Duality Theorems for Essential Inclusions of Grothendieck Toposes

Guilherme Frederico Lima

CT 2017 : Vancouver

Essential Inclusions

An inclusion of toposes is *essential* if the inverse image functor has a left adjoint:

Essential Inclusions

An inclusion of toposes is *essential* if the inverse image functor has a left adjoint:

 $l \dashv a \dashv i$

Essential Inclusions

An inclusion of toposes is *essential* if the inverse image functor has a left adjoint:

 $\ell \dashv a \dashv i$

This says that the category of *j*-sheaves is equivalent to the category of *j*-discrete objects:

$$\mathsf{Sh}_{j}(\mathscr{E})\simeq\mathsf{D}_{j}(\mathscr{E})$$

Let $\mathbf{a} \dashv i : \mathbf{Sh}_i(\mathscr{E}) \to \mathscr{E}$ be an inclusion of toposes.

Let $\mathbf{a} \dashv i : \mathbf{Sh}_j(\mathscr{E}) \to \mathscr{E}$ be an inclusion of toposes. An object $D \in \mathscr{E}$ is *discrete* if it is left orthogonal to the class of arrows (epis) inverted by \mathbf{a} :

Let $\mathbf{a} \dashv i : \mathbf{Sh}_j(\mathscr{E}) \to \mathscr{E}$ be an inclusion of toposes. An object $D \in \mathscr{E}$ is *discrete* if it is left orthogonal to the class of arrows (epis) inverted by \mathbf{a} :

Let $\mathbf{a} \dashv i : \mathbf{Sh}_{j}(\mathscr{E}) \to \mathscr{E}$ be an inclusion of toposes. An object $D \in \mathscr{E}$ is *discrete* if it is left orthogonal to the class of arrows (epis) inverted by \mathbf{a} :

 $\mathbf{D}_{j}(\mathscr{E}) \hookrightarrow \mathscr{E}$ full subcategory of discrete objects.

Motivation:

Motivation:

 $\mathsf{Discrete} \dashv \mathsf{Forget} \dashv \mathsf{Trivial}$

$$\sigma_A \rightarrowtail \mathbf{a}(yA)$$

$$\sigma_A \rightarrowtail \mathbf{a}(yA)$$

$$\sigma: \mathbb{C} \to \mathbf{Sh}(\mathbb{C}, J)$$

$$\sigma_A \rightarrowtail \mathbf{a}(yA)$$

$$\sigma:\mathbb{C}\to\mathsf{Sh}(\mathbb{C},J)$$

$$\sigma: \mathbb{C}^{op} \times \mathbb{C} \to \mathbf{Set}$$

 $\ell \dashv a \dashv i$

 $\ell \dashv a \dashv i$

 $f^* \dashv f_* \dashv c$

Essential Inclusion

Essential Inclusion

Local Geometric Morphism

There are 3 cases:

There are 3 cases:

 $[\mathbb{C}^{\mathrm{op}}, \textbf{Set}]$

There are 3 cases:

 $[\mathbb{C}^{\mathrm{op}}, \mathsf{Set}]$ $\mathsf{Sh}(\mathbb{L})$

There are 3 cases:

 $[\mathbb{C}^{\mathrm{op}}, \mathsf{Set}] \qquad \qquad \mathsf{Sh}(\mathbb{L}) \qquad \qquad \mathsf{Sh}(\mathbb{C}, J)$

There are 3 cases:

 $[\mathbb{C}^{\mathrm{op}}, \mathsf{Set}] \qquad \qquad \mathsf{Sh}(\mathbb{L}) \qquad \qquad \mathsf{Sh}(\mathbb{C}, J)$

 $\sigma\otimes\sigma$ is flat

There are 3 cases:

 $[\mathbb{C}^{\mathrm{op}},\mathsf{Set}]$ $\mathsf{Sh}(\mathbb{L})$ $\mathsf{Sh}(\mathbb{C},J)$

 $\sigma\otimes\sigma$ is flat σ is cartesian

There are 3 cases:

