Generalizing Principal Bundles CT 2017

Michael Lambert

Dalhousie University

18 July 2017

Michael Lambert (Dalhousie University)

Generalizing Principal Bundles

Outline

Introduction: Principal Bundles and Geometric Morphisms

Extending a Pseudo-Functor along the Yoneda Embedding

Properties of Main Construction

Generalizing Principal Bundles

Summary and Conclusion

Michael Lambert (Dalhousie University)

References

S. Mac Lane and I. Moerdijk. Sheaves in Geometry and Logic. Springer, Berlin, 1992.

I. Moerdijk. *Classifying Spaces and Classifying Topoi.* Springer Lecture Notes in Mathematics 1616, Berlin, 1995.

Let Sh(X) denote the category of sheaves on a topological space X.

Definition

A \mathscr{C} -principal bundle is a functor $Q \colon \mathscr{C} \to \operatorname{Sh}(X)$ such that for each point $x \in X$

- 1. there is a $c \in \mathscr{C}_0$ for which the stalk $Q(c)_{\scriptscriptstyle X} \neq \emptyset$;
- 2. for any $q \in Q(c)_x$ and $r \in Q(d)_x$ there is a $b \in \mathscr{C}_0$, a span $c \stackrel{f}{\leftarrow} b \stackrel{g}{\rightarrow} d$ in \mathscr{C} and a $z \in Q(b)_x$ such that Q(f)(z) = q and Q(g)(z) = r; and
- 3. for parallel arrows $f, g : c \Longrightarrow d$ and $q \in Q(c)_x$ for which Q(f)(q) = Q(g)(q), there is an arrow $e : b \to c$ with fe = ge and a $z \in Q(b)_x$ such that Q(e)(z) = q.

Condition 2. is transitivity and 3. is freeness.

Let Sh(X) denote the category of sheaves on a topological space X.

Definition

A \mathscr{C} -principal bundle is a functor $Q \colon \mathscr{C} \to \operatorname{Sh}(X)$ such that for each point $x \in X$

1. there is a $c \in \mathscr{C}_0$ for which the stalk $Q(c)_{\scriptscriptstyle X} \neq \emptyset$;

- 2. for any $q \in Q(c)_{\times}$ and $r \in Q(d)_{\times}$ there is a $b \in \mathscr{C}_0$, a span $c \xleftarrow{f}{\leftarrow} b \xrightarrow{g}{\rightarrow} d$ in \mathscr{C} and a $z \in Q(b)_{\times}$ such that Q(f)(z) = q and Q(g)(z) = r; and
- 3. for parallel arrows $f, g : c \Longrightarrow d$ and $q \in Q(c)_x$ for which Q(f)(q) = Q(g)(q), there is an arrow $e : b \to c$ with fe = ge and a $z \in Q(b)_x$ such that Q(e)(z) = q.

Condition 2. is transitivity and 3. is freeness.

Let Sh(X) denote the category of sheaves on a topological space X.

Definition

A ${\mathscr C}$ -principal bundle is a functor $Q\colon {\mathscr C} o \operatorname{Sh}(X)$ such that for each point $x\in X$

1. there is a $c \in \mathscr{C}_0$ for which the stalk $Q(c)_x \neq \emptyset$;

- 2. for any $q \in Q(c)_x$ and $r \in Q(d)_x$ there is a $b \in \mathscr{C}_0$, a span $c \stackrel{f}{\leftarrow} b \stackrel{g}{\Rightarrow} d$ in \mathscr{C} and a $z \in Q(b)_x$ such that Q(f)(z) = q and Q(g)(z) = r; and
- 3. for parallel arrows $f, g : c \Rightarrow d$ and $q \in Q(c)_x$ for which Q(f)(q) = Q(g)(q), there is an arrow $e : b \rightarrow c$ with fe = ge and a $z \in Q(b)_x$ such that Q(e)(z) = q.

Condition 2. is transitivity and 3. is freeness.

Let Sh(X) denote the category of sheaves on a topological space X.

Definition

A \mathscr{C} -principal bundle is a functor $Q \colon \mathscr{C} \to \operatorname{Sh}(X)$ such that for each point $x \in X$

1. there is a $c \in \mathscr{C}_0$ for which the stalk $Q(c)_x \neq \emptyset$;

- 2. for any $q \in Q(c)_x$ and $r \in Q(d)_x$ there is a $b \in \mathscr{C}_0$, a span $c \xleftarrow{f} b \xrightarrow{g} d$ in \mathscr{C} and a $z \in Q(b)_x$ such that Q(f)(z) = q and Q(g)(z) = r; and
- 3. for parallel arrows $f, g : c \Longrightarrow d$ and $q \in Q(c)_x$ for which Q(f)(q) = Q(g)(q), there is an arrow $e : b \to c$ with fe = ge and a $z \in Q(b)_x$ such that Q(e)(z) = q.

Condition 2. is transitivity and 3. is freeness.

Let Sh(X) denote the category of sheaves on a topological space X.

Definition

A \mathscr{C} -principal bundle is a functor $Q \colon \mathscr{C} \to \operatorname{Sh}(X)$ such that for each point $x \in X$

- 1. there is a $c \in \mathscr{C}_0$ for which the stalk $Q(c)_x \neq \emptyset$;
- 2. for any $q \in Q(c)_x$ and $r \in Q(d)_x$ there is a $b \in \mathscr{C}_0$, a span $c \xleftarrow{f} b \xrightarrow{g} d$ in \mathscr{C} and a $z \in Q(b)_x$ such that Q(f)(z) = q and Q(g)(z) = r; and
- 3. for parallel arrows $f, g : c \Rightarrow d$ and $q \in Q(c)_x$ for which Q(f)(q) = Q(g)(q), there is an arrow $e : b \rightarrow c$ with fe = ge and a $z \in Q(b)_x$ such that Q(e)(z) = q.

Condition 2. is transitivity and 3. is freeness.

Let Sh(X) denote the category of sheaves on a topological space X.

Definition

A \mathscr{C} -principal bundle is a functor $Q \colon \mathscr{C} \to \operatorname{Sh}(X)$ such that for each point $x \in X$

- 1. there is a $c \in \mathscr{C}_0$ for which the stalk $Q(c)_x \neq \emptyset$;
- 2. for any $q \in Q(c)_x$ and $r \in Q(d)_x$ there is a $b \in \mathscr{C}_0$, a span $c \xleftarrow{f} b \xrightarrow{g} d$ in \mathscr{C} and a $z \in Q(b)_x$ such that Q(f)(z) = q and Q(g)(z) = r; and
- 3. for parallel arrows $f, g : c \Rightarrow d$ and $q \in Q(c)_x$ for which Q(f)(q) = Q(g)(q), there is an arrow $e : b \rightarrow c$ with fe = ge and a $z \in Q(b)_x$ such that Q(e)(z) = q.

Condition 2. is transitivity and 3. is freeness.

Let Sh(X) denote the category of sheaves on a topological space X.

Definition

A \mathscr{C} -principal bundle is a functor $Q \colon \mathscr{C} \to \operatorname{Sh}(X)$ such that for each point $x \in X$

- 1. there is a $c \in \mathscr{C}_0$ for which the stalk $Q(c)_x \neq \emptyset$;
- 2. for any $q \in Q(c)_x$ and $r \in Q(d)_x$ there is a $b \in \mathscr{C}_0$, a span $c \xleftarrow{f} b \xrightarrow{g} d$ in \mathscr{C} and a $z \in Q(b)_x$ such that Q(f)(z) = q and Q(g)(z) = r; and
- 3. for parallel arrows $f, g : c \Rightarrow d$ and $q \in Q(c)_x$ for which Q(f)(q) = Q(g)(q), there is an arrow $e : b \rightarrow c$ with fe = ge and a $z \in Q(b)_x$ such that Q(e)(z) = q.

Condition 2. is transitivity and 3. is freeness.

Guiding Question

If Q is instead a pseudo-functor valued in a 2-category, what is a principal bundle?

Case of interest: indexed categories $[\mathscr{X}^{op}, \mathfrak{Cal}]$ on a small category \mathscr{X} .

