An embedding theorem for regular Mal'tsev categories

Pierre-Alain Jacqmin

Category Theory 2017

July 20, 2017

Famous embedding theorems

Yoneda embedding

Every small category ${\mathcal C}$ admits a fully faithful embedding

$$\mathcal{C} \hookrightarrow \operatorname{Set}^{\mathcal{C}^{\operatorname{op}}}$$

which preserves small limits.

Barr's embedding

Every small regular category \mathcal{C} admits a fully faithful embedding

 $\mathcal{C} \hookrightarrow \operatorname{Set}^{\mathcal{D}}$

which preserves finite limits and regular epimorphisms.

Lubkin's embedding

Every small abelian category \mathcal{C} admits an exact conservative embedding

 $\mathcal{C} \hookrightarrow \operatorname{Ab}$.

Famous embedding theorems

Yoneda embedding

Every small category ${\mathcal C}$ admits a fully faithful embedding

$$\mathcal{C} \hookrightarrow \operatorname{Set}^{\mathcal{C}^{\operatorname{op}}}$$

which preserves small limits.

Barr's embedding

Every small regular category ${\mathcal C}$ admits a fully faithful embedding

 $\mathcal{C} \hookrightarrow \operatorname{Set}^\mathcal{D}$

which preserves finite limits and regular epimorphisms.

Lubkin's embedding

Every small abelian category \mathcal{C} admits an exact conservative embedding

 $\mathcal{C} \hookrightarrow \operatorname{Ab}$.

Famous embedding theorems

Yoneda embedding

Every small category ${\mathcal C}$ admits a fully faithful embedding

$$\mathcal{C} \hookrightarrow \operatorname{Set}^{\mathcal{C}^{\operatorname{op}}}$$

which preserves small limits.

Barr's embedding

Every small regular category ${\mathcal C}$ admits a fully faithful embedding

 $\mathcal{C} \hookrightarrow \operatorname{Set}^\mathcal{D}$

which preserves finite limits and regular epimorphisms.

Lubkin's embedding

Every small abelian category C admits an exact conservative embedding

 $\mathcal{C} \hookrightarrow \operatorname{Ab}.$

Mal'tsev categories

Theorem (Carboni - Pedicchio - Pirovano, 1992)

The followings conditions on a finitely complete category \mathcal{C} are equivalent:

- **1** any reflexive relation is an equivalence relation,
- 2 any reflexive relation is symmetric,
- 3 any reflexive relation is transitive,
- **4** every relation is difunctional.

In this case, we say that C is a Mal'tsev category.

Regular Mal'tsev categories

Theorem (Carboni - Lambek - Pedicchio, 1990)

The followings conditions on a regular category ${\mathcal C}$ are equivalent:

- **1** \mathcal{C} is a Mal'tsev category,
- 2 for any pair (R, S) of equivalence relations on a same object, their composition RS is an equivalence relation,
- **B** for any pair (R, S) of equivalence relations on a same object, RS = SR.

Aim

Find a regular Mal'tsev category \mathcal{M} such that, for every small regular Mal'tsev category \mathcal{C} , there exists a faithful conservative embedding

 $\mathcal{C} \hookrightarrow \mathcal{M}^{\mathcal{D}}$

which preserves finite limits and regular epimorphisms.

Aim

Find a regular Mal'tsev category \mathcal{M} such that, for every small regular Mal'tsev category \mathcal{C} , there exists a faithful conservative embedding

$$\mathcal{C} \hookrightarrow \mathcal{M}^{\mathcal{D}}$$

which preserves finite limits and regular epimorphisms.

A finitary essentially algebraic theory is a quintuple $\Gamma = (S, \Sigma, E, \Sigma_t, \text{Def})$ where

- S is a set of sorts,
- Σ is a set of S-sorted finitary operation symbols,
- E is a set of Σ -equations,
- $\Sigma_t \subseteq \Sigma$ is the subset of 'total operation symbols',
- for each $\sigma \in \Sigma \setminus \Sigma_t$, $\text{Def}(\sigma)$ is a finite set of Σ_t -equations (in the variables of σ).

