Categorical-algebraic methods in group cohomology

Tim Van der Linden

Fonds de la Recherche Scientifique–FNRS Université catholique de Louvain

20th of July 2017 | Vancouver | CT2017

In my work I mainly develop and apply categorical algebra in its interactions with homology theory.

In my work I mainly develop and apply categorical algebra in its interactions with homology theory.

► My concrete aim: to understand (co)homology of groups.

In my work I mainly develop and apply categorical algebra in its interactions with homology theory.

- ► My concrete aim: to understand (co)homology of groups.
- Several aspects:
 - general categorical versions of known results;
 - problems leading to further development of categorical algebra;
 - categorical methods leading to new results for groups.

In my work I mainly develop and apply categorical algebra in its interactions with homology theory.

- My concrete aim: to understand (co)homology of groups.
- Several aspects:
 - general categorical versions of known results;
 - problems leading to further development of categorical algebra;
 - categorical methods leading to new results for groups.

Today, I would like to

 explain how the concept of a higher central extension unifies the interpretations of homology and cohomology;

In my work I mainly develop and apply categorical algebra in its interactions with homology theory.

- ► My concrete aim: to understand (co)homology of groups.
- Several aspects:
 - general categorical versions of known results;
 - problems leading to further development of categorical algebra;
 - categorical methods leading to new results for groups.

Today, I would like to

- explain how the concept of a higher central extension unifies the interpretations of homology and cohomology;
- give an overview of some categorical-algebraic methods used for this aim.

In my work I mainly develop and apply categorical algebra in its interactions with homology theory.

- ► My concrete aim: to understand (co)homology of groups.
- Several aspects:
 - general categorical versions of known results;
 - problems leading to further development of categorical algebra;
 - categorical methods leading to new results for groups.

Today, I would like to

- explain how the concept of a higher central extension unifies the interpretations of homology and cohomology;
- give an overview of some categorical-algebraic methods used for this aim.

This is joint work with many people, done over the last 15 years.

Several streams of development are relevant to us:

categorical Galois theory + semi-abelian categories \(\simpliftim \) higher central extensions \(\simpliftim \) interpretation of homology objects via Hopf formulae

[Janelidze, 1991] [Everaert, Gran & VdL, 2008] [Duckerts-Antoine, 2013]

- categorical Galois theory + semi-abelian categories \(\simplifty \) higher central extensions \(\simplifty \) interpretation of homology objects via Hopf formulae
 [Janelidze, 1991] [Everaert, Gran & VdL, 2008] [Duckerts-Antoine, 2013]
- in an abelian context: Yoneda's interpretation of $H^{n+1}(X,A)$ through equivalence classes of exact sequences of length n+1 [Yoneda, 1960]

- categorical Galois theory + semi-abelian categories \(\simplifty \) higher central extensions \(\simplifty \) interpretation of homology objects via Hopf formulae
 [Janelidze, 1991] [Everaert, Gran & VdL, 2008] [Duckerts-Antoine, 2013]
- in an abelian context: Yoneda's interpretation of $H^{n+1}(X, A)$ through equivalence classes of exact sequences of length n+1 [Yoneda, 1960]
- in Barr-exact categories: cohomology classifies higher torsors
 [Barr & Beck, 1969] [Duskin, 1975] [Glenn, 1982]

- categorical Galois theory + semi-abelian categories \(\simplifty \) higher central extensions \(\simplifty \) interpretation of homology objects via Hopf formulae
 [Janelidze, 1991] [Everaert, Gran & VdL, 2008] [Duckerts-Antoine, 2013]
- in an abelian context: Yoneda's interpretation of $H^{n+1}(X, A)$ through equivalence classes of exact sequences of length n+1 [Yoneda, 1960]
- in Barr-exact categories: cohomology classifies higher torsors
 [Barr & Beck, 1969] [Duskin, 1975] [Glenn, 1982]
- "directions approach to cohomology"
 [Bourn & Rodelo, 2007] [Rodelo, 2009]

Several streams of development are relevant to us:

