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Essential Inclusions
An inclusion of toposes is essential if the inverse image functor
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Let a a i : Shj(E )→ E be an inclusion of toposes.

An object
D ∈ E is discrete if it is left orthogonal to the class of arrows

(epis) inverted by a:
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Dj(E ) ↪→ E full subcategory of discrete objects.
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Theorem: (Kelly & Lawvere - 1989):

An inclusion of Grothendieck toposes Sh(C,K ) ↪→ Sh(C, J) is
essential iff each a(yA) ∈ Sh(C, J) has a smallest dense

subobject.

σA � a(yA)

σ : C→ Sh(C, J)

σ : Cop × C→ Set
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When is an essential inclusion a local geometric morphism?

There are 3 cases:

[Cop,Set] Sh(L) Sh(C, J)

+ conditions

σ ⊗ σ is flat σ is cartesian σ ⊗ σ is flat
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Theorem: (Kelly & Lawvere - 1989)

Let C be a small category. There is an order preserving
bijection between essential inclusions into [Cop,Set] and

idempotent ideals on C.

I ⊆Mor(C) is an ideal if:

f ∈ I ⇒ fg ∈ I and f ∈ I ⇒ hf ∈ I.

I : Cop × C→ Set

I ⊆Mor(C) is idempotent if:

f ∈ I ⇒ f = gh where g , h ∈ I.
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Theorem: (G.F.L. 2016) Let Sh(C, J) be a Grothendieck
topos. There is an order preserving bijection between essential

inclusions into Sh(C, J) and subfunctors
σ � a ◦ y : C→ Sh(C, J) such that

σ ⊗ σ → σ

is an epi.



Theorem: (G.F.L. 2016) Let L be a locale. There is an order
preserving bijection between local geometric morphisms out of
Sh(L) and finite-limit-preserving subfunctors of the Yoneda

embedding σ � y : L→ Sh(L) such that

σ ⊗ σ ∼= σ.



Theorem: (Johnstone & Moerdijk - 1989)

Let f : X → Y be a continuous map of sober topological
spaces. Then the induced morphism f : Sh(X )→ Sh(Y ) is

local if and only if there exists a continuous section
c : Y → X of f with cf (y) ≤ y for all y ∈ Y .

?

Let L be a locale. There is an order-preserving bijection
between local geometric morphisms out of Sh(L) and

idempotent endomorphisms of locales σ−1 : L→ L which
satisfy σ−1 ≤ id.
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essential iff the closure operation
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has a left adjoint
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int : Sub→ Sub lifts to int : Sh(C, J)→ Sh(C, J)

int(X ) = im(σ ⊗ X → X )
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Theorem: (G.F.L. 2016) Let Sh(C, J) be a Grothendieck
topos. There is an order preserving bijection between essential

inclusions into Sh(C, J) and endofunctors
int : Sh(C, J)→ Sh(C, J) such that

int � id,

int ◦ int ∼= int,

and int preserves epis and small coproducts.



Thank you!
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