Michael Lambert (Dalhousie University)

Generalizing Principal Bundles

Guiding Question

If ${\cal Q}$ is instead a pseudo-functor valued in a 2-category, what is a principal bundle?

Case of interest: indexed categories $[\mathscr{X}^{op}, \mathfrak{Cal}]$ on a small category \mathscr{X} .

Michael Lambert (Dalhousie University)

Generalizing Principal Bundles

Guiding Question

If Q is instead a pseudo-functor valued in a 2-category, what is a principal bundle?

Case of interest: indexed categories $[\mathscr{X}^{op}, \mathfrak{Cat}]$ on a small category \mathscr{X} .

Michael Lambert (Dalhousie University)

$\mathsf{Prin}(\mathscr{C}) \cong \mathsf{Geom}(\mathrm{Sh}(X), [\mathscr{C}^{op}, \mathsf{Set}]).$

Any functor $Q: \mathscr{C} \to \operatorname{Sh}(X)$ admits a tensor product $-\otimes_{\mathscr{C}} Q$ extension, which preserves finite limits if, and only if, Q is a principal bundle.

This is proved in [Moe95].

In this sense, the presheaf topos $[\mathscr{C}^{op}, \mathbf{Set}]$ classifies \mathscr{C} -principal bundles.

Michael Lambert (Dalhousie University)

Generalizing Principal Bundles

$$Prin(\mathscr{C}) \cong Geom(Sh(X), [\mathscr{C}^{op}, Set]).$$

Any functor $Q: \mathscr{C} \to \operatorname{Sh}(X)$ admits a tensor product $- \otimes_{\mathscr{C}} Q$ extension, which preserves finite limits if, and only if, Q is a principal bundle.

This is proved in [Moe95].

In this sense, the presheaf topos $[\mathscr{C}^{op}, \mathbf{Set}]$ classifies \mathscr{C} -principal bundles.

Michael Lambert (Dalhousie University)

Generalizing Principal Bundles

$$Prin(\mathscr{C}) \cong Geom(Sh(X), [\mathscr{C}^{op}, Set]).$$

Any functor $Q: \mathscr{C} \to \operatorname{Sh}(X)$ admits a tensor product $- \otimes_{\mathscr{C}} Q$ extension, which preserves finite limits if, and only if, Q is a principal bundle.

This is proved in [Moe95].

In this sense, the presheaf topos $[\mathscr{C}^{op}, \mathbf{Set}]$ classifies \mathscr{C} -principal bundles.

Michael Lambert (Dalhousie University)

Generalizing Principal Bundles

$$Prin(\mathscr{C}) \cong Geom(Sh(X), [\mathscr{C}^{op}, Set]).$$

Any functor $Q: \mathscr{C} \to \operatorname{Sh}(X)$ admits a tensor product $- \otimes_{\mathscr{C}} Q$ extension, which preserves finite limits if, and only if, Q is a principal bundle.

This is proved in [Moe95].

In this sense, the presheaf topos $[\mathscr{C}^{op}, \mathbf{Set}]$ classifies $\mathscr{C}\text{-principal bundles}.$

Michael Lambert (Dalhousie University)

Generalizing Principal Bundles

Tensor Product of Presheaves

Any functor $Q: \mathscr{C} \to \mathscr{E}$ on small \mathscr{C} to a cocomplete topos \mathscr{S} admits a tensor product extension along the Yoneda embedding

The image $P\otimes_{\mathscr{C}} Q$ is defined as a colimit.

Michael Lambert (Dalhousie University)

Generalizing Principal Bundles

Tensor Product of Presheaves

Any functor $Q: \mathscr{C} \to \mathscr{E}$ on small \mathscr{C} to a cocomplete topos \mathscr{S} admits a tensor product extension along the Yoneda embedding

The image $P\otimes_{\mathscr{C}} Q$ is defined as a colimit.

Michael Lambert (Dalhousie University)

Generalizing Principal Bundles

Tensor Product of Presheaves

Any functor $Q: \mathscr{C} \to \mathscr{E}$ on small \mathscr{C} to a cocomplete topos \mathscr{S} admits a tensor product extension along the Yoneda embedding

The image $P \otimes_{\mathscr{C}} Q$ is defined as a colimit.

Michael Lambert (Dalhousie University)

Generalizing Principal Bundles

$$\mathscr{E}(P \otimes_{\mathscr{C}} Q, X) \cong [\mathscr{C}^{op}, \mathbf{Set}](P, \mathscr{E}(Q, X)).$$

Theorem

The tensor-functor $-\otimes_{\mathscr{C}} Q$ arising from $Q: \mathscr{C} \to \mathscr{E}$ preserves finite limits if, and only if, Q is filtering.

Such a functor Q is "flat." In the case that \mathscr{E} is **Set** the functor Q is flat if and only if its category of elements $\int_{\mathscr{C}} Q$ is filtered.

Theorem

There is an equivalence

$$\mathsf{Flat}(\mathscr{C},\mathscr{E})\simeq\mathsf{Geom}(\mathscr{E},[\mathscr{C}^{op},\mathsf{Set}]).$$

This is Theorem VII.5.2 of [MLM92].

$$\mathscr{E}(P \otimes_{\mathscr{C}} Q, X) \cong [\mathscr{C}^{op}, \mathbf{Set}](P, \mathscr{E}(Q, X)).$$

Theorem

The tensor-functor $-\otimes_{\mathscr{C}} Q$ arising from $Q: \mathscr{C} \to \mathscr{E}$ preserves finite limits if, and only if, Q is filtering.

Such a functor Q is "flat." In the case that \mathscr{E} is **Set** the functor Q is flat if and only if its category of elements $\int_{\mathscr{C}} Q$ is filtered.

Theorem

There is an equivalence

 $\mathsf{Flat}(\mathscr{C},\mathscr{E})\simeq\mathsf{Geom}(\mathscr{E},[\mathscr{C}^{op},\mathsf{Set}]).$

This is Theorem VII.5.2 of [MLM92].

Michael Lambert (Dalhousie University)

$$\mathscr{E}(P \otimes_{\mathscr{C}} Q, X) \cong [\mathscr{C}^{op}, \mathbf{Set}](P, \mathscr{E}(Q, X)).$$

Theorem

The tensor-functor $-\otimes_{\mathscr{C}} Q$ arising from $Q: \mathscr{C} \to \mathscr{E}$ preserves finite limits if, and only if, Q is filtering.

Such a functor Q is "flat." In the case that \mathscr{E} is **Set** the functor Q is flat if and only if its category of elements $\int_{\mathscr{C}} Q$ is filtered.

I heorem There is an equivalence

 $\mathsf{Flat}(\mathscr{C},\mathscr{E})\simeq\mathsf{Geom}(\mathscr{E},[\mathscr{C}^{op},\mathsf{Set}]).$

This is Theorem VII.5.2 of [MLM92].

Michael Lambert (Dalhousie University)

$$\mathscr{E}(P \otimes_{\mathscr{C}} Q, X) \cong [\mathscr{C}^{op}, \mathbf{Set}](P, \mathscr{E}(Q, X)).$$

Theorem

The tensor-functor $-\otimes_{\mathscr{C}} Q$ arising from $Q: \mathscr{C} \to \mathscr{E}$ preserves finite limits if, and only if, Q is filtering.

Such a functor Q is "flat." In the case that \mathscr{E} is **Set** the functor Q is flat if and only if its category of elements $\int_{\mathscr{L}} Q$ is filtered.

I heorem There is an equivalence

```
\mathsf{Flat}(\mathscr{C},\mathscr{E})\simeq\mathsf{Geom}(\mathscr{E},[\mathscr{C}^{op},\mathsf{Set}]).
```

This is Theorem VII.5.2 of [MLM92].

$$\mathscr{E}(P \otimes_{\mathscr{C}} Q, X) \cong [\mathscr{C}^{op}, \mathbf{Set}](P, \mathscr{E}(Q, X)).$$

Theorem

The tensor-functor $-\otimes_{\mathscr{C}} Q$ arising from $Q: \mathscr{C} \to \mathscr{E}$ preserves finite limits if, and only if, Q is filtering.

Such a functor Q is "flat." In the case that \mathscr{E} is **Set** the functor Q is flat if and only if its category of elements $\int_{\mathscr{C}} Q$ is filtered.