- categorical Galois theory + semi-abelian categories \(\simplifty \) higher central extensions \(\simplifty \) interpretation of homology objects via Hopf formulae
 [Janelidze, 1991] [Everaert, Gran & VdL, 2008] [Duckerts-Antoine, 2013]
- in an abelian context: Yoneda's interpretation of $H^{n+1}(X, A)$ through equivalence classes of exact sequences of length n+1 [Yoneda, 1960]
- in Barr-exact categories: cohomology classifies higher torsors
 [Barr & Beck, 1969] [Duskin, 1975] [Glenn, 1982]
- "directions approach to cohomology"
 [Bourn & Rodelo, 2007] [Rodelo, 2009]

What are the connections between these developments?

Overview, n = 1

	Homology $H_2(X)$	Cohomology $H^2(X,(A,\xi))$	
		trivial action ξ	arbitrary action ξ
Gp	$\frac{R \wedge [F, F]}{[R, F]}$	$CentrExt^{1}(X,A)$	$OpExt^{1}(X, A, \xi)$
abelian categories	0	$Ext^{1}(X,A)$	
Barr-exact categories		$Tors^{1}[X,(A,\xi)]$	
semi-abelian categories	$\frac{R \wedge [F, F]}{[R, F]}$	$CentrExt^{1}(X,A)$	$OpExt^{1}(X, A, \xi)$

Overview, n = 1

	Homology $H_2(X)$	Cohomology $H^2(X,(A,\xi))$	
		trivial action ξ	arbitrary action ξ
Gp	$\frac{R \wedge [F, F]}{[R, F]}$	$CentrExt^{1}(X,A)$	$OpExt^1(X, A, \xi)$
abelian categories	0	$Ext^{1}(X,A)$	
Barr-exact categories		$Tors^{1}[X,(A,\xi)]$	
semi-abelian categories	$\frac{R \wedge [F, F]}{[R, F]}$	$CentrExt^1(X,A)$	$OpExt^1(X,A,\xi)$

An **extension** from *A* to *X* is a short exact sequence

$$0 \longrightarrow A \longmapsto E \xrightarrow{f} X \longrightarrow 0.$$

It is **central** if and only if [A, E] = 0: all $eae^{-1}a^{-1}$ vanish, $a \in A$, $e \in E$. Then, in particular, A is an abelian group.

An **extension** from *A* to *X* is a short exact sequence

$$0 \longrightarrow A \longmapsto E \stackrel{f}{\longrightarrow} X \longrightarrow 0.$$

It is **central** if and only if [A, E] = 0: all $eae^{-1}a^{-1}$ vanish, $a \in A$, $e \in E$.

Then, in particular, A is an abelian group.

Theorem [Eckmann 1945-46; Eilenberg & Mac Lane, 1947]

For any abelian group A we have $H^2(X,A) \cong CentrExt^1(X,A)$, the group of equivalence classes of central extensions from A to X.

An **extension** from *A* to *X* is a short exact sequence

$$0 \longrightarrow A \longmapsto E \xrightarrow{f} X \longrightarrow 0.$$

It is **central** if and only if [A, E] = 0: all $eae^{-1}a^{-1}$ vanish, $a \in A$, $e \in E$. Then, in particular, A is an abelian group.

Theorem [Eckmann 1945-46; Eilenberg & Mac Lane, 1947]

For any abelian group A we have $H^2(X, A) \cong CentrExt^1(X, A)$, the group of equivalence classes of central extensions from A to X.

→ $H^2(-,A)$ is the first derived functor of Hom(-,A): $Gp^{op} \to Ab$.

An **extension** from *A* to *X* is a short exact sequence

$$0 \longrightarrow A \longmapsto E \xrightarrow{f} X \longrightarrow 0.$$

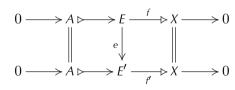
It is **central** if and only if [A, E] = 0: all $eae^{-1}a^{-1}$ vanish, $a \in A$, $e \in E$.

Then, in particular, A is an abelian group.