$[\mathbb{C}^{\mathrm{op}}, \mathbf{Set}]$	$Sh(\mathbb{L})$	$Sh(\mathbb{C},J)$
		+ conditions
$\sigma\otimes\sigma$ is flat	σ is cartesian	

There are 3 cases:

$[\mathbb{C}^{\mathrm{op}}, \mathbf{Set}]$	$Sh(\mathbb{L})$	$Sh(\mathbb{C},J)$
		+ conditions
$\sigma\otimes\sigma$ is flat	σ is cartesian	$\sigma\otimes\sigma$ is flat

Let \mathbb{C} be a small category. There is an order preserving bijection between essential inclusions into $[\mathbb{C}^{op}, \mathbf{Set}]$ and idempotent ideals on \mathbb{C} .

Let \mathbb{C} be a small category. There is an order preserving bijection between essential inclusions into $[\mathbb{C}^{op}, \mathbf{Set}]$ and idempotent ideals on \mathbb{C} .

 $\mathcal{I} \subseteq \mathsf{Mor}(\mathbb{C})$ is an *ideal* if:

 $f \in \mathcal{I} \Rightarrow fg \in \mathcal{I} \text{ and } f \in \mathcal{I} \Rightarrow hf \in \mathcal{I}.$

Let \mathbb{C} be a small category. There is an order preserving bijection between essential inclusions into $[\mathbb{C}^{op}, \mathbf{Set}]$ and idempotent ideals on \mathbb{C} .

 $\mathcal{I} \subseteq \mathsf{Mor}(\mathbb{C})$ is an *ideal* if:

 $f \in \mathcal{I} \Rightarrow fg \in \mathcal{I} \text{ and } f \in \mathcal{I} \Rightarrow hf \in \mathcal{I}.$

 $\mathcal{I}:\mathbb{C}^{\mathrm{op}}\times\mathbb{C}\to\text{Set}$

Let \mathbb{C} be a small category. There is an order preserving bijection between essential inclusions into $[\mathbb{C}^{op}, \mathbf{Set}]$ and idempotent ideals on \mathbb{C} .

 $\mathcal{I} \subseteq \mathsf{Mor}(\mathbb{C})$ is an *ideal* if:

 $f \in \mathcal{I} \Rightarrow fg \in \mathcal{I} \text{ and } f \in \mathcal{I} \Rightarrow hf \in \mathcal{I}.$

 $\mathcal{I}:\mathbb{C}^{\mathrm{op}}\times\mathbb{C}\to\text{Set}$

 $\mathcal{I} \subseteq \mathsf{Mor}(\mathbb{C})$ is *idempotent* if:

 $f \in \mathcal{I} \Rightarrow f = gh$ where $g, h \in \mathcal{I}$.

Let \mathbb{C} be a small category. There is an order preserving bijection between essential inclusions into $[\mathbb{C}^{op}, \mathbf{Set}]$ and idempotent ideals on \mathbb{C} .

The bijection is given by

 $\boldsymbol{\ell} \dashv \mathbf{a} \dashv \boldsymbol{i} \quad \leftrightarrow \quad \boldsymbol{\sigma}$

Let \mathbb{C} be a small category. There is an order preserving bijection between essential inclusions into $[\mathbb{C}^{op}, \mathbf{Set}]$ and idempotent ideals on \mathbb{C} .

The bijection is given by

 $\boldsymbol{\ell} \dashv \mathbf{a} \dashv \boldsymbol{i} \quad \leftrightarrow \quad \boldsymbol{\sigma}$

But what if $\sigma(A, B) \rightarrow \mathbf{a}(yB)(A)$?

$$\coprod_{B} \sigma(-,B) \times \sigma(B,-) \twoheadrightarrow \sigma \otimes \sigma \longrightarrow \sigma$$

Theorem: (G.F.L. 2016) Let $\mathbf{Sh}(\mathbb{C}, J)$ be a Grothendieck topos. There is an order preserving bijection between essential inclusions into $\mathbf{Sh}(\mathbb{C}, J)$ and subfunctors $\sigma \rightarrow \mathbf{a} \circ y : \mathbb{C} \rightarrow \mathbf{Sh}(\mathbb{C}, J)$ such that

 $\sigma\otimes\sigma\to\sigma$

is an epi.