A Γ -model A is the collection of

- an S-sorted set $(A_s)_{s\in S} \in \operatorname{Set}^S$,
- for each $\sigma: s_1 \times \cdots \times s_n \to s$ in Σ , a partial function $\sigma^A: A_{s_1} \times \cdots \times A_{s_n} \to A_s$

satisfying

- for each $\sigma \in \Sigma_t$, σ^A is totally defined,
- for each $\sigma \in \Sigma \setminus \Sigma_t$, $\sigma(a_1, \ldots, a_n)$ is defined if and only if (a_1, \ldots, a_n) satisfies the equations of $Def(\sigma)$ in A,
- A satisfies the equations of E whenever they are defined.

This gives rise to the category $Mod(\Gamma)$.

Theorem (Gabriel - Ulmer, 1971)

A Γ -model A is the collection of

- an S-sorted set $(A_s)_{s\in S} \in \operatorname{Set}^S$,
- for each $\sigma: s_1 \times \cdots \times s_n \to s$ in Σ , a partial function $\sigma^A: A_{s_1} \times \cdots \times A_{s_n} \to A_s$

satisfying

- for each $\sigma \in \Sigma_t$, σ^A is totally defined,
- for each $\sigma \in \Sigma \setminus \Sigma_t$, $\sigma(a_1, \ldots, a_n)$ is defined if and only if (a_1, \ldots, a_n) satisfies the equations of $Def(\sigma)$ in A,
- A satisfies the equations of E whenever they are defined.

This gives rise to the category $Mod(\Gamma)$.

Theorem (Gabriel - Ulmer, 1971)

A $\Gamma\operatorname{-model} A$ is the collection of

- an S-sorted set $(A_s)_{s\in S} \in \operatorname{Set}^S$,
- for each $\sigma: s_1 \times \cdots \times s_n \to s$ in Σ , a partial function $\sigma^A: A_{s_1} \times \cdots \times A_{s_n} \to A_s$

satisfying

- for each $\sigma \in \Sigma_t$, σ^A is totally defined,
- for each $\sigma \in \Sigma \setminus \Sigma_t$, $\sigma(a_1, \ldots, a_n)$ is defined if and only if (a_1, \ldots, a_n) satisfies the equations of $Def(\sigma)$ in A,

• A satisfies the equations of E whenever they are defined.

This gives rise to the category $Mod(\Gamma)$.

Theorem (Gabriel - Ulmer, 1971)

A $\Gamma\operatorname{-model} A$ is the collection of

- an S-sorted set $(A_s)_{s\in S} \in \operatorname{Set}^S$,
- for each $\sigma: s_1 \times \cdots \times s_n \to s$ in Σ , a partial function $\sigma^A: A_{s_1} \times \cdots \times A_{s_n} \to A_s$

satisfying

- for each $\sigma \in \Sigma_t$, σ^A is totally defined,
- for each $\sigma \in \Sigma \setminus \Sigma_t$, $\sigma(a_1, \ldots, a_n)$ is defined if and only if (a_1, \ldots, a_n) satisfies the equations of $Def(\sigma)$ in A,
- A satisfies the equations of E whenever they are defined.

This gives rise to the category $Mod(\Gamma)$.

Theorem (Gabriel - Ulmer, 1971)

A $\Gamma\operatorname{-model} A$ is the collection of

- an S-sorted set $(A_s)_{s\in S} \in \operatorname{Set}^S$,
- for each $\sigma: s_1 \times \cdots \times s_n \to s$ in Σ , a partial function $\sigma^A: A_{s_1} \times \cdots \times A_{s_n} \to A_s$

satisfying

- for each $\sigma \in \Sigma_t$, σ^A is totally defined,
- for each $\sigma \in \Sigma \setminus \Sigma_t$, $\sigma(a_1, \ldots, a_n)$ is defined if and only if (a_1, \ldots, a_n) satisfies the equations of $Def(\sigma)$ in A,
- A satisfies the equations of E whenever they are defined.

This gives rise to the category $Mod(\Gamma)$.