Theorem [Eckmann 1945-46; Eilenberg & Mac Lane, 1947]

For any abelian group A we have $H^2(X, A) \cong CentrExt^1(X, A)$, the group of equivalence classes of central extensions from A to X.

- ► $H^2(-,A)$ is the first derived functor of Hom(-,A): $Cp^{op} \to Ab$.
- By the Short Five Lemma, equivalence class = isomorphism class:



An **extension** from *A* to *X* is a short exact sequence

$$0 \longrightarrow A \longmapsto E \xrightarrow{f} X \longrightarrow 0.$$

It is **central** if and only if [A, E] = 0: all $eae^{-1}a^{-1}$ vanish, $a \in A$, $e \in E$.

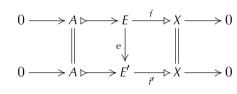
Then, in particular, A is an abelian group.

Theorem [Eckmann 1945-46; Eilenberg & Mac Lane, 1947]

For any abelian group A we have $H^2(X, A) \cong CentrExt^1(X, A)$, the group of equivalence classes of central extensions from A to X.

►
$$H^2(-,A)$$
 is the first derived functor of $Hom(-,A)$: $Gp^{op} \to Ab$.

By the Short Five Lemma,
 equivalence class = isomorphism class:



The theorem remains true [Gran & VdL, 2008] in any semi-abelian category [Janelidze, Márki & Tholen, 2002] with enough projectives; centrality may be defined via commutator theory or via categorical Galois theory.

Theorem (Hopf formula for $H_2(X)$, [Hopf, 1942])

Consider a **projective presentation** $X \cong F/R$ of X: an extension $0 \to R \to F \to X \to 0$ where F is projective. Then the second integral homology group $H_2(X)$ is $\frac{R \wedge [F,F]}{|[F,F]|}$.

Theorem (Hopf formula for $H_2(X)$, [Hopf, 1942])

Consider a **projective presentation** $X \cong F/R$ of X: an extension $0 \to R \to F \to X \to 0$ where F is projective. Then the *second integral homology group* $H_2(X)$ is $\frac{R \wedge [F,F]}{[R,F]}$.

Basic analysis

► *H*₂ is a derived functor of the reflector

 $*H_2$ is a derived functor of the reflector $ab: Gp \to Ab: X \mapsto \frac{X}{[X,X]}$.

Theorem (Hopf formula for $H_2(X)$, [Hopf, 1942])

Consider a **projective presentation** $X \cong F/R$ of X: an extension $0 \to R \to F \to X \to 0$ where *F* is projective. Then the second integral homology group $H_2(X)$ is $\frac{R \wedge [F,F]}{[B,F]}$.

Basic analysis

H₂ is a derived functor of the reflector

- $ab: Gp \to Ab: X \mapsto \frac{X}{[X,X]}$.
- \blacktriangleright The commutator [R, F] occurs in/is determined by the reflector $ab_1: Ext(Gp) \to CExt(Gp): (f: F \to X) \mapsto (ab_1(f): \frac{F}{[R:F]} \to X).$

Theorem (Hopf formula for $H_2(X)$, [Hopf, 1942])

Consider a **projective presentation** $X \cong F/R$ of X: an extension $0 \to R \to F \to X \to 0$ where F is projective. Then the second integral homology group $H_2(X)$ is $\frac{R \wedge [F,F]}{|R|F|}$.

Basic analysis

► *H*₂ is a derived functor of the reflector

- $ab: Gp \rightarrow Ab: X \mapsto \frac{X}{[X,X]}$.
- ▶ The commutator [R, F] occurs in/is determined by the reflector $ab_1 : Ext(Gp) \to CExt(Gp) : (f: F \to X) \mapsto (ab_1(f) : \frac{F}{[R,F]} \to X).$
- Through categorical Galois theory [Janelidze & Kelly, 1994], the second adjunction may be obtained from the first.

Theorem (Hopf formula for $H_2(X)$, [Hopf, 1942])

Consider a **projective presentation** $X \cong F/R$ of X: an extension $0 \to R \to F \to X \to 0$ where F is projective. Then the second integral homology group $H_2(X)$ is $\frac{R \wedge [F,F]}{[R,F]}$.

