x , y) + d(y , z) > d(x , z)
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Comp. VIII and 476 pages.

Thinking of an order relation on a set M as a function

f : M ×M −→ {<,>,=},

Hausdorff observes that

“Nun steht einer Verallgemeinerung dieser Vorstellung nichts im
Wege, und wir können uns denken, daß eine beliebige Funktion der
Paare einer Menge definiert, d.h. jedem Paar (a, b) von Elementen
einer Menge M ein bestimmtes Element n = f (a, b) einer zweiten
Menge N zugeordnet sei. In noch weiterer Verallgemeinerung kön-
nen wir eine Funktion der Elementtripel, Elementfolgen, Elemen-
tkomplexe, Teilmengen u. dgl. von M in Betracht ziehen.”
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Felix Hausdorff (1914). Grundzüge der Mengenlehre. Leipzig: Veit &
Comp. VIII and 476 pages.

Thinking of an order relation on a set M as a function

f : M ×M −→ {<,>,=},

Hausdorff observes that

Now there stands nothing in the way of a generalisation of this idea,
and we can think of an arbitrary function of pairs of points which
associates to each pair (a, b) of elements of a set M a specific
element n = f (a, b) of a second set N. Generalising further, we
can consider a function of triples, sequences, complexes, subsets,
etc.
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Hausdorff might think of a structure like TX × X −→ V

. . .

. . . where T = (T ,m, e) is a monad and V = (V,⊗, k) is a quantale!?

Example

A topology on X is a relation a : UX × X −→ 2 so that

> =⇒ ( �x a−→ x) and (X Ua−−→ x & x
a−→ x) =⇒ mX (X) a−→ x

1X ≤ a · eX and a · Ua ≤ a ·mX (Note : eX a e◦X , mX a m◦X ).

A topology on X is a map a : X → FX so that eX ≤ a and a ◦ a ≤ a.
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. . . but also writes:
“Eine ganz allgemein gehaltene Theorie dieser Art würde natürlich
erhebliche Komplikationen bedingen und wenig positive Ausbeute
liefern.”

A very general theory of this kind would bring considerable
complications and little benefit.
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Werner Gähler (1992). “Monadic topology – A new concept of generalized
topology”. In: Recent developments of general topology and its
applications. Berlin: Akademie-Verlag, pp. 136–149. International
conference in memory of Felix Hausdorff (1868 - 1942), held in Berlin,
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Motivation (part I)

Definition
A topological theory T = (T,V, ξ) consists of a monad T = (T ,m, e), a
quantale V = (V,⊗, k) and a map ξ : TV → V so that

T preserves weak pullbacks and each naturality square of m is a weak
pullback;
ξ : TV → V is the structure of a lax Eilenberg–Moore algebra on V
and ξ is “compatible with suprema in V”;
the monoid operations are lax homomorphisms:

T1 Tk //

��
≤

TV
ξ
��

1
k
// V

T (V × V)

��

T⊗ //

≤

TV

ξ

��
V × V ⊗

// V

Dirk Hofmann (2007). “Topological theories and closed objects”. In:
Advances in Mathematics 215.(2), pp. 789–824.
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Walter Tholen (2016). Lax Distributive Laws for Topology, I. Tech. rep.
arXiv: 1603.06251 [math.CT].
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. . . And Now for Something Completely Different!



Motivation (part II)

Duality theory (discrete case)

BooSp
hom(−,2)
'

//

��

BAop

��
BooSpV

'
hom(−,1)

// FinSupop
BA

 

CoAlg(V ) ' BAOop

Here V : BooSp −→ BooSp
is the Vietoris functor.

Bjarni Jónsson and Alfred Tarski (1951). “Boolean algebras with operators.
I”. In: American Journal of Mathematics 73.(4), pp. 891–939.
Paul R. Halmos (1956). “Algebraic logic I. Monadic Boolean algebras”.
In: Compositio Mathematica 12, pp. 217–249.
Clemens Kupke, Alexander Kurz, and Yde Venema (2004). “Stone
coalgebras”. In: Theoretical Computer Science 327.(1-2), pp. 109–134.