Theorem (Gabriel - Ulmer, 1971)

A $\Gamma\operatorname{-model} A$ is the collection of

- an S-sorted set $(A_s)_{s\in S} \in \operatorname{Set}^S$,
- for each $\sigma: s_1 \times \cdots \times s_n \to s$ in Σ , a partial function $\sigma^A: A_{s_1} \times \cdots \times A_{s_n} \to A_s$

satisfying

- for each $\sigma \in \Sigma_t$, σ^A is totally defined,
- for each $\sigma \in \Sigma \setminus \Sigma_t$, $\sigma(a_1, \ldots, a_n)$ is defined if and only if (a_1, \ldots, a_n) satisfies the equations of $Def(\sigma)$ in A,
- A satisfies the equations of E whenever they are defined.

This gives rise to the category $Mod(\Gamma)$.

Theorem (Gabriel - Ulmer, 1971)

Example

The category Cat is of the form $Mod(\Gamma)$:

- \bullet two sorts: O and A
- operations:

$$A^2 \xrightarrow{m} A \xrightarrow{d} O$$

• $\operatorname{Def}(m) = \{(f,g) \in A^2 \,|\, c(f) = d(g)\}$

Example

The category Cat is of the form $Mod(\Gamma)$:

- \bullet two sorts: O and A
- operations:

$$A^2 \xrightarrow{m} A \xrightarrow{d} O$$

• $\operatorname{Def}(m) = \{(f,g) \in A^2 \,|\, c(f) = d(g)\}$

Example

The category Cat is of the form $Mod(\Gamma)$:

- \bullet two sorts: O and A
- operations:

$$A^2 \xrightarrow{m} A \xrightarrow{d} O$$

•
$$\operatorname{Def}(m) = \{(f,g) \in A^2 \,|\, c(f) = d(g)\}$$

$\mathbf{Example}$

The category Cat is of the form $Mod(\Gamma)$:

- \bullet two sorts: O and A
- operations:

$$A^2 \xrightarrow{m} A \xrightarrow{d} O$$

•
$$Def(m) = \{(f,g) \in A^2 | c(f) = d(g)\}$$

$\mathbf{Example}$

The category Cat is of the form $Mod(\Gamma)$:

- \bullet two sorts: O and A
- operations:

$$A^2 \xrightarrow{m} A \xrightarrow{d} O$$

•
$$Def(m) = \{(f,g) \in A^2 | c(f) = d(g)\}$$

Theorem (Mal'tsev, 1954)

A variety of universal algebras \mathbb{V} is a Mal'tsev category if and only if its theory contains a ternary operation p(x, y, z) satisfying the identities

$$\begin{cases} p(x, y, y) = x\\ p(x, x, y) = y. \end{cases}$$

${\operatorname{Theorem}}$

Let Γ be an essentially algebraic theory. Then $\operatorname{Mod}(\Gamma)$ is a Mal'tsev category if and only if, for each sort $s \in S$, there exists in Γ a term $p^s : s^3 \to s$ such that

- $p^{s}(x, x, y)$ and $p^{s}(x, y, y)$ are everywhere-defined and
- $p^{s}(x, x, y) = y$ and $p^{s}(x, y, y) = x$ are theorems of Γ .

Theorem (Mal'tsev, 1954)

A variety of universal algebras \mathbb{V} is a Mal'tsev category if and only if its theory contains a ternary operation p(x, y, z) satisfying the identities

$$\begin{cases} p(x, y, y) = x\\ p(x, x, y) = y. \end{cases}$$

Theorem

Let Γ be an essentially algebraic theory. Then $\operatorname{Mod}(\Gamma)$ is a Mal'tsev category if and only if, for each sort $s \in S$, there exists in Γ a term $p^s \colon s^3 \to s$ such that

- $p^{s}(x, x, y)$ and $p^{s}(x, y, y)$ are everywhere-defined and
- $p^{s}(x, x, y) = y$ and $p^{s}(x, y, y) = x$ are theorems of Γ .

We construct a finitary essentially algebraic theory Γ_{Mal} such that:

• for each sort $s \in S_{\text{Mal}}$, there exists a sort \overline{s} and operation symbols

satisfying the axioms

$$\begin{cases} \rho^s(x, y, y) = \alpha^s(x) \\ \rho^s(x, x, y) = \alpha^s(y) \\ \pi^s(\alpha^s(x)) = x \end{cases}$$

and such that $\pi^s(\alpha^s(x))$ is everywhere-defined.