Theorem

There is an equivalence

$$\mathsf{Flat}(\mathscr{C},\mathscr{E})\simeq\mathsf{Geom}(\mathscr{E},[\mathscr{C}^{op},\mathsf{Set}]).$$

This is Theorem VII.5.2 of [MLM92].

$$\mathscr{E}(P \otimes_{\mathscr{C}} Q, X) \cong [\mathscr{C}^{op}, \mathbf{Set}](P, \mathscr{E}(Q, X)).$$

Theorem

The tensor-functor $-\otimes_{\mathscr{C}} Q$ arising from $Q: \mathscr{C} \to \mathscr{E}$ preserves finite limits if, and only if, Q is filtering.

Such a functor Q is "flat." In the case that \mathscr{E} is **Set** the functor Q is flat if and only if its category of elements $\int_{\mathscr{C}} Q$ is filtered.

Theorem

There is an equivalence

$$\mathsf{Flat}(\mathscr{C},\mathscr{E})\simeq\mathsf{Geom}(\mathscr{E},[\mathscr{C}^{op},\mathsf{Set}]).$$

```
This is Theorem VII.5.2 of [MLM92].
```

• Start with a bimodule $Q: \mathscr{X}^{op} \times \mathscr{C} \to \mathfrak{Cat}$, pseudo-functorial in each argument, satisfying a strict interchange law. This yields a transpose

 $\hat{Q} \colon \mathscr{C} \to [\mathscr{X}^{op}, \mathfrak{Cat}].$

- Abstract conditions 2. and 3. of Moerdijk's definition to the case of \hat{Q} by weakening the equalities to isomorphisms.
- Construct an extension

9 / 22

Investigate the way in which a tensor-hom adjunction, a limit-preserving extension along the Yoneda, and a classifying category are recovered.
 The recent paper [DS] discusses a general theory of flat 2-functors. Michael Lambert (Dalhousie University) Generalizing Principal Bundles

- Abstract conditions 2. and 3. of Moerdijk's definition to the case of \hat{Q} by weakening the equalities to isomorphisms.
- Construct an extension

9 / 22

Investigate the way in which a tensor-hom adjunction, a limit-preserving extension along the Yoneda, and a classifying category are recovered.
 The recent paper [DS] discusses a general theory of flat 2-functors. Reneralizing Principal Bundles

• Start with a bimodule $Q: \mathscr{X}^{op} \times \mathscr{C} \to \mathfrak{Cat}$, pseudo-functorial in each argument, satisfying a strict interchange law. This yields a transpose

$$\hat{Q} \colon \mathscr{C} \to [\mathscr{X}^{op}, \mathfrak{Cat}].$$

- Abstract conditions 2. and 3. of Moerdijk's definition to the case of \hat{Q} by weakening the equalities to isomorphisms.
- Construct an extension

9 / 22

 Investigate the way in which a tensor-hom adjunction, a limit-preserving extension along the Yoneda, and a classifying category are recovered.

• The recent paper [DS] discusses a general theory of flat 2-functors. Michael Lambert (Dalhousie University) Generalizing Principal Bundles 18 July 2017

• Start with a bimodule $Q: \mathscr{X}^{op} \times \mathscr{C} \to \mathfrak{Cat}$, pseudo-functorial in each argument, satisfying a strict interchange law. This yields a transpose

$$\hat{Q} \colon \mathscr{C} \to [\mathscr{X}^{op}, \mathfrak{Cat}].$$

- Abstract conditions 2. and 3. of Moerdijk's definition to the case of \hat{Q} by weakening the equalities to isomorphisms.
- Construct an extension

9 / 22

 Investigate the way in which a tensor-hom adjunction, a limit-preserving extension along the Yoneda, and a classifying category are recovered.

• The recent paper [DS] discusses a general theory of flat 2-functors. Michael Lambert (Dalhousie University) Generalizing Principal Bundles 18 July 2017

• Start with a bimodule $Q: \mathscr{X}^{op} \times \mathscr{C} \to \mathfrak{Cat}$, pseudo-functorial in each argument, satisfying a strict interchange law. This yields a transpose

$$\hat{Q} \colon \mathscr{C} \to [\mathscr{X}^{op}, \mathfrak{Cat}].$$

- Abstract conditions 2. and 3. of Moerdijk's definition to the case of \hat{Q} by weakening the equalities to isomorphisms.
- Construct an extension

9 / 22

Investigate the way in which a tensor-hom adjunction, a limit-preserving extension along the Yoneda, and a classifying category are recovered.
 The recent paper [DS] discusses a general theory of flat 2-functors. Is July 2017

• Start with a bimodule $Q: \mathscr{X}^{op} \times \mathscr{C} \to \mathfrak{Cat}$, pseudo-functorial in each argument, satisfying a strict interchange law. This yields a transpose

$$\hat{Q} \colon \mathscr{C} \to [\mathscr{X}^{op}, \mathfrak{Cat}].$$

- Abstract conditions 2. and 3. of Moerdijk's definition to the case of \hat{Q} by weakening the equalities to isomorphisms.
- Construct an extension

9 / 22

• Investigate the way in which a tensor-hom adjunction, a limit-preserving extension along the Yoneda, and a classifying category are recovered.

• The recent paper [DS] discusses a general theory of flat 2-functors. Michael Lambert (Dalhousie University) Generalizing Principal Bundles 18 July 2017

• Start with a bimodule $Q: \mathscr{X}^{op} \times \mathscr{C} \to \mathfrak{Cat}$, pseudo-functorial in each argument, satisfying a strict interchange law. This yields a transpose

$$\hat{Q} \colon \mathscr{C} \to [\mathscr{X}^{op}, \mathfrak{Cat}].$$

- Abstract conditions 2. and 3. of Moerdijk's definition to the case of \hat{Q} by weakening the equalities to isomorphisms.
- Construct an extension

Investigate the way in which a tensor-hom adjunction, a limit-preserving extension along the Yoneda, and a classifying category are recovered.
 The recent paper [DS] discusses a general theory of flat 2-functors. Its July 2017 9 / 22

Main Construction

• Start with pseudo-functors $Q \colon \mathscr{C} \to \mathfrak{Cat}$ and $P \colon \mathscr{C}^{op} \to \mathfrak{Cat}$.

• Set $\Delta(P,Q)$ to be the category with objects triples

(c,p,q) $p \in P(c)_0, q \in Q(c)_0$

and arrows (c, p, q)
ightarrow (d, r, s) the triples (f, u, v) with

$$f: c \to d$$
 $u: p \to Pf(r)$ $v: Qf(q) \to s.$

• Take $P \star Q$ to denote the category of fractions

 $P \star Q := \Delta(P, Q)[\Sigma^{-1}]$

where Σ is the set of opcartesian morphisms.

Michael Lambert (Dalhousie University)

Main Construction

- Start with pseudo-functors $Q \colon \mathscr{C} \to \mathfrak{Cat}$ and $P \colon \mathscr{C}^{op} \to \mathfrak{Cat}$.
- Set $\Delta(P, Q)$ to be the category with objects triples

$$(c,p,q)$$
 $p\in P(c)_0, \ q\in Q(c)_0$

and arrows $(c, p, q) \rightarrow (d, r, s)$ the triples (f, u, v) with

$$f: c \to d$$
 $u: p \to Pf(r)$ $v: Qf(q) \to s.$

• Take $P \star Q$ to denote the category of fractions

$$P \star Q := \Delta(P, Q)[\Sigma^{-1}]$$

where Σ is the set of opcartesian morphisms.

Michael Lambert (Dalhousie University)

Main Construction

- Start with pseudo-functors $Q \colon \mathscr{C} \to \mathfrak{Cat}$ and $P \colon \mathscr{C}^{op} \to \mathfrak{Cat}$.
- Set $\Delta(P, Q)$ to be the category with objects triples

$$(c,p,q) \qquad p \in P(c)_0, \; q \in Q(c)_0$$

and arrows (c, p, q)
ightarrow (d, r, s) the triples (f, u, v) with

$$f: c \to d$$
 $u: p \to Pf(r)$ $v: Qf(q) \to s.$

• Take $P \star Q$ to denote the category of fractions

 $P \star Q := \Delta(P, Q)[\Sigma^{-1}]$

where Σ is the set of opcartesian morphisms.