Theorem: (G.F.L. 2016) Let \mathbb{L} be a locale. There is an order preserving bijection between local geometric morphisms *out of* $\mathbf{Sh}(\mathbb{L})$ and finite-limit-preserving subfunctors of the Yoneda embedding $\sigma \rightarrowtail y : \mathbb{L} \to \mathbf{Sh}(\mathbb{L})$ such that

$$\sigma\otimes\sigma\cong\sigma.$$

Theorem: (Johnstone & Moerdijk - 1989)

Let $f : X \to Y$ be a continuous map of sober topological spaces. Then the induced morphism $f : \mathbf{Sh}(X) \to Sh(Y)$ is local if and only if there exists a continuous section $c : Y \to X$ of f with $cf(y) \le y$ for all $y \in Y$.

* _____

Theorem: (Johnstone & Moerdijk - 1989)

Let $f : X \to Y$ be a continuous map of sober topological spaces. Then the induced morphism $f : \mathbf{Sh}(X) \to Sh(Y)$ is local if and only if there exists a continuous section $c : Y \to X$ of f with $cf(y) \le y$ for all $y \in Y$.

Let \mathbb{L} be a locale. There is an order-preserving bijection between local geometric morphisms out of $\mathbf{Sh}(\mathbb{L})$ and idempotent endomorphisms of locales $\sigma^{-1} : \mathbb{L} \to \mathbb{L}$ which satisfy $\sigma^{-1} \leq \mathrm{id}$. An inclusion of Grothendieck toposes $\mathbf{Sh}(\mathbb{C}, K) \hookrightarrow \mathbf{Sh}(\mathbb{C}, J)$ is essential iff the closure operation

$\mathbf{cl}:\mathbf{Sub}\to\mathbf{Sub}$

has a left adjoint

int : Sub \rightarrow Sub.

An inclusion of Grothendieck toposes $\mathbf{Sh}(\mathbb{C}, \mathcal{K}) \hookrightarrow \mathbf{Sh}(\mathbb{C}, J)$ is essential iff the closure operation

$\mathbf{cl}:\mathbf{Sub}\to\mathbf{Sub}$

has a left adjoint

$\textbf{int}: \textbf{Sub} \rightarrow \textbf{Sub}.$

int : Sub \rightarrow Sub lifts to int : Sh $(\mathbb{C}, J) \rightarrow$ Sh (\mathbb{C}, J)

An inclusion of Grothendieck toposes $\mathbf{Sh}(\mathbb{C}, K) \hookrightarrow \mathbf{Sh}(\mathbb{C}, J)$ is essential iff the closure operation

$\mathbf{cl}:\mathbf{Sub}\to\mathbf{Sub}$

has a left adjoint

int : Sub \rightarrow Sub.

int : Sub \rightarrow Sub lifts to int : Sh $(\mathbb{C}, J) \rightarrow$ Sh (\mathbb{C}, J)

$$\operatorname{int}(X) = \operatorname{im}(\sigma \otimes X \to X)$$

Theorem: (G.F.L. 2016) Let $\mathbf{Sh}(\mathbb{C}, J)$ be a Grothendieck topos. There is an order preserving bijection between essential inclusions into $\mathbf{Sh}(\mathbb{C}, J)$ and endofunctors $\mathbf{int} : \mathbf{Sh}(\mathbb{C}, J) \to \mathbf{Sh}(\mathbb{C}, J)$ such that

 $\text{int}\rightarrowtail \mathrm{id},$

int \circ int \cong int,

and int preserves epis and small coproducts.

Thank you!

References

1. G.M. Kelly, F.W. Lawvere - On The Complete Lattice Of Essential Localizations. *Bull. Soc. Math. Belg. Ser. A, XLI(2): 289-319, 1989*

2. P.T. Johnstone, I. Moerdijk - Local Maps of Toposes. *Proc. London Math. Soc (3) 58 (1989) 281-305.*

3. G.F. Lima - Cartesian and Finite-Product-Preserving Essential Inclusions of Grothendieck Toposes. *Ph.D. Thesis,* 2016