We construct a finitary essentially algebraic theory Γ_{Mal} such that:

• for each sort $s \in S_{\text{Mal}}$, there exists a sort \overline{s} and operation symbols

satisfying the axioms

$$\left\{egin{aligned} &
ho^s(x,y,y)=lpha^s(x)\ &
ho^s(x,x,y)=lpha^s(y)\ &\pi^s(lpha^s(x))=x \end{aligned}
ight.$$

and such that $\pi^{s}(\alpha^{s}(x))$ is everywhere-defined.

We construct a finitary essentially algebraic theory Γ_{Mal} such that:

• for each sort $s \in S_{\text{Mal}}$, there exists a sort \overline{s} and operation symbols

satisfying the axioms

$$\begin{cases} \rho^{s}(x, y, y) = \alpha^{s}(x) \\ \rho^{s}(x, x, y) = \alpha^{s}(y) \\ \pi^{s}(\alpha^{s}(x)) = x \end{cases}$$

and such that $\pi^{s}(\alpha^{s}(x))$ is everywhere-defined.

• $Mod(\Gamma_{Mal})$ is a regular Mal'tsev category.

• The following embedding theorem holds:

${ m Theorem}$

Every small regular Mal'tsev category ${\mathcal C}$ admits a faithful conservative embedding

```
\mathcal{C} \hookrightarrow \mathrm{Mod}(\Gamma_{\mathrm{Mal}})^{\mathrm{Sub}(1)}
```

which preserves finite limits and regular epimorphisms.

- $Mod(\Gamma_{Mal})$ is a regular Mal'tsev category.
- The following embedding theorem holds:

Theorem

Every small regular Mal'tsev category ${\mathcal C}$ admits a faithful conservative embedding

 $\mathcal{C} \hookrightarrow \mathrm{Mod}(\Gamma_{\mathrm{Mal}})^{\mathrm{Sub}(1)}$

which preserves finite limits and regular epimorphisms.

- $Mod(\Gamma_{Mal})$ is a regular Mal'tsev category.
- The following embedding theorem holds:

Theorem

Every small regular Mal'tsev category ${\mathcal C}$ admits a faithful conservative embedding

```
\mathcal{C} \hookrightarrow \mathrm{Mod}(\Gamma_{\mathrm{Mal}})^{\mathrm{Sub}(1)}
```

which preserves finite limits and regular epimorphisms. Moreover, regular epimorphisms are sent to componentwise surjective homomorphisms.

Application

Proposition (Bourn, 2003)

Let \mathcal{C} be a regular Mal'tsev category. For any commutative diagram

if γ and δ are regular epimorphisms, then the comparison morphism λ is also a regular epimorphism.

The varietal proof

- Let $(u, w) \in U \times_V W$. So $u \in U$ and $w \in W$ are such that h(u) = k(w).
- Since γ and δ are surjective, there exist $x \in X$ and $z \in Z$ such that $\gamma(x) = u$ and $\delta(z) = w$.
- Let $z' = p(z, tg(z), tf(x)) \in Z$.
- $(x, z') \in X \times_Y Z$ since

g(z') = p(g(z), gtg(z), gtf(x)) = p(g(z), g(z), f(x)) = f(x).

• $\lambda(x, z') = (u, w)$ since $\gamma(x) = u$ and

$$\begin{split} \delta(z') &= p(\delta(z), \delta t g(z), \delta t f(x)) = p(\delta(z), v k \delta(z), v h \gamma(x)) \\ &= p(w, v k(w), v h(u)) = p(w, v k(w), v k(w)) = w. \end{split}$$