Michael Lambert (Dalhousie University)
Main Construction

- Start with pseudo-functors $Q \colon \mathscr{C} \to \mathfrak{Cat}$ and $P \colon \mathscr{C}^{op} \to \mathfrak{Cat}$.
- Set $\Delta(P, Q)$ to be the category with objects triples

$$(c,p,q) \qquad p \in P(c)_0, \; q \in Q(c)_0$$

and arrows (c, p, q)
ightarrow (d, r, s) the triples (f, u, v) with

$$f: c \to d$$
 $u: p \to Pf(r)$ $v: Qf(q) \to s.$

• Take $P \star Q$ to denote the category of fractions

$$P \star Q := \Delta(P,Q)[\Sigma^{-1}]$$

where Σ is the set of opcartesian morphisms.

Michael Lambert (Dalhousie University)

Main Construction Continued

• Now start with a bimodule $Q \colon \mathscr{X}^{op} \times \mathscr{C} \to \mathfrak{Cat}$ with transpose

$$\hat{Q} \colon \mathscr{C} \to [\mathscr{X}^{op}, \mathfrak{Cat}].$$

For any pseudo-functor P: C^{op} → Cat, define a pseudo-functor
 X^{op} → Cat by assigning

$$x \mapsto P \star Q(x, -)$$

on objects with the induced assignments on arrows and identity cells.

• This yields a 2-functor

$$-\star \hat{Q} \colon [\mathscr{C}^{op}, \mathfrak{Cat}] \longrightarrow [\mathscr{X}^{op}, \mathfrak{Cat}].$$

Michael Lambert (Dalhousie University)

Main Construction Continued

• Now start with a bimodule $Q \colon \mathscr{X}^{op} \times \mathscr{C} \to \mathfrak{Cat}$ with transpose

$$\hat{Q} \colon \mathscr{C} \to [\mathscr{X}^{op}, \mathfrak{Cat}].$$

For any pseudo-functor P: C^{op} → Cat, define a pseudo-functor
 X^{op} → Cat by assigning

$$x\mapsto P\star Q(x,-)$$

on objects with the induced assignments on arrows and identity cells.This yields a 2-functor

$$-\star \hat{Q} \colon [\mathscr{C}^{op}, \mathfrak{Cat}] \longrightarrow [\mathscr{X}^{op}, \mathfrak{Cat}].$$

Michael Lambert (Dalhousie University)

Main Construction Continued

• Now start with a bimodule $Q \colon \mathscr{X}^{op} \times \mathscr{C} \to \mathfrak{Cat}$ with transpose

$$\hat{Q} \colon \mathscr{C} \to [\mathscr{X}^{op}, \mathfrak{Cat}].$$

For any pseudo-functor P: C^{op} → Cat, define a pseudo-functor
 X^{op} → Cat by assigning

$$x\mapsto P\star Q(x,-)$$

on objects with the induced assignments on arrows and identity cells.

• This yields a 2-functor

$$-\star \hat{Q} \colon [\mathscr{C}^{op}, \mathfrak{Cat}] \longrightarrow [\mathscr{X}^{op}, \mathfrak{Cat}].$$

Michael Lambert (Dalhousie University)

Tensor-Hom Adjunction

In general, $-\star \hat{Q}$ is a left 2-adjoint. The right adjoint is

 $[\mathscr{X}^{op}, \mathfrak{Cat}](\hat{Q}, -) \colon [\mathscr{X}^{op}, \mathfrak{Cat}] \longrightarrow [\mathscr{C}^{op}, \mathfrak{Cat}].$

Theorem

For any bimodule Q there is an isomorphism of categories

 $[\mathscr{X}^{op},\mathfrak{Cat}](P\star\hat{Q},F)\cong [\mathscr{C}^{op},\mathfrak{Cat}](P,[\mathscr{X}^{op},\mathfrak{Cat}](\hat{Q},F)).$

strictly natural in P and F.

Corollary

The pseudo-functor $P \star \hat{Q}$ gives a computation of the P-weighted pseudo-colimit of \hat{Q} .

Michael Lambert (Dalhousie University)

Properties of Main Construction

Tensor-Hom Adjunction

In general, $-\star \hat{Q}$ is a left 2-adjoint. The right adjoint is

 $[\mathscr{X}^{op},\mathfrak{Cat}](\hat{Q},-)\colon [\mathscr{X}^{op},\mathfrak{Cat}]\longrightarrow [\mathscr{C}^{op},\mathfrak{Cat}].$

Theorem

For any bimodule Q there is an isomorphism of categories

 $[\mathscr{X}^{op}, \mathfrak{Cat}](P \star \hat{Q}, F) \cong [\mathscr{C}^{op}, \mathfrak{Cat}](P, [\mathscr{X}^{op}, \mathfrak{Cat}](\hat{Q}, F)).$

strictly natural in P and F.

Corollary

The pseudo-functor $P \star \hat{Q}$ gives a computation of the P-weighted pseudo-colimit of \hat{Q} .

Michael Lambert (Dalhousie University)

Generalizing Principal Bundles

18 July 2017 12 / 22

Properties of Main Construction

Tensor-Hom Adjunction

In general, $-\star \hat{Q}$ is a left 2-adjoint. The right adjoint is $[\mathscr{X}^{op}, \mathfrak{Cat}](\hat{Q}, -) \colon [\mathscr{X}^{op}, \mathfrak{Cat}] \longrightarrow [\mathscr{C}^{op}, \mathfrak{Cat}].$

Theorem

For any bimodule Q there is an isomorphism of categories

 $[\mathscr{X}^{op}, \mathfrak{Cat}](P \star \hat{Q}, F) \cong [\mathscr{C}^{op}, \mathfrak{Cat}](P, [\mathscr{X}^{op}, \mathfrak{Cat}](\hat{Q}, F)).$

strictly natural in P and F.

Corollary

The pseudo-functor $P \star \hat{Q}$ gives a computation of the P-weighted pseudo-colimit of \hat{Q} .

Michael Lambert (Dalhousie University)

Generalizing Principal Bundles

18 July 2017 12 / 22

Tensor-Hom Adjunction

In general, $-\star \hat{Q}$ is a left 2-adjoint. The right adjoint is

 $[\mathscr{X}^{op},\mathfrak{Cat}](\hat{Q},-)\colon [\mathscr{X}^{op},\mathfrak{Cat}]\longrightarrow [\mathscr{C}^{op},\mathfrak{Cat}].$

Theorem

For any bimodule Q there is an isomorphism of categories

 $[\mathscr{X}^{op},\mathfrak{Cat}](P\star\hat{Q},F)\cong [\mathscr{C}^{op},\mathfrak{Cat}](P,[\mathscr{X}^{op},\mathfrak{Cat}](\hat{Q},F)).$

strictly natural in P and F.

Corollary

The pseudo-functor $P \star \hat{Q}$ gives a computation of the P-weighted pseudo-colimit of \hat{Q} .

Michael Lambert (Dalhousie University)

Tensor-Hom Adjunction

In general, $-\star \hat{Q}$ is a left 2-adjoint. The right adjoint is

 $[\mathscr{X}^{op},\mathfrak{Cat}](\hat{Q},-)\colon [\mathscr{X}^{op},\mathfrak{Cat}]\longrightarrow [\mathscr{C}^{op},\mathfrak{Cat}].$

Theorem

For any bimodule Q there is an isomorphism of categories

 $[\mathscr{X}^{op},\mathfrak{Cat}](P\star\hat{Q},F)\cong [\mathscr{C}^{op},\mathfrak{Cat}](P,[\mathscr{X}^{op},\mathfrak{Cat}](\hat{Q},F)).$

strictly natural in P and F.

Corollary

The pseudo-functor $P \star \hat{Q}$ gives a computation of the P-weighted pseudo-colimit of \hat{Q} .

Michael Lambert (Dalhousie University)

• For any $c \in \mathscr{C}_0$, there is a pseudo-natural equivalence

$$\hat{Q}c \simeq \mathbf{y}c \star \hat{Q}$$

pseudo-natural in c.