Marshall Harvey Stone (1936). “The theory of representations for Boolean
algebras”. In: Transactions of the American Mathematical Society 40.(1),
pp. 37–111.
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Motivation (part II)
Duality theory (ordered case)

Priest
hom(−,2)
'

//

��

DLop

��
PriestV hom(−,1)

// FinSupop
 

CoAlg(V ) ' DLOop

Here V : Priest −→ Priest
is the Vietoris functor.

Hilary A. Priestley (1970). “Representation of distributive lattices by means
of ordered stone spaces”. In: Bulletin of the London Mathematical Society
2.(2), pp. 186–190.
Roberto Cignoli, S. Lafalce, and Alejandro Petrovich (1991). “Remarks on
Priestley duality for distributive lattices”. In: Order 8.(3), pp. 299–315.
Alejandro Petrovich (1996). “Distributive lattices with an operator”. In:
Studia Logica 56.(1-2), pp. 205–224. Special issue on Priestley duality.
Marcello M. Bonsangue, Alexander Kurz, and Ingrid M. Rewitzky (2007).
“Coalgebraic representations of distributive lattices with operators”. In:
Topology and its Applications 154.(4), pp. 778–791.
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[0, 1]-categories with finite weighted colimits and finitely cocontinuous
[0, 1]-functors;
with monoid structure ⊗ and neutral element 1, laxly preserved.
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Quantales

Examples
1. V = 2 with ⊗ = & and k = >: 2-Cat ' Ord.
2. V =

←−−−
[0,∞]+ with ⊗ = + and k = 0:

←−−−
[0,∞]+-Cat 'Met.

3. V =
←−−−
[0,∞]∧ with ⊗ = max and k = 0:

←−−−
[0,∞]∧-Cat ' UMet.

4. V =
←−−
[0, 1]⊕ with ⊗ = ⊕ and k = 0:

←−−
[0, 1]⊕-Cat ' BMet.

5. V = [0, 1]∗ with ⊗ = ∗ and k = 1; [0, 1]∗ '
←−−−
[0,∞]+.

6. V = [0, 1]∧ with ⊗ = ∧ and k = 1; [0, 1]∧ '
←−−−
[0,∞]∧.

7. V = [0, 1]� with u ⊗ v = u + v − 1 and k = 1; [0, 1]� '
←−−
[0, 1]⊕.

8. V = ∆ = {f : [0,∞]→ [0, 1] | f (α) =
∨
β<α

f (β)}, ∆-Cat ' ProbMet.
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Vietoris monads

The discrete case
The functor V : CompHaus −→ CompHaus is defined by

VX = {A ⊆ X | A closed} with the “hit-and-miss topology”
{A | A ∩ B 6= ∅}, {A | A ∩ B{ = ∅} (for all B open);

Vf (A) = f [A].

Leopold Vietoris (1922). “Bereiche zweiter Ordnung”. In: Monatshefte für
Mathematik und Physik 32.(1), pp. 258–280.

The ordered case
We consider here V : PosComp −→ PosComp defined by

VX = {A ⊆ X | A upper closed} with the “hit-and-miss topology”;
Vf (A) = ↑f [A].

The topological case
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Duality theory for spectral distributors

We consider:

PosCompV
C // LaxMon([0, 1]-FinSup)op,

PosComp

gg

C=hom(−,[0,1]op)

55

The induced monad morphism j is precisely given by the family of maps
jX : VX −→ [CX , [0, 1]], A 7−→ ΦA,

with ΦA : CX −→ [0, 1], ψ 7−→ supx∈A ψ(x).

Dirk Hofmann and Pedro Nora (2016). Enriched Stone-type dualities.
Tech. rep. arXiv: 1605.00081 [math.CT].

