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Schanuel’s question

"Where are negative sets?

Though ill-posed, the question is suggestive; a good answer
should complete the diagram

S ⊂→ E
↓ ↓
N ⊂→ Z

where S is the category of finite sets; we seek an enlargement E,
the isomorphism classes of which should give rise to all integers,
rather than just natural numbers."
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Schanuel’s question

The answer is negative under some natural assumptions about
products, coproducts, and the initial object.

Stephen H. Schanuel,
Negative sets have Euler characteristic and dimension,
Category Theory, Como 1990, Lecture Notes in Mathematics
1488, Springer, Berlin 1991, 379–385.
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The aim

We would like to present a background for constructing a posi-
tive answer to Schanuel’s question provided we loose only the
assumption about the initial object.
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Multiset is a set with repeated elements.

Example – the multiset of prime factors of 360:

[2, 2, 2, 3, 3, 5].

Multisets were rediscovered for many times during the history
of mathematics. For a survey see:

Wayne Blizard, The development of multiset theory, 1991, Mo-
dern Logic 1, 319 – 352.
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Generalized multisets

The first known observation that one can define a generalized
multiset with arbitrary integer multiplicities, belongs to Hassler
Whitney:

"Suppose we associate with each element of a set R ′ any in-
teger, positive, negative or zero, instead of merely one or zero.
The resulting function will not in general be the characteristic
function of a real set; but we may consider it as the characteri-
stic function of a generalized set, where each element is counted
any number of times."

Hassler Whitney, Characteristic functions and the algebra of lo-
gic, Annals of Mathematics 34 (1933), 405 – 414.
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Generalized multisets

Systematic studies in this field started with the works of Wol-
fgang Reisig, Wayne D. Blizard and Daniel Loeb.

Wolfgang Reisig, Petri nets, An introduction, Chapter 9, EATCS
Monographs on Theoretical Compututer Science 4, Springer,
Berlin 1985.

Wayne D. Blizard, Negative membership, Notre Dame Journal
of Formal Logic 31 (1990), 346–368.

Daniel Loeb, Sets with a negative number of elements, Advances
in Mathematics 91 (1992), 64 – 74.
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Example of a generalized multiset

We have:
360
539

=
2 · 2 · 2 · 3 · 3 · 5

7 · 7 · 11
.

The multiset of prime factors:

[2, 2, 2, 3, 3, 5 | 7, 7, 11].
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Definitions

A multiset in the space U is defined by its multiplicity function:

ν : U → {0, 1, 2, 3, . . . }.

A generalized multiset is defined by a function:

ν : U → {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . }.
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Definition

When we restrict multiplicities to:

1, 0,−1,

we obtain a generalized set X which is a pair of disjoint sets
(A,B), where A is the positive part and B is the negative one:

A = {z ∈ U : νX (z) = 1},

B = {z ∈ U : νX (z) = −1}.
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Definition

If A = {a1, . . . , am} and B = {b1, . . . , bn}, then we write

X = {a1, . . . , am | b1, . . . , bn}.

The generalized number of elements:

|X |g = m − n.
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Inclusion

Inclusion of generalized sets X ⊂g Y is defined by:

∀z∈U νX (z) 6 νY (z).

Equivalently:{
∀z∈U (νX (z) = 1⇒ νY (z) = 1)
∀z∈U (νY (z) = −1⇒ νX (z) = −1).
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Inclusion

{
∀z∈U (νX (z) = 1⇒ νY (z) = 1)
∀z∈U (νY (z) = −1⇒ νX (z) = −1)

Given generalized sets

X = (A,B), Y = (C ,D),

where A ∩ B = ∅, C ∩ D = ∅, then:

(A,B) ⊂g (C ,D)⇔ A ⊂ C ∧ D ⊂ B .
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Intersection

Intersection of generalized sets X , Y :

νX∩gY (z) = min(νX (z), νY (z)), z ∈ U .

We have a table:

νY (z) −1 0 1
νX (z)

−1 −1 −1 −1
0 −1 0 0
1 −1 0 1
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Intersection

νY (z) −1 0 1
νX (z)

−1 −1 −1 −1
0 −1 0 0
1 −1 0 1

Given X = (A,B), Y = (C ,D), where A∩B = ∅, C ∩D = ∅,
then:

(A,B) ∩g (C ,D) = (A ∩ C ,B ∪ D).
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Union

Union of generalized sets X , Y :

νX∪gY (z) = max(νX (z), νY (z)), z ∈ U .

A table:
νY (z) −1 0 1

νX (z)

−1 −1 0 1
0 0 0 1
1 1 1 1
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Union

νY (z) −1 0 1
νX (z)

−1 −1 0 1
0 0 0 1
1 1 1 1

Given X = (A,B), Y = (C ,D), where A∩B = ∅, C ∩D = ∅,
then:

(A,B) ∪g (C ,D) = (A ∪ C ,B ∩ D).
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Three-valued logic

Such pairs of sets are studied in the context of three-valued
logic and are called inexact classes or orthopairs.

Grzegorz Malinowski, Kleene logic and inference, Bulletin of the
Section of Logic, University of Łódź, 43 (2014), 43–52.

Davide Ciucci, Didier Dubois, Jonathan Lawry, Borderline vs.
unknown: comparing three-valued representations of imperfect
information, International Journal of Approximate Reasoning 55
(2014), 1866–1889.
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Easy way – N× N

Recall the inclusion:

(A,B) ⊂g (C ,D)⇔ A ⊂ C ∧ D ⊂ B .

If we define maps between finite generalized sets X = (A,B),
Y = (C ,D), where A ∩ B = ∅, C ∩ D = ∅, as pairs of maps

A→ C , D → B ,

then the equivalence classes will be N× N.
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Instantiation of Schanuel’s question

Is it possible to define in some natural way maps between finite
generalized sets in order to obtain a category extending the
category of finite sets, where (A,B) are (C ,D) isomorphic if
and only if

|A| − |B | = |C | − |D|?
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Attention!

If we define maps between finite generalized sets X = (A,B),
Y = (C ,D), where A ∩ B = ∅, C ∩ D = ∅, as

A t C → B t D,

then there arize problems with compositions.
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A hint?

A natural candidate for a direct product of generalized sets
(A,B) and (C ,D) is

(A× C t B × D,A× D t B × C ).

A natural candidate for a direct sum is

(A t C ,B t D).
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Two questions

1. Do you know any similar construction in some category, where
two pairs of objects (A,B) and (C ,D) are isomorphic (as ob-
jects of the new category) if and only if A⊕ D and B ⊕ C are
isomorphic in the old category?

2. Do you know any construction in some category, where a
morphism between pairs of objects (A,B) and (C ,D) is defined
as a morphism between A⊕ D and B ⊕ C?
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Thank you very much

for your attention!!!
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