- Let s be a sort in Γ_{Mal}
- Let $(u, w) \in U \times_V W$. So $u \in U$ and $w \in W$ are such that h(u) = k(w).
- Since γ and δ are surjective, there exist $x \in X$ and $z \in Z$ such that $\gamma(x) = u$ and $\delta(z) = w$.
- Let $z' = p(z, tg(z), tf(x)) \in Z$.
- $(x, z') \in X \times_Y Z$ since

$$g(z') = p(g(z), gtg(z), gtf(x)) = p(g(z), g(z), f(x)) = f(x)$$

•
$$\lambda(x, z') = (u, w)$$
 since $\gamma(x) = u$ and
 $\delta(z') = p(\delta(z), \delta tg(z), \delta tf(x)) = p(\delta(z), vk\delta(z), vh\gamma(x))$
 $= p(w, vk(w), vh(u)) = p(w, vk(w), vk(w)) = w.$

- Let s be a sort in Γ_{Mal}
- Let $(u, w) \in (U \times_V W)_s$. So $u \in U_s$ and $w \in W_s$ are such that h(u) = k(w).
- Since γ and δ are surjective, there exist $x \in X$ and $z \in Z$ such that $\gamma(x) = u$ and $\delta(z) = w$.
- Let $z' = p(z, tg(z), tf(x)) \in Z$.
- $(x, z') \in X \times_Y Z$ since

$$g(z') = p(g(z), gtg(z), gtf(x)) = p(g(z), g(z), f(x)) = f(x).$$

• $\lambda(x, z') = (u, w)$ since $\gamma(x) = u$ and $\delta(z') = p(\delta(z), \delta tg(z), \delta tf(x)) = p(\delta(z), vk\delta(z), vh\gamma(x))$

$$= p(w, vk(w), vh(u)) = p(w, vk(w), vk(w)) = w.$$

- Let s be a sort in Γ_{Mal}
- Let $(u, w) \in (U \times_V W)_s$. So $u \in U_s$ and $w \in W_s$ are such that h(u) = k(w).
- Since we can suppose that γ and δ are surjective, there exist $x \in X_s$ and $z \in Z_s$ such that $\gamma(x) = u$ and $\delta(z) = w$.
- Let $z' = p(z, tg(z), tf(x)) \in Z$.
- $(x, z') \in X \times_Y Z$ since

$$g(z') = p(g(z), gtg(z), gtf(x)) = p(g(z), g(z), f(x)) = f(x).$$

• $\lambda(x, z') = (u, w)$ since $\gamma(x) = u$ and $\delta(z') = p(\delta(z), \delta tg(z), \delta tf(x)) = p(\delta(z), vk\delta(z), vh\gamma(x))$ = p(w, vk(w), vh(u)) = p(w, vk(w), vk(w)) = w.

- Let s be a sort in Γ_{Mal}
- Let $(u, w) \in (U \times_V W)_s$. So $u \in U_s$ and $w \in W_s$ are such that h(u) = k(w).
- Since we can suppose that γ and δ are surjective, there exist $x \in X_s$ and $z \in Z_s$ such that $\gamma(x) = u$ and $\delta(z) = w$.
- Let $z' = \rho^s(z, tg(z), tf(x)) \in \mathbb{Z}_{\overline{s}}$.
- $(x, z') \in X \times_Y Z$ since

$$g(z') = p(g(z), gtg(z), gtf(x)) = p(g(z), g(z), f(x)) = f(x).$$

• $\lambda(x, z') = (u, w)$ since $\gamma(x) = u$ and $\delta(z') = p(\delta(z), \delta t g(z), \delta t f(x)) = p(\delta(z), v k \delta(z), v h \gamma(x))$

$$= p(w, vk(w), vh(u)) = p(w, vk(w), vk(w)) = w.$$

- Let s be a sort in Γ_{Mal}
- Let $(u, w) \in (U \times_V W)_s$. So $u \in U_s$ and $w \in W_s$ are such that h(u) = k(w).
- Since we can suppose that γ and δ are surjective, there exist $x \in X_s$ and $z \in Z_s$ such that $\gamma(x) = u$ and $\delta(z) = w$.
- Let $z' = \rho^s(z, tg(z), tf(x)) \in \mathbb{Z}_{\overline{s}}$.
- $(\alpha^{s}(x), z') \in (X \times_{Y} Z)_{\overline{s}}$ since

 $g(z') = \rho^{s}(g(z), gtg(z), gtf(x)) = \rho^{s}(g(z), g(z), f(x)) = f(\alpha^{s}(x)).$