Corollary
For ⊗ = ∗ or ⊗ = �,

C : PosCompV −→ LaxMon([0, 1]-FinSup)op is fully faithful.
C : PosComp −→ Mon([0, 1]-FinSup)op is fully faithful.

http://arxiv.org/abs/1605.00081
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The case of a general tensor

Remark
For ⊗ = ∗ or ⊗ = �: C : PosCompV → [0, 1]-FinSupop is not full.a

aWait till 09h43±ε.
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Bernhard Banaschewski (1983). “On lattices of continuous functions”. In:
Quaestiones Mathematicæ 6.(1-3), pp. 1–12.

Here he considers distributive lattices with constants from [0, 1].
Alternatively, one may consider distributive lattices L with an action
[0, 1]× L −→ L

; that is, Mon([0, 1]∧-FinSup).
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A Stone–Weierstraß theorem for [0, 1]-categories

Let A be the category with objects all [0, 1]-powered objects in
Mon([0, 1]-FinSup) (if ⊗ = �) resp. Mon	([0, 1]-FinSup) (if ⊗ = ∗)

and morphisms all those arrows which preserve powers by elements of [0, 1].

Theorem
Let m : A→ CX be a mono in A so that the cone (m(a) : X → [0, 1]op)a∈A
is point-separating and initial wrt. PosComp→ Set. Then m is an
isomorphism in A if and only if A is Cauchy-complete (as [0, 1]-category).

Definition
We say that an object A of A has enough characters whenever the cone
(ϕ : A→ [0, 1])ϕ of all morphisms into [0, 1] separates the points of A.

Theorem
For ⊗ = ∗ multiplication resp. ⊗ = � the Łukasiewicz tensor,

PosCompop
V
' A[0,1],cc,lax and PosCompop ' A[0,1],cc.
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Next goals

Recall
We considered

PosCompop
V
−→ LaxMon([0, 1]-FinSup)op

where VX = {A ⊆ X | A is closed}.

Now

ordered space  [0, 1]-category + topology.
Vietoris space “2X”  Vietoris space “[0, 1]X”
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T-categories and T-distributors

Definition (for a topological theory T = (T,V, ξ))

A T-category (X , a) is a set X and V-relation a : TX × X → V
(written as a : TX −→7 X ) so that

A T-functor f : (X , a)→ (Y , b) must satisfy a(x, x) ≤ b(Tf (x), f (x)).
A T-distributor ϕ : (X , a) −⇀◦ (Y , b) is a T-relation ϕ : TX −→7 Y so
that ϕ ◦ a ≤ ϕ and b ◦ ϕ ≤ ϕ.
We obtain the categories T-Cat and (for T strict) T-Dist.

Examples

T = 1, ξ = 1: V → V: T-Cat = V-Cat.
T = U, ξ : U2→ 2 = “identity”: T-Cat = Top.
More general, for V compl. distr.: T = U, ξ : UV → V, v 7→

∨∧
v.

T = W free monoid monad, ξ : WV → V, (v1, . . . , vn) 7→ v1⊗· · ·⊗ vn:
Here T-Cat = V-MultiCat; for V = 2, T-Cat = MultiOrd.
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Representable T-categories

Motivation

OrdU '

OrdCH→ Top

U of KZ-type

��

(X ,≤, τ) 7→ (X , ↓τ)

Some facts

(X ≤−7−→ X ) 7→ (UX U≤− 7−→ UX )
G≤ ⊆ X × X is closed

⇐⇒
α : UX → X is monotone.

Leopoldo Nachbin (1950). Topologia e Ordem. Univ. of Chicago Press.
Gerhard Gierz et al. (1980). A compendium of continuous lattices. Berlin:
Springer-Verlag, pp. xx + 371.

For T = (T,V, ξ) strict:

(V-Cat)T >

K
((

M
hh T-Cat T of KZ-typebb

Representable T-category = pseudo-algebra for T on T-Cat.
(V, hom, ξ) is in (V-Cat)T.
We have (−)op : T-Rep→ T-Rep.
For X representable: −⊗ X a (−)X .
Under some conditions: Representable =⇒ Cauchy-complete.
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On cocomplete T-categories

For T = (T,V, ξ) strict:
a : (TX )op ⊗ X −→ V is a V-functor and there is an adjunction

T-Distop >

P
((

(−)~
hh T-Cat P of KZ-typebb

with unit yX : X −→ PX = V(TX)op .