• So, there is a cell

making $-\star \hat{Q}$ an extension of \hat{Q} .

In the case *X* = 1, the construction *P* * *Q* admits a right calculus of fractions if *Q* is a principal bundle. (Definition to come.)

Michael Lambert (Dalhousie University)

Properties of Main Construction

Further Properties

• For any $c \in \mathscr{C}_0$, there is a pseudo-natural equivalence

$$\hat{Q}c \simeq \mathbf{y}c \star \hat{Q}$$

pseudo-natural in c.

• So, there is a cell

making $-\star \hat{Q}$ an extension of \hat{Q} .

In the case *X* = 1, the construction *P* * *Q* admits a right calculus of fractions if *Q* is a principal bundle. (Definition to come.)

Michael Lambert (Dalhousie University)

• For any $c \in \mathscr{C}_0$, there is a pseudo-natural equivalence

$$\hat{Q}c \simeq \mathbf{y}c \star \hat{Q}$$

pseudo-natural in c.

• So, there is a cell

making $-\star \hat{Q}$ an extension of \hat{Q} .

In the case *X* = 1, the construction *P* * *Q* admits a right calculus of fractions if *Q* is a principal bundle. (Definition to come.)

Michael Lambert (Dalhousie University)

• For any $c \in \mathscr{C}_0$, there is a pseudo-natural equivalence

$$\hat{Q} c \simeq \mathbf{y} c \star \hat{Q}$$

pseudo-natural in c.

• So, there is a cell

making $-\star \hat{Q}$ an extension of \hat{Q} .

In the case *X* = 1, the construction *P* * *Q* admits a right calculus of fractions if *Q* is a principal bundle. (Definition to come.)

Michael Lambert (Dalhousie University)

• For any $c \in \mathscr{C}_0$, there is a pseudo-natural equivalence

$$\hat{Q}c \simeq \mathbf{y}c \star \hat{Q}$$

pseudo-natural in c.

• So, there is a cell

$$\begin{array}{c} \mathscr{C} & \stackrel{\hat{Q}}{\longrightarrow} [\mathscr{X}^{op}, \mathfrak{Cat}] \\ \mathsf{y} & \stackrel{\simeq}{\longrightarrow} & \stackrel{\sim}{\longrightarrow} \\ \mathscr{C}^{op}, \mathfrak{Cat}] \end{array}$$

making $-\star \hat{Q}$ an extension of \hat{Q} .

In the case X = 1, the construction P * Q admits a right calculus of fractions if Q is a principal bundle. (Definition to come.)

Michael Lambert (Dalhousie University)

Pseudo-Coequalizers

The tensor product $P\otimes_{\mathscr{C}} Q$ of ordinary presheaves fits into a coequalizer diagram of the form

$$P \times_{\mathscr{C}_0} \mathscr{C}_1 \times_{\mathscr{C}_0} Q \xrightarrow{1 \times \alpha} P \times_{\mathscr{C}_0} Q \dashrightarrow P \otimes_{\mathscr{C}} Q.$$

Theorem

For pseudo-functors P and Q, the category of fractions $P \star Q$ fits into a pseudo-coequalizer diagram

$$\mathscr{P} \times_{\mathscr{C}} \mathscr{C}^2 \times_{\mathscr{C}} \mathscr{Q} \xrightarrow{\mu \times 1} \mathscr{P} \times_{\mathscr{C}} \mathscr{Q} \dashrightarrow P \star Q.$$

Michael Lambert (Dalhousie University)

Generalizing Principal Bundles

18 July 2017 14 / 22

Pseudo-Coequalizers

The tensor product $P\otimes_{\mathscr{C}} Q$ of ordinary presheaves fits into a coequalizer diagram of the form

$$P \times_{\mathscr{C}_0} \mathscr{C}_1 \times_{\mathscr{C}_0} Q \xrightarrow{1 \times \alpha} P \times_{\mathscr{C}_0} Q \xrightarrow{---} P \otimes_{\mathscr{C}} Q.$$

Theorem

For pseudo-functors P and Q, the category of fractions $P \star Q$ fits into a pseudo-coequalizer diagram

$$\mathscr{P} \times_{\mathscr{C}} \mathscr{C}^2 \times_{\mathscr{C}} \mathscr{Q} \xrightarrow{\mu \times 1} \mathscr{P} \times_{\mathscr{C}} \mathscr{Q} \dashrightarrow P \star Q.$$

Michael Lambert (Dalhousie University)

Generalizing Principal Bundles

18 July 2017 14 / 22

Pseudo-Coequalizers

The tensor product $P\otimes_{\mathscr{C}} Q$ of ordinary presheaves fits into a coequalizer diagram of the form

$$P \times_{\mathscr{C}_0} \mathscr{C}_1 \times_{\mathscr{C}_0} Q \xrightarrow{1 \times \alpha} P \times_{\mathscr{C}_0} Q \xrightarrow{\cdots} P \otimes_{\mathscr{C}} Q.$$

Theorem

For pseudo-functors P and Q, the category of fractions $P \star Q$ fits into a pseudo-coequalizer diagram

$$\mathscr{P} \times_{\mathscr{C}} \mathscr{C}^{\mathbf{2}} \times_{\mathscr{C}} \mathscr{Q} \xrightarrow{\mu \times 1} \mathscr{P} \times_{\mathscr{C}} \mathscr{Q} \dashrightarrow P \star Q.$$

Michael Lambert (Dalhousie University)

Definition

A bimodule $Q: \mathscr{X}^{op} \times \mathscr{C} \to \mathfrak{Cat}$ is a \mathscr{C} -principal bundle over \mathscr{X} provided that for each $x \in \mathscr{X}_0$, each Q(x, c) is in \mathfrak{Gpd} and

- 1. there is $c \in \mathscr{C}_0$ such that Q(x, c) is nonempty;
- 2. for $q \in Q(x, c)_0$ and $r \in Q(x, d)_0$, there is a span $c \xleftarrow{f} e \xrightarrow{g} d$ in \mathscr{C} and $y \in Q(x, e)_0$ such that $f_! y \cong q$ and $g_! y \cong r$;
- 3. and given two arrows $f, g : c \Rightarrow d$ of \mathscr{C} and objects $q \in Q(x, c)_0$ and $r \in Q(x, d)_0$ with isomorphisms

$$u: f_! q \cong r \qquad v: g_! q \cong r$$

of Q(x, d), there is an arrow $h: e \to c$ equalizing f and g with an object $y \in Q(x, e)$ and isomorphism $w: h_! y \cong q$ making the arrows

$$(fh)_! y \xrightarrow{\simeq} f_! h_!(y) \xrightarrow{f_! w} f_! q \xrightarrow{u} r \qquad (gh)_! y \xrightarrow{\simeq} g_! h_!(y) \xrightarrow{g_! w} g_! q \xrightarrow{v} r$$

equal in Q(x, d).

Michael Lambert (Dalhousie University)

A bimodule $Q: \mathscr{X}^{op} \times \mathscr{C} \to \mathfrak{Cat}$ is a \mathscr{C} -principal bundle over \mathscr{X} provided that for each $x \in \mathscr{X}_0$, each Q(x, c) is in \mathfrak{Gpd} and

1. there is $c \in \mathscr{C}_0$ such that Q(x, c) is nonempty;

- 2. for $q \in Q(x, c)_0$ and $r \in Q(x, d)_0$, there is a span $c \xleftarrow{f} e \xrightarrow{g} d$ in \mathscr{C} and $y \in Q(x, e)_0$ such that $f_! y \cong q$ and $g_! y \cong r$;
- 3. and given two arrows $f, g : c \Rightarrow d$ of C and objects $q \in Q(x, c)_0$ and $r \in Q(x, d)_0$ with isomorphisms

$$u: f_! q \cong r \qquad v: g_! q \cong r$$

of Q(x, d), there is an arrow $h: e \to c$ equalizing f and g with an object $y \in Q(x, e)$ and isomorphism $w: h_! y \cong q$ making the arrows

$$(fh)_! y \xrightarrow{\simeq} f_! h_!(y) \xrightarrow{f_! w} f_! q \xrightarrow{u} r \qquad (gh)_! y \xrightarrow{\simeq} g_! h_!(y) \xrightarrow{g_! w} g_! q \xrightarrow{v} r$$

equal in Q(x, d).