•
$$\lambda(x, z') = (u, w)$$
 since $\gamma(x) = u$ and
 $\delta(z') = p(\delta(z), \delta tg(z), \delta tf(x)) = p(\delta(z), vk\delta(z), vh\gamma(x))$
 $= p(w, vk(w), vh(u)) = p(w, vk(w), vk(w)) = w.$

- Let s be a sort in Γ_{Mal}
- Let $(u, w) \in (U \times_V W)_s$. So $u \in U_s$ and $w \in W_s$ are such that h(u) = k(w).
- Since we can suppose that γ and δ are surjective, there exist $x \in X_s$ and $z \in Z_s$ such that $\gamma(x) = u$ and $\delta(z) = w$.
- Let $z' = \rho^s(z, tg(z), tf(x)) \in \mathbb{Z}_{\overline{s}}$.
- $(\alpha^{s}(x), z') \in (X \times_{Y} Z)_{\overline{s}}$ since

 $g(z') = \rho^{s}(g(z), gtg(z), gtf(x)) = \rho^{s}(g(z), g(z), f(x)) = f(\alpha^{s}(x)).$

• $\lambda(\alpha^{s}(x), z') = \alpha^{s}(u, w)$ since $\gamma(\alpha^{s}(x)) = \alpha^{s}(u)$ and

$$\begin{split} \delta(z') &= \rho^s(\delta(z), \delta tg(z), \delta tf(x)) = \rho^s(\delta(z), vk\delta(z), vh\gamma(x)) \\ &= \rho^s(w, vk(w), vh(u)) = \rho^s(w, vk(w), vk(w)) = \alpha^s(w). \end{split}$$

- Let s be a sort in Γ_{Mal}
- Let $(u, w) \in (U \times_V W)_s$. So $u \in U_s$ and $w \in W_s$ are such that h(u) = k(w).
- Since we can suppose that γ and δ are surjective, there exist x ∈ X_s and z ∈ Z_s such that γ(x) = u and δ(z) = w.
- Let $z' = \rho^s(z, tg(z), tf(x)) \in Z_{\overline{s}}$.
- $(\alpha^{s}(x), z') \in (X \times_{Y} Z)_{\overline{s}}$ since

$$g(z') = \rho^{s}(g(z), gtg(z), gtf(x)) = \rho^{s}(g(z), g(z), f(x)) = f(\alpha^{s}(x)).$$

• $\lambda(\alpha^{s}(x), z') = \alpha^{s}(u, w)$ since $\gamma(\alpha^{s}(x)) = \alpha^{s}(u)$ and

$$\delta(z') = \rho^{s}(\delta(z), \delta tg(z), \delta tf(x)) = \rho^{s}(\delta(z), vk\delta(z), vh\gamma(x))$$
$$= \rho^{s}(w, vk(w), vh(u)) = \rho^{s}(w, vk(w), vk(w)) = \alpha^{s}(w).$$

• $(u,w) = \pi^s(\alpha^s(u,w)) = \pi^s(\lambda(\alpha^s(x),z')) \in \operatorname{Im}(\lambda).$

Ingredients of the proof

The proof relies on the following key ingredients:

- Approximate Mal'tsev operations (Bourn Janelidze, 2008).
- A C-projective covering of Lex(C, Set)^{op} (Grothendieck 1957, Barr 1986).
- The theory of unconditional exactness properties (J. Janelidze).

Ingredients of the proof

The proof relies on the following key ingredients:

- Approximate Mal'tsev operations (Bourn Janelidze, 2008).
- A C-projective covering of Lex(C, Set)^{op} (Grothendieck 1957, Barr 1986).
- The theory of unconditional exactness properties (J. Janelidze).

Ingredients of the proof

The proof relies on the following key ingredients:

- Approximate Mal'tsev operations (Bourn Janelidze, 2008).
- A C-projective covering of Lex(C, Set)^{op} (Grothendieck 1957, Barr 1986).
- The theory of unconditional exactness properties (J. Janelidze).

Generalisation

We have similar embedding theorems for the following classes of categories:

- *n*-permutable categories,
- regular unital categories,
- regular strongly unital categories,
- regular subtractive categories,
- . . .

Thank you for your attention!