Algebras for P = injectives wrt. emb. = T-cat. with weighted colimits.
(T-Cat)P −→ Set is monadic; there is a monad morphism T→ P.

Examples

For Top: P = F is the filter monad, TopF ' SetF ' ContLat.
For MultiOrd: MultiOrdP ' SetP ' Quantales.
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with unit yX : X −→ PX = V(TX)op .
Algebras for P = injectives wrt. emb. = T-cat. with weighted colimits.
(T-Cat)P −→ Set is monadic; there is a monad morphism T→ P.

Examples
For Top: P = F is the filter monad, TopF ' SetF ' ContLat.
For MultiOrd: MultiOrdP ' SetP ' Quantalesa.

aJoachim Lambek, Michael Barr, John F. Kennison, and Robert Raphael
(2012). “Injective hulls of partially ordered monoids”. In: Theory and
Applications of Categories 26.(13), pp. 338–348.



The enriched Vietoris monad (assuming T1=1)

Some notions and facts

T-graph = (X , a) with e◦X ≤ a.
(X , a) is dualisable whenever a = a0 · α (for some map α : TX → X )
and V-category structure a0 : X −→7 X .
(X , a)op = (X , a◦0 · α).

Theorem (for a dualisable T-category X )
X op is a T-category⇐⇒ X is core-compact⇐⇒ X is representable.

Theorem (For each T-category X )
The T-graph VX is dualisable and VX =

(
VX )op is a T-category.
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Some notions and facts
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The T-graph VX is dualisable and VX =

(
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Theorem
This construction defines a monad V = (V ,m, e) of co-KZ-type on T-Cat
and T-Rep.



The enriched Vietoris monad (continuação)

Remark
There is a functor (−)0 : T-RepV −→ V-Dist; moreover

X ϕ
−◦−→ Y = X0

ϕ
−◦−→ Y0 + T (X0) ◦

T
ξ

(ϕ)
//

◦a
��

T (Y0)
◦b
��

X0 ◦
ϕ
// Y0.

For f : X → Y in T-Cat: Vf is right adj. ⇐⇒ f is downwards open.
algebra for V= injective wrt. ↓ open emb. = has all weighted limits.
SetP ' (T-Cat)P ' (T-Rep)V'

(
SetT

)V.

Example (in Top)
Let D = (D,m, e) be a co-Kock–Zöberlein monad on Top where each
component eX of e is an embedding. Then D is a submonad of V.
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For a study of (co)-Kock–Zöberlein monads in Topology:
Margarida Carvalho and Lurdes Sousa (2015). “On Kan-injectivity of Locales and
Spaces”. In: Applied Categorical Structures, pp. 1–22.
Jiří Adámek, Lurdes Sousa, and Jiří Velebil (2015). “Kan injectivity in
order-enriched categories”. In: Mathematical Structures in Computer Science
25.(1), pp. 6–45.
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Let D = (D,m, e) be a co-Kock–Zöberlein monad on Top where each component
eX of e is an embedding. Then D is a submonad of V.
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Example (in Top)
Let D = (D,m, e) be a co-Kock–Zöberlein monad on Top where each
component eX of e is an embedding. Then D is a submonad of V.



Now back to duality theory



Duality theory for representable U-distributors

We consider now U = (U, [0, 1], ξ) with ⊗ = ∗ or ⊗ = �. Then

U-RepV
C=hom(−,1) // [0, 1]-FinSupop

U-Repsep

ff

C=hom(−,[0,1]op)

77

induces the monad morphism
jX : VX −→ [CX , [0, 1]], (ϕ : 1 −→◦ X ) 7−→ (ψ 7→ ψ · ϕ).

Definition
A separated representable U-category X is called [0, 1]op-cogenerated if the
cone (ψ : X → [0, 1]op)ψ∈CX is point-separating and initial.