Basic analysis

- ► H_2 is a derived functor of the reflector $ab: Gp \rightarrow Ab: X \mapsto \frac{X}{[X,X]}$.
- ▶ The commutator [R, F] occurs in/is determined by the reflector $ab_1 : Ext(Gp) \to CExt(Gp) : (f: F \to X) \mapsto (ab_1(f) : \frac{F}{[R, F]} \to X).$
- ► Through categorical Galois theory [Janelidze & Kelly, 1994], the second adjunction may be obtained from the first
- the second adjunction may be obtained from the first.
- ► In fact, *f* is central iff the bottom right square is a pullback.

$$\begin{array}{ccc}
\downarrow & & \downarrow \\
F & \xrightarrow{f} & X \\
Eq(f) & \xrightarrow{\pi_2} & F \\
\downarrow \eta_F & & \downarrow \eta_F
\end{array}$$

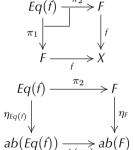
Theorem (Hopf formula for $H_2(X)$, [Hopf, 1942])

Consider a **projective presentation** $X \cong F/R$ of X: an extension $0 \to R \to F \to X \to 0$ where F is projective. Then the second integral homology group $H_2(X)$ is $\frac{R \wedge [F,F]}{[R,F]}$.

Basic analysis

- ► H_2 is a derived functor of the reflector $ab: Gp \rightarrow Ab: X \mapsto \frac{X}{[X,X]}$.
- ► The commutator [R, F] occurs in/is determined by the reflector $ab_1: Ext(Gp) \to CExt(Gp): (f: F \to X) \mapsto (ab_1(f): \frac{F}{[R, F]} \to X).$
- Through categorical Galois theory [Janelidze & Kelly, 1994], the second adjunction may be obtained from the first.
- ▶ In fact, *f* is central iff the bottom right square is a pullback.

All ingredients of the formula may be obtained from the reflector ab.



Theorem (Hopf formula for $H_2(X)$, [Hopf, 1942])

Consider a **projective presentation** $X \cong F/R$ of X: an extension $0 \to R \to F \to X \to 0$ where F is projective. Then the second integral homology group $H_2(X)$ is $\frac{R \wedge [F,F]}{|F|}$.

Basic analysis

►
$$H_2$$
 is a derived functor of the reflector $ab: Gp \to Ab: X \mapsto \frac{X}{[X,X]}$.

- ▶ The commutator [R, F] occurs in/is determined by the reflector $ab_1: Ext(Gp) \to CExt(Gp): (f: F \to X) \mapsto (ab_1(f): \frac{F}{[R, F]} \to X).$
- ► Through categorical Galois theory [Janelidze & Kelly, 1994], the second adjunction may be obtained from the first.
- ► In fact, *f* is central iff the bottom right square is a pullback.
- All ingredients of the formula may be obtained from the reflector ab.

The theorem remains true [Everaert & VdL, 2004] for reflectors of semi-abelian varieties of algebras to their subvarieties:

 $Eq(f) \xrightarrow{\pi_2} F$ $\pi_1 \downarrow f$

 $Eq(f) \xrightarrow{\pi_2} F$ $\downarrow^{\eta_{Eq(f)}} \downarrow^{\eta_F}$ $ab(Eq(f)) \xrightarrow{ab(\pi_2)} ab(F)$

of semi-abelian varieties of algebras to their subvarieties: [X,X] is commutator (Gp vs. Ab), Lie bracket $(Lie_{\mathbb{K}} \text{ vs. } Vect_{\mathbb{K}})$, product XX $(Alg_{\mathbb{K}} \text{ vs. } Mod_{\mathbb{K}})$, or ...

Theorem (Hopf formula for $H_2(X)$, [Hopf, 1942])

Consider a **projective presentation** $X \cong F/R$ of X: an extension $0 \to R \to F \to X \to 0$ where F is projective. Then the second integral homology group $H_2(X)$ is $\frac{R \wedge [F,F]}{|R| |F|}$.

