Duality Theorems for Essential
Inclusions of Grothendieck Toposes

Guilherme Frederico Lima

CT 2017 : Vancouver



Essential Inclusions

An inclusion of toposes is essential if the inverse image functor
has a left adjoint:




Essential Inclusions

An inclusion of toposes is essential if the inverse image functor
has a left adjoint:




Essential Inclusions

An inclusion of toposes is essential if the inverse image functor
has a left adjoint:

L-Ha-i

This says that the category of j-sheaves is equivalent to the
category of j-discrete objects:

Shj(&') = D;(&)
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Let a 4/ : Sh;(&) — & be an inclusion of toposes. An object
D € & is discrete if it is left orthogonal to the class of arrows
(epis) inverted by a:

D;(&) — & full subcategory of discrete objects.
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Discrete - Forget = Trivial
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Local Geometric Morphism
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Theorem: (Kelly & Lawvere - 1989)

Let C be a small category. There is an order preserving
bijection between essential inclusions into [C°P, Set] and
idempotent ideals on C.

Z C Mor(C) is an ideal if:
fel=fgeTandf el = hfel.

Z:C® xC — Set

Z C Mor(C) is idempotent if:

fel=f=gh whereg,hel.
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Theorem: (Kelly & Lawvere - 1989)

Let C be a small category. There is an order preserving
bijection between essential inclusions into [C°P, Set| and
idempotent ideals on C.

The bijection is given by
£L—a-i > o

But what if o(A, B) — a(yB)(A) ?
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[[o(A B) x o(B,C) ——— (A, C)



[TcA B) x (B, )

C(A, C)

[[o(A B) x o(B,C) ——— (A, C)

Ha(—,B)xa(B,—)—»a®0—>0



Theorem: (G.F.L. 2016) Let Sh(C, J) be a Grothendieck
topos. There is an order preserving bijection between essential
inclusions into Sh(C, J) and subfunctors
g—aoy:C— Sh(C,J) such that

ocRQxo =0

is an epi.



Theorem: (G.F.L. 2016) Let L be a locale. There is an order
preserving bijection between local geometric morphisms out of
Sh(L) and finite-limit-preserving subfunctors of the Yoneda
embedding o ~— y : . — Sh(LL) such that

cRo=o.
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local if and only if there exists a continuous section
c:Y — Xof fwithcf(y)<yforallyeY.
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Let f : X — Y be a continuous map of sober topological
spaces. Then the induced morphism f : Sh(X) — Sh(Y) is
local if and only if there exists a continuous section
c:Y — Xof fwithcf(y)<yforallyeY.

*

Let IL be a locale. There is an order-preserving bijection
between local geometric morphisms out of Sh(L) and
idempotent endomorphisms of locales o~! : I. — IL which
satisfy o1 < id.
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essential iff the closure operation

cl: Sub — Sub
has a left adjoint

int : Sub — Sub.

int : Sub — Sub lifts to int : Sh(C, J) — Sh(C, J)
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Theorem: (G.F.L. 2016) Let Sh(C, J) be a Grothendieck
topos. There is an order preserving bijection between essential
inclusions into Sh(C, J) and endofunctors
int : Sh(C, J) — Sh(C, J) such that
int — id,
int oint = int,

and int preserves epis and small coproducts.



Thank you!
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