Michael Lambert (Dalhousie University)

A bimodule $Q: \mathscr{X}^{op} \times \mathscr{C} \to \mathfrak{Cat}$ is a \mathscr{C} -principal bundle over \mathscr{X} provided that for each $x \in \mathscr{X}_0$, each Q(x, c) is in \mathfrak{Gpd} and

- 1. there is $c \in \mathscr{C}_0$ such that Q(x, c) is nonempty;
- 2. for $q \in Q(x, c)_0$ and $r \in Q(x, d)_0$, there is a span $c \xleftarrow{f} e \xrightarrow{g} d$ in \mathscr{C} and $y \in Q(x, e)_0$ such that $f_! y \cong q$ and $g_! y \cong r$;
- 3. and given two arrows $f, g : c \Rightarrow d$ of C and objects $q \in Q(x, c)_0$ and $r \in Q(x, d)_0$ with isomorphisms

$$u: f_! q \cong r \qquad v: g_! q \cong r$$

of Q(x, d), there is an arrow $h: e \to c$ equalizing f and g with an object $y \in Q(x, e)$ and isomorphism $w: h_! y \cong q$ making the arrows

$$(fh)_! y \xrightarrow{\simeq} f_! h_!(y) \xrightarrow{f_! w} f_! q \xrightarrow{u} r \qquad (gh)_! y \xrightarrow{\simeq} g_! h_!(y) \xrightarrow{g_! w} g_! q \xrightarrow{v} r$$

equal in Q(x, d).

Michael Lambert (Dalhousie University)

A bimodule $Q: \mathscr{X}^{op} \times \mathscr{C} \to \mathfrak{Cat}$ is a \mathscr{C} -principal bundle over \mathscr{X} provided that for each $x \in \mathscr{X}_0$, each Q(x, c) is in \mathfrak{Gpd} and

- 1. there is $c \in \mathscr{C}_0$ such that Q(x, c) is nonempty;
- 2. for $q \in Q(x, c)_0$ and $r \in Q(x, d)_0$, there is a span $c \xleftarrow{f} e \xrightarrow{g} d$ in \mathscr{C} and $y \in Q(x, e)_0$ such that $f_! y \cong q$ and $g_! y \cong r$;
- 3. and given two arrows $f,g: c \Rightarrow d$ of \mathscr{C} and objects $q \in Q(x,c)_0$ and $r \in Q(x,d)_0$ with isomorphisms

$$u: f_! q \cong r \qquad v: g_! q \cong r$$

of Q(x, d), there is an arrow $h: e \to c$ equalizing f and g with an object $y \in Q(x, e)$ and isomorphism $w: h_! y \cong q$ making the arrows

$$(fh)_! y \xrightarrow{\simeq} f_! h_!(y) \xrightarrow{f_! w} f_! q \xrightarrow{u} r \qquad (gh)_! y \xrightarrow{\simeq} g_! h_!(y) \xrightarrow{g_! w} g_! q \xrightarrow{v} r$$

equal in Q(x, d).

Michael Lambert (Dalhousie University)

A bimodule $Q: \mathscr{X}^{op} \times \mathscr{C} \to \mathfrak{Cat}$ is a \mathscr{C} -principal bundle over \mathscr{X} provided that for each $x \in \mathscr{X}_0$, each Q(x, c) is in \mathfrak{Gpd} and

- 1. there is $c \in \mathscr{C}_0$ such that Q(x, c) is nonempty;
- 2. for $q \in Q(x, c)_0$ and $r \in Q(x, d)_0$, there is a span $c \xleftarrow{f} e \xrightarrow{g} d$ in \mathscr{C} and $y \in Q(x, e)_0$ such that $f_! y \cong q$ and $g_! y \cong r$;
- 3. and given two arrows $f, g: c \rightrightarrows d$ of \mathscr{C} and objects $q \in Q(x, c)_0$ and $r \in Q(x, d)_0$ with isomorphisms

$$u: f_! q \cong r \qquad v: g_! q \cong r$$

of Q(x, d), there is an arrow $h: e \to c$ equalizing f and g with an object $y \in Q(x, e)$ and isomorphism $w: h_! y \cong q$ making the arrows

$$(fh)_! y \xrightarrow{\simeq} f_! h_!(y) \xrightarrow{f_! w} f_! q \xrightarrow{u} r \qquad (gh)_! y \xrightarrow{\simeq} g_! h_!(y) \xrightarrow{g_! w} g_! q \xrightarrow{v} r$$

equal in Q(x, d).

Michael Lambert (Dalhousie University)

A bimodule $Q: \mathscr{X}^{op} \times \mathscr{C} \to \mathfrak{Cat}$ is a \mathscr{C} -principal bundle over \mathscr{X} provided that for each $x \in \mathscr{X}_0$, each Q(x, c) is in \mathfrak{Gpd} and

- 1. there is $c \in \mathscr{C}_0$ such that Q(x, c) is nonempty;
- 2. for $q \in Q(x,c)_0$ and $r \in Q(x,d)_0$, there is a span $c \xleftarrow{f} e \xrightarrow{g} d$ in \mathscr{C} and $y \in Q(x,e)_0$ such that $f_! y \cong q$ and $g_! y \cong r$;
- 3. and given two arrows $f, g: c \rightrightarrows d$ of \mathscr{C} and objects $q \in Q(x, c)_0$ and $r \in Q(x, d)_0$ with isomorphisms

$$u: f_! q \cong r \qquad v: g_! q \cong r$$

of Q(x, d), there is an arrow $h: e \to c$ equalizing f and g with an object $y \in Q(x, e)$ and isomorphism $w: h_! y \cong q$ making the arrows

$$(fh)_! y \xrightarrow{\cong} f_! h_!(y) \xrightarrow{f_! w}{\cong} f_! q \xrightarrow{u}{\cong} r \qquad (gh)_! y \xrightarrow{\cong} g_! h_!(y) \xrightarrow{g_! w}{\cong} g_! q \xrightarrow{v}{r}$$

equal in Q(x, d).

Michael Lambert (Dalhousie University)

Remarks

 The definition is essentially that each Q(x, c) is a groupoid and for each x ∈ X₀, the Grothendieck completion

$$\int_{\mathscr{C}} Q(x,-)$$

is filtered.

- When X is just 1, there is just the pseudo-functor Q: C → Cat, which is a C-principal bundle if and only if Q is fibred in Op0 and the completion ∫_C Q is filtered.
- When a *C*-principal bundle Q: C → Cat takes discrete categories as values, it is essentially just a flat Set-valued functor.

Michael Lambert (Dalhousie University)

Generalizing Principal Bundles

18 July 2017 16 / 22

Remarks

 The definition is essentially that each Q(x, c) is a groupoid and for each x ∈ X₀, the Grothendieck completion

$$\int_{\mathscr{C}} Q(x,-)$$

is filtered.

- When X is just 1, there is just the pseudo-functor Q: C → Cat, which is a C-principal bundle if and only if Q is fibred in 𝔅p∂ and the completion ∫_C Q is filtered.
- When a *C*-principal bundle Q: C → Cat takes discrete categories as values, it is essentially just a flat Set-valued functor.

Michael Lambert (Dalhousie University)

Remarks

 The definition is essentially that each Q(x, c) is a groupoid and for each x ∈ X₀, the Grothendieck completion

$$\int_{\mathscr{C}}Q(x,-)$$

is filtered.

- When X is just 1, there is just the pseudo-functor Q: C → Cat, which is a C-principal bundle if and only if Q is fibred in 𝔅p∂ and the completion ∫_C Q is filtered.
- When a *C*-principal bundle Q: C → Cat takes discrete categories as values, it is essentially just a flat Set-valued functor.