Basic analysis

- ► H_2 is a derived functor of the reflector $ab: Gp \to Ab: X \mapsto \frac{X}{[X,X]}$.
- ► The commutator [R, F] occurs in/is determined by the reflector $ab_1: Ext(Gp) \to CExt(Gp): (f: F \to X) \mapsto (ab_1(f): \frac{F}{|R|F|} \to X).$
- Through categorical Galois theory [Janelidze & Kelly, 1994], the second adjunction may be obtained from the first.
- ► In fact, *f* is central iff the bottom right square is a pullback.

All ingredients of the formula may be obtained from the reflector ab.

The theorem remains true [Everaert & VdL, 2004] for reflectors of **semi-abelian** varieties of algebras to their subvarieties:

d by the reflector $F \longrightarrow$

$$F \xrightarrow{f} X$$

$$Eq(f) \xrightarrow{\pi_2} F$$

$$\downarrow \eta_{Eq(f)} \qquad \qquad \downarrow \eta_F$$

$$ab(Eq(f)) \xrightarrow{ab(\pi_2)} ab(F)$$

[X,X] is commutator (Gp vs. Ab), Lie bracket $(Lie_{\mathbb{K}} \text{ vs. } Vect_{\mathbb{K}})$, product $XX (Alg_R \text{ vs. } Mod_R)$, or ...

A category is **Barr-exact** [Barr, 1971] when

- 1 finite limits and coequalisers of kernel pairs exist;
- 2 regular epimorphisms are pullback-stable;
- 3 every internal equivalence relation is a kernel pair.

A category is **Barr-exact** [Barr, 1971] when

- 1 finite limits and coequalisers of kernel pairs exist;
- 2 regular epimorphisms are pullback-stable;
- 3 every internal equivalence relation is a kernel pair.

All varieties of algebras and all elementary toposes are such.

- A category is **Barr-exact** [Barr, 1971] when
 - 1 finite limits and coequalisers of kernel pairs exist;
 - 2 regular epimorphisms are pullback-stable;
- 3 every internal equivalence relation is a kernel pair.
- All varieties of algebras and all elementary toposes are such.
 - An **abelian category** is a Barr-exact category which is also **additive**: it has finitary biproducts and is enriched over *Ab*. [Buchsbaum, 1955; Grothendieck, 1957; Yoneda, 1960; Freyd, 1964]

A category is **Barr-exact** [Barr, 1971] when

- 1 finite limits and coequalisers of kernel pairs exist;
- 2 regular epimorphisms are pullback-stable;
- 3 every internal equivalence relation is a kernel pair.

All varieties of algebras and all elementary toposes are such.

An **abelian category** is a Barr-exact category which is also **additive**: it has finitary biproducts and is enriched over *Ab*.

[Buchsbaum, 1955; Grothendieck, 1957; Yoneda, 1960; Freyd, 1964]

Examples: Mod_R , sheaves of abelian groups.

A category is **Barr-exact** [Barr, 1971] when

- 1 finite limits and coequalisers of kernel pairs exist;
- 2 regular epimorphisms are pullback-stable;
- 3 every internal equivalence relation is a kernel pair.

All varieties of algebras and all elementary toposes are such.

- ▶ An **abelian category** is a Barr-exact category which is also **additive**:
 - it has finitary biproducts and is enriched over Ab.
- [Buchsbaum, 1955; Grothendieck, 1957; Yoneda, 1960; Freyd, 1964]

Examples: Mod_R , sheaves of abelian groups.

▶ A Barr-exact category is **semi-abelian** when it is pointed, has binary coproducts and is **protomodular**: the *Split Short Five Lemma* holds [Bourn, 1991].

A category is **Barr-exact** [Barr, 1971] when

- 1 finite limits and coequalisers of kernel pairs exist;
- 2 regular epimorphisms are pullback-stable;
- 3 every internal equivalence relation is a kernel pair.

All varieties of algebras and all elementary toposes are such.

 An abelian category is a Barr-exact category which is also additive: it has finitary biproducts and is enriched over Ab.
 [Buchsbaum, 1955; Grothendieck, 1957; Yoneda, 1960; Freyd, 1964]

Examples: Mod_R , sheaves of abelian groups.