Proposition
X is [0, 1]op-cogenerated =⇒ VX is [0, 1]op-cogenerated.
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Duality theory for representable U-categories

Theorem
The functor

C :
(
U-Rep[0,1]op

)
V
−→ [0, 1]-FinSupop

is fully faithful.

Corollary
Let X be a partially ordered compact space and ψ0 ∈ CX. Then
ψ0 ⊗− : CX −→ CX is the largest morphism Φ: CX −→ CX in
[0, 1]-FinSup satisfying

Φ(1) ≤ ψ0 and Φ(ψ) ≤ ψ (for all ψ ∈ CX ).

Corollary
A morphism ϕ : X −→◦ Y in U-RepV between partially ordered compact
spaces is in PosCompV if and only if Cϕ preserves laxly the tensor.
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Restricting to functors

Before
For C : StablyCompV −→ LaxMon([0, 1]-FinSup)op and

eX : X −→ VX , x 7−→ {x} = ↑x :
A ⊆ X closed ! Φ : CX −→ [0, 1].

A is irreducible ⇐⇒ Φ is in Mon([0, 1]-FinSup).
Every X in StablyComp is sober.

Now
For C :

(
U-Rep[0,1]op

)
V
−→ ([0, 1]-FinSup)op and

eX : X −→ VX , x 7−→ a0(x ,−).
ϕ : X −→ [0, 1] ! Φ : CX −→ [0, 1].

1 ϕ
−◦−→ X is irreducible(?) ⇐⇒ Φ is ????

Every X in U-Rep is sober(?) ???
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Cauchy complete T-categories

T-distributors
Recall: T-distributor ϕ : X −⇀◦ Y = ϕ : TX × Y → V so that . . . .

ϕ : 1 −⇀◦ X = T-functor ϕ : X → V (for T1 = 1).
ψ : X −⇀◦ 1 = T-functor ψ : (UX )op → V.

Definition
X is Cauchy complete if every adjunction ϕ a ψ is induced by some x ∈ X .

Examples

In Met: Cauchy complete = Cauchy complete.
In Top: Cauchy complete = sober.
In App ' U←−−−[0,∞]+

-Cat ' U[0,1]∗-Cat: Cauchy complete = sober.

Proposition
Every representable U-category is Cauchy complete.
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Maria Manuel Clementino and Dirk Hofmann (2009). “Lawvere
completeness in topology”. In: Applied Categorical Structures 17.(2),
pp. 175–210.
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Adjoint T-distributors

Proposition
An U-distributor ϕ : 1 −⇀◦ X is left adjoint ⇐⇒ the [0, 1]-functor
[ϕ,−] : U-Cat(X , [0, 1]) −→ [0, 1] preserves tensors and finite suprema.

Dirk Hofmann and Isar Stubbe (2011). “Towards Stone duality for
topological theories”. In: Topology and its Applications 158.(7),
pp. 913–925.

For Łukasiewicz ⊗ = �
[0, 1] is a Girard quantale: for every u ∈ [0, 1], u = hom(hom(u,⊥),⊥)
where hom(u,⊥) = 1− u =: u⊥.
Furthermore, the diagram

CX

[0, 1]-Dist(X , 1)
(−)⊥ //

(−·ϕ)
��

[0, 1]-Dist(1,X )op

[ϕ,−]op

��
[0, 1]

(−)⊥
// [0, 1]op

commutes in [0, 1]-Cat

and CX ↪→ U-Cat(X , [0, 1]op) is
∨
-dense.

Conclusion: ϕ : 1 −⇀◦ X is left adjoint ⇐⇒ Φ preserves finite w. limits.
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Esakia duality

Priest ' // DLop

BooSp ' // BAop

Theorem
1. For X in Priest, the following assertions are equivalent.

(i) i : Xp → X , x 7→ x is down-wards open.
(ii) i∗ : Xp −→◦ X has a right adjoint (necessarily given by i∗).
(iii) X is a split subobject of a Boolean space in PriestDist.

2. PriestDist is idempotent split complete.

Question
I do not know if

(
U-Rep

)
V

is idempotent split complete.
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A Priestley space (X ,≤, α) is called an Esakia space whenever
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