Michael Lambert (Dalhousie University)

Set-Up for Statement of Main Result

- Weighted pseudo-limits can be constructed from finite products, pseudo-equalizers, and cotensors with **2**.
- For F valued in [*X^{op}*, Cat], there is an induced canonical functor from the image of a limit to the limit of the images. For example, binary products

Say that a pseudo-functor (valued in [𝔅^{op}, 𝔅
 𝔅𝔅𝔅^t]) "essentially preserves" a type of finite pseudo-limit if (the components of) the corresponding canonical functors are essentially surjective.

Michael Lambert (Dalhousie University)

Set-Up for Statement of Main Result

- Weighted pseudo-limits can be constructed from finite products, pseudo-equalizers, and cotensors with **2**.
- For F valued in [*X^{op}*, Cat], there is an induced canonical functor from the image of a limit to the limit of the images. For example, binary products

 Say that a pseudo-functor (valued in [*X*^{op}, Cat]) "essentially preserves" a type of finite pseudo-limit if (the components of) the corresponding canonical functors are essentially surjective.

Michael Lambert (Dalhousie University)

Set-Up for Statement of Main Result

- Weighted pseudo-limits can be constructed from finite products, pseudo-equalizers, and cotensors with **2**.
- For F valued in [X^{op}, Cat], there is an induced canonical functor from the image of a limit to the limit of the images. For example, binary products

 Say that a pseudo-functor (valued in [*X*^{op}, Cat]) "essentially preserves" a type of finite pseudo-limit if (the components of) the corresponding canonical functors are essentially surjective.

Michael Lambert (Dalhousie University)

Set-Up for Statement of Main Result

- Weighted pseudo-limits can be constructed from finite products, pseudo-equalizers, and cotensors with **2**.
- For F valued in [X^{op}, Cat], there is an induced canonical functor from the image of a limit to the limit of the images. For example, binary products

 Say that a pseudo-functor (valued in [𝔅 ^{op}, 𝔅 𝔅𝑎]) "essentially preserves" a type of finite pseudo-limit if (the components of) the corresponding canonical functors are essentially surjective.

Michael Lambert (Dalhousie University)

Set-Up for Statement of Main Result

- Weighted pseudo-limits can be constructed from finite products, pseudo-equalizers, and cotensors with **2**.
- For F valued in [X^{op}, Cat], there is an induced canonical functor from the image of a limit to the limit of the images. For example, binary products

 Say that a pseudo-functor (valued in [X^{op}, Cat]) "essentially preserves" a type of finite pseudo-limit if (the components of) the corresponding canonical functors are essentially surjective.

Michael Lambert (Dalhousie University)

Main Result

Theorem

A bimodule $Q: \mathscr{X}^{op} \times \mathscr{C} \to \mathfrak{Cat}$ is a \mathscr{C} -principal bundle over \mathscr{X} if, and only if, the extension $- \star \hat{Q}$ essentially preserves all finite weighted pseudo-limits.

Michael Lambert (Dalhousie University)

Generalizing Principal Bundles

18 July 2017 18 / 22

Main Result

Theorem

A bimodule $Q: \mathscr{X}^{op} \times \mathscr{C} \to \mathfrak{Cat}$ is a \mathscr{C} -principal bundle over \mathscr{X} if, and only if, the extension $- \star \hat{Q}$ essentially preserves all finite weighted pseudo-limits.

Remarks on the Proof

- Can reduce to the case where $\mathscr X$ is 1.
- The proof follows a pattern: fibred in 𝔅𝔅𝔅 corresponds to essential preservation of cotensors with 2; nontriviality corresponds to preservation of 1; transitivity to essential preservation of binary products; and freeness to preservation of equalizers.
- Proof of sufficiency uses only representables, more-or-less replicating the proof that flat implies filtered in VII.6.3 of [MLM92].
- In the proof of necessity, the canonical functors turn out to be one-to-one on objects.
- But there is no reason why any of the canonical maps should be fully faithful. This does not appear in the proofs of [MLM92] because the limits are just sets.

Michael Lambert (Dalhousie University)

Generalizing Principal Bundles

18 July 2017 19 / 22

Remarks on the Proof

• Can reduce to the case where $\mathscr X$ is ${f 1}.$

- The proof follows a pattern: fibred in \mathfrak{Gpd} corresponds to essential preservation of cotensors with 2; nontriviality corresponds to preservation of 1; transitivity to essential preservation of binary products; and freeness to preservation of equalizers.
- Proof of sufficiency uses only representables, more-or-less replicating the proof that flat implies filtered in VII.6.3 of [MLM92].
- In the proof of necessity, the canonical functors turn out to be one-to-one on objects.
- But there is no reason why any of the canonical maps should be fully faithful. This does not appear in the proofs of [MLM92] because the limits are just sets.

Michael Lambert (Dalhousie University)

Remarks on the Proof

- Can reduce to the case where $\mathscr X$ is ${f 1}.$
- The proof follows a pattern: fibred in Opd corresponds to essential preservation of cotensors with 2; nontriviality corresponds to preservation of 1; transitivity to essential preservation of binary products; and freeness to preservation of equalizers.
- Proof of sufficiency uses only representables, more-or-less replicating the proof that flat implies filtered in VII.6.3 of [MLM92].
- In the proof of necessity, the canonical functors turn out to be one-to-one on objects.
- But there is no reason why any of the canonical maps should be fully faithful. This does not appear in the proofs of [MLM92] because the limits are just sets.

Michael Lambert (Dalhousie University)

Generalizing Principal Bundles

18 July 2017 19 / 22
- Can reduce to the case where $\mathscr X$ is $\mathbf 1$.
- The proof follows a pattern: fibred in Op0 corresponds to essential preservation of cotensors with 2; nontriviality corresponds to preservation of 1; transitivity to essential preservation of binary products; and freeness to preservation of equalizers.
- Proof of sufficiency uses only representables, more-or-less replicating the proof that flat implies filtered in VII.6.3 of [MLM92].
- In the proof of necessity, the canonical functors turn out to be one-to-one on objects.
- But there is no reason why any of the canonical maps should be fully faithful. This does not appear in the proofs of [MLM92] because the limits are just sets.

Michael Lambert (Dalhousie University)

Generalizing Principal Bundles

- Can reduce to the case where $\mathscr X$ is $\mathbf 1$.
- The proof follows a pattern: fibred in Op0 corresponds to essential preservation of cotensors with 2; nontriviality corresponds to preservation of 1; transitivity to essential preservation of binary products; and freeness to preservation of equalizers.
- Proof of sufficiency uses only representables, more-or-less replicating the proof that flat implies filtered in VII.6.3 of [MLM92].
- In the proof of necessity, the canonical functors turn out to be one-to-one on objects.
- But there is no reason why any of the canonical maps should be fully faithful. This does not appear in the proofs of [MLM92] because the limits are just sets.

Michael Lambert (Dalhousie University)

Generalizing Principal Bundles

- Can reduce to the case where $\mathscr X$ is $\mathbf 1$.
- The proof follows a pattern: fibred in Op0 corresponds to essential preservation of cotensors with 2; nontriviality corresponds to preservation of 1; transitivity to essential preservation of binary products; and freeness to preservation of equalizers.
- Proof of sufficiency uses only representables, more-or-less replicating the proof that flat implies filtered in VII.6.3 of [MLM92].
- In the proof of necessity, the canonical functors turn out to be one-to-one on objects.
- But there is no reason why any of the canonical maps should be fully faithful. This does not appear in the proofs of [MLM92] because the limits are just sets.

Michael Lambert (Dalhousie University)

Generalizing Principal Bundles

- Can reduce to the case where $\mathscr X$ is $\mathbf 1$.
- The proof follows a pattern: fibred in Op0 corresponds to essential preservation of cotensors with 2; nontriviality corresponds to preservation of 1; transitivity to essential preservation of binary products; and freeness to preservation of equalizers.
- Proof of sufficiency uses only representables, more-or-less replicating the proof that flat implies filtered in VII.6.3 of [MLM92].
- In the proof of necessity, the canonical functors turn out to be one-to-one on objects.
- But there is no reason why any of the canonical maps should be fully faithful. This does not appear in the proofs of [MLM92] because the limits are just sets.