A Barr-exact category is **semi-abelian** when it is pointed, has binary coproducts and is **protomodular**: the *Split Short Five Lemma* holds [Bourn, 1991].

This definition [Janelidze, Márki & Tholen, 2002] unifies "old" approaches towards an axiomatisation of categories "close to Gp" such as [Higgins, 1956] and [Huq, 1968] with "new" categorical algebra—the concepts of Barr-exactness and Bourn-protomodularity.

A category is **Barr-exact** [Barr, 1971] when

- 1 finite limits and coequalisers of kernel pairs exist;
- 2 regular epimorphisms are pullback-stable;
- 3 every internal equivalence relation is a kernel pair.

All varieties of algebras and all elementary toposes are such.

- An abelian category is a Barr-exact category which is also additive:
 - it has finitary biproducts and is enriched over Ab.

[Buchsbaum, 1955; Grothendieck, 1957; Yoneda, 1960; Freyd, 1964]

- Examples: Mod_R , sheaves of abelian groups.
- This definition [Janelidze, Márki & Tholen, 2002] unifies "old" approaches towards an axiomatisation of categories "close to *Gp*" such as [Higgins, 1956] and [Huq, 1968]

and is **protomodular**: the *Split Short Five Lemma* holds [Bourn, 1991].

A Barr-exact category is semi-abelian when it is pointed, has binary coproducts

with "new" categorical algebra—the concepts of Barr-exactness and Bourn-protomodularity. Examples: Gp, $Lie_{\mathbb{K}}$, $Alg_{\mathbb{K}}$, XMod, Loop, $HopfAlg_{\mathbb{K},coc}$, C^* -Alg, Set^{op}_* , varieties of Ω -groups.

A category is **Barr-exact** [Barr, 1971] when

- 1 finite limits and coequalisers of kernel pairs exist;
- 2 regular epimorphisms are pullback-stable;
- 3 every internal equivalence relation is a kernel pair.

All varieties of algebras and all elementary toposes are such.

- An abelian category is a Barr-exact category which is also additive:
 - it has finitary biproducts and is enriched over Ab.

[Buchsbaum, 1955; Grothendieck, 1957; Yoneda, 1960; Freyd, 1964]

Examples: Mod_R , sheaves of abelian groups.

This definition [Janelidze, Márki & Tholen, 2002] unifies "old" approaches towards an axiomatisation of categories "close to Gp" such as [Higgins, 1956] and [Huq, 1968] with "new" categorical algebra—the concepts of Barr-exactness and Bourn-protomodularity.

A Barr-exact category is semi-abelian when it is pointed, has binary coproducts

and is **protomodular**: the *Split Short Five Lemma* holds [Bourn, 1991].

Examples: Cp, $Lie_{\mathbb{K}}$, $Alg_{\mathbb{K}}$, XMod, Loop, $HopfAlg_{\mathbb{K},coc}$, C^* -Alg, Set_*^{op} , varieties of Ω -groups.

Protomodular categories [Bourn, 1991] arose out of the idea that in algebra, *categories of points* may be more fundamental than slice categories.

Protomodular categories [Bourn, 1991] arose out of the idea that in algebra, *categories of points* may be more fundamental than slice categories.

A **point** (f, s) **over** X is a split epimorphism $f: Y \to X$ with a chosen splitting $s: X \to Y$.

Protomodular categories [Bourn, 1991] arose out of the idea that in algebra, *categories of points* may be more fundamental than slice categories.

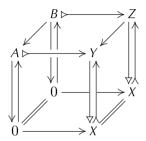
A **point** (f, s) **over** X is a split epimorphism $f: Y \to X$ with a chosen splitting $s: X \to Y$.

Pt_X $(\mathscr{X}) = (1_X \downarrow (\mathscr{X} \downarrow X))$ is the category of points over X in \mathscr{X} .

Protomodular categories [Bourn, 1991] arose out of the idea that in algebra, *categories of points* may be more fundamental than slice categories.