Michael Lambert (Dalhousie University)

Generalizing Principal Bundles

- Can reduce to the case where $\mathscr X$ is $\mathbf 1$.
- The proof follows a pattern: fibred in Op0 corresponds to essential preservation of cotensors with 2; nontriviality corresponds to preservation of 1; transitivity to essential preservation of binary products; and freeness to preservation of equalizers.
- Proof of sufficiency uses only representables, more-or-less replicating the proof that flat implies filtered in VII.6.3 of [MLM92].
- In the proof of necessity, the canonical functors turn out to be one-to-one on objects.
- But there is no reason why any of the canonical maps should be fully faithful. This does not appear in the proofs of [MLM92] because the limits are just sets.

Michael Lambert (Dalhousie University)

Generalizing Principal Bundles

- Can reduce to the case where $\mathscr X$ is $\mathbf 1$.
- The proof follows a pattern: fibred in Op0 corresponds to essential preservation of cotensors with 2; nontriviality corresponds to preservation of 1; transitivity to essential preservation of binary products; and freeness to preservation of equalizers.
- Proof of sufficiency uses only representables, more-or-less replicating the proof that flat implies filtered in VII.6.3 of [MLM92].
- In the proof of necessity, the canonical functors turn out to be one-to-one on objects.
- But there is no reason why any of the canonical maps should be fully faithful. This does not appear in the proofs of [MLM92] because the limits are just sets.

Michael Lambert (Dalhousie University)

Generalizing Principal Bundles

- Can reduce to the case where $\mathscr X$ is $\mathbf 1$.
- The proof follows a pattern: fibred in Op0 corresponds to essential preservation of cotensors with 2; nontriviality corresponds to preservation of 1; transitivity to essential preservation of binary products; and freeness to preservation of equalizers.
- Proof of sufficiency uses only representables, more-or-less replicating the proof that flat implies filtered in VII.6.3 of [MLM92].
- In the proof of necessity, the canonical functors turn out to be one-to-one on objects.
- But there is no reason why any of the canonical maps should be fully faithful. This does not appear in the proofs of [MLM92] because the limits are just sets.

Michael Lambert (Dalhousie University)

Generalizing Principal Bundles

- Can reduce to the case where $\mathscr X$ is $\mathbf 1$.
- The proof follows a pattern: fibred in Op0 corresponds to essential preservation of cotensors with 2; nontriviality corresponds to preservation of 1; transitivity to essential preservation of binary products; and freeness to preservation of equalizers.
- Proof of sufficiency uses only representables, more-or-less replicating the proof that flat implies filtered in VII.6.3 of [MLM92].
- In the proof of necessity, the canonical functors turn out to be one-to-one on objects.
- But there is no reason why any of the canonical maps should be fully faithful. This does not appear in the proofs of [MLM92] because the limits are just sets.

Let 𝔅tin(𝔅) denote the 2-category of 𝔅-principal bundles.

Let
 *f*om(Cat, [C^{op}, Cat]) denote the 2-category of 2-adjunctions

 $[\mathscr{C}^{op},\mathfrak{Cat}]\rightleftarrows\mathfrak{Cat}$

whose left adjoints essentially preserve finite limits.

I heorem There is a 2-categorical equivalence

 $\mathfrak{Prin}(\mathscr{C})\simeq\mathfrak{Hom}(\mathfrak{Cat},[\mathscr{C}^{op},\mathfrak{Cat}]).$

Michael Lambert (Dalhousie University)

Generalizing Principal Bundles

- Let $\mathfrak{Prin}(\mathscr{C})$ denote the 2-category of \mathscr{C} -principal bundles.
- Let
 *f*om(Cat, [C^{op}, Cat]) denote the 2-category of 2-adjunctions

 $[\mathscr{C}^{op},\mathfrak{Cat}] \rightleftarrows \mathfrak{Cat}$

whose left adjoints essentially preserve finite limits.

Theorem There is a 2-categorical equivalence

 $\mathfrak{Prin}(\mathscr{C})\simeq\mathfrak{Hom}(\mathfrak{Cat},[\mathscr{C}^{op},\mathfrak{Cat}]).$

Michael Lambert (Dalhousie University)

Generalizing Principal Bundles

- Let $\mathfrak{Prin}(\mathscr{C})$ denote the 2-category of \mathscr{C} -principal bundles.
- Let $\mathfrak{Hom}(\mathfrak{Cat}, [\mathscr{C}^{op}, \mathfrak{Cat}])$ denote the 2-category of 2-adjunctions

 $[\mathscr{C}^{\textit{op}},\mathfrak{Cat}]\rightleftarrows\mathfrak{Cat}$

whose left adjoints essentially preserve finite limits.

I heorem There is a 2-categorical equivalence

 $\mathfrak{Prin}(\mathscr{C})\simeq\mathfrak{Hom}(\mathfrak{Cat},[\mathscr{C}^{op},\mathfrak{Cat}]).$

Michael Lambert (Dalhousie University)

Generalizing Principal Bundles

- Let $\mathfrak{Prin}(\mathscr{C})$ denote the 2-category of \mathscr{C} -principal bundles.
- Let $\mathfrak{Hom}(\mathfrak{Cat}, [\mathscr{C}^{op}, \mathfrak{Cat}])$ denote the 2-category of 2-adjunctions

 $[\mathscr{C}^{op},\mathfrak{Cat}]\rightleftarrows\mathfrak{Cat}$

whose left adjoints essentially preserve finite limits.

Theorem There is a 2-categorical equivalence

 $\mathfrak{Prin}(\mathscr{C}) \simeq \mathfrak{Hom}(\mathfrak{Cat}, [\mathscr{C}^{op}, \mathfrak{Cat}]).$

Michael Lambert (Dalhousie University)

Generalizing Principal Bundles

A Brief Recap

- A definition of a principal bundle for an indexed category-valued pseudo-functor on a 1-category modeled on Moerdijk's definition can be made.
- A tensor-hom adjunction can be recovered.
- A bimodule is a principal bundle if, and only if, its corresponding extension along the Yoneda embedding essentially preserves finite weighted pseudo-limits.
- Indexed categories "classify" principal bundles.
- Thank you for your attention!

Michael Lambert (Dalhousie University)

A Brief Recap

- A definition of a principal bundle for an indexed category-valued pseudo-functor on a 1-category modeled on Moerdijk's definition can be made.
- A tensor-hom adjunction can be recovered.
- A bimodule is a principal bundle if, and only if, its corresponding extension along the Yoneda embedding essentially preserves finite weighted pseudo-limits.
- Indexed categories "classify" principal bundles.
- Thank you for your attention!

A Brief Recap

- A definition of a principal bundle for an indexed category-valued pseudo-functor on a 1-category modeled on Moerdijk's definition can be made.
- A tensor-hom adjunction can be recovered.
- A bimodule is a principal bundle if, and only if, its corresponding extension along the Yoneda embedding essentially preserves finite weighted pseudo-limits.
- Indexed categories "classify" principal bundles.
- Thank you for your attention!

A Brief Recap

- A definition of a principal bundle for an indexed category-valued pseudo-functor on a 1-category modeled on Moerdijk's definition can be made.
- A tensor-hom adjunction can be recovered.
- A bimodule is a principal bundle if, and only if, its corresponding extension along the Yoneda embedding essentially preserves finite weighted pseudo-limits.
- Indexed categories "classify" principal bundles.
- Thank you for your attention!

Michael Lambert (Dalhousie University)

A Brief Recap

- A definition of a principal bundle for an indexed category-valued pseudo-functor on a 1-category modeled on Moerdijk's definition can be made.
- A tensor-hom adjunction can be recovered.
- A bimodule is a principal bundle if, and only if, its corresponding extension along the Yoneda embedding essentially preserves finite weighted pseudo-limits.
- Indexed categories "classify" principal bundles.
- Thank you for your attention!

Michael Lambert (Dalhousie University)

A Brief Recap

- A definition of a principal bundle for an indexed category-valued pseudo-functor on a 1-category modeled on Moerdijk's definition can be made.
- A tensor-hom adjunction can be recovered.
- A bimodule is a principal bundle if, and only if, its corresponding extension along the Yoneda embedding essentially preserves finite weighted pseudo-limits.
- Indexed categories "classify" principal bundles.
- Thank you for your attention!

Michael Lambert (Dalhousie University)

Generalizing Principal Bundles