A **point** (f, s) **over** X is a split epimorphism $f: Y \to X$ with a chosen splitting $s: X \to Y$. $Y \to Y$ $Pt_X(\mathscr{X}) = (1_X \downarrow (\mathscr{X} \downarrow X))$ is the category of points over X in X.

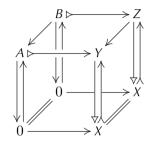
The **Split Short Five Lemma** is precisely the condition that the pullback functor $Pt_X(\mathscr{X}) \to Pt_0(\mathscr{X}) \cong \mathscr{X}$ reflects isomorphisms.



Protomodular categories [Bourn, 1991] arose out of the idea that in algebra, *categories of points* may be more fundamental than slice categories.

A **point** (f, s) **over** X is a split epimorphism $f: Y \to X$ with a chosen splitting $s: X \to Y$. $Y \to Y$ $Pt_X(\mathscr{X}) = (1_X \downarrow (\mathscr{X} \downarrow X))$ is the category of points over X in X.

The **Split Short Five Lemma** is precisely the condition that the pullback functor $Pt_X(\mathscr{X}) \to Pt_0(\mathscr{X}) \cong \mathscr{X}$ reflects isomorphisms.

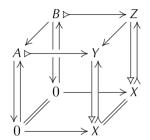


Points are actions.

Protomodular categories [Bourn, 1991] arose out of the idea that in algebra, categories of points may be more fundamental than slice categories.

A **point** (f, s) **over** X is a split epimorphism $f: Y \to X$ with a chosen splitting $s: X \to Y$. $X \xrightarrow{s} Y$ $Pt_X(\mathscr{X}) = (1_X \downarrow (\mathscr{X} \downarrow X))$ is the **category of points** over X in \mathscr{X} .

The **Split Short Five Lemma** is precisely the condition that the pullback functor $Pt_X(\mathcal{X}) \to Pt_0(\mathcal{X}) \cong \mathcal{X}$ reflects isomorphisms.



Points are actions.

If $\mathscr X$ is semi-abelian, then this change-of-base functor is monadic [Bourn & Janelidze, 1998]

Protomodular categories [Bourn, 1991] arose out of the idea that in algebra, *categories of points* may be more fundamental than slice categories.

A **point** (f, s) **over** X is a split epimorphism $f: Y \to X$ with a chosen splitting $s: X \to Y$. $Pt_X(\mathscr{X}) = (1_X \downarrow (\mathscr{X} \downarrow X))$ is the category of points over X in \mathscr{X} .

The **Split Short Five Lemma** is precisely the condition that the pullback functor $Pt_X(\mathscr{X}) \to Pt_0(\mathscr{X}) \cong \mathscr{X}$ reflects isomorphisms.



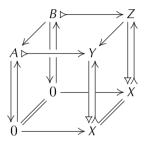
Points are actions.

If $\mathscr X$ is semi-abelian, then this change-of-base functor is monadic [Bourn & Janelidze, 1998]; the algebras for the monad are called **internal actions**, and correspond to split extensions:

Protomodular categories [Bourn, 1991] arose out of the idea that in algebra, *categories of points* may be more fundamental than slice categories.

A **point** (f, s) **over** X is a split epimorphism $f: Y \to X$ with a chosen splitting $s: X \to Y$. $V \to Y$ $V \to Y$

The **Split Short Five Lemma** is precisely the condition that the pullback functor $Pt_X(\mathscr{X}) \to Pt_0(\mathscr{X}) \cong \mathscr{X}$ reflects isomorphisms.



Points are actions.

If \mathscr{X} is semi-abelian, then this change-of-base functor is monadic [Bourn & Janelidze, 1998]; the algebras for the monad are called **internal actions**, and correspond to split extensions: if X acts on A via \mathcal{E} , we obtain

$$0 \longrightarrow A \longmapsto A \rtimes_{\xi} X \stackrel{s_{\xi}}{\longleftrightarrow} X \longrightarrow 0.$$

Overview, n = 1

	Homology $H_2(X)$	Cohomology $H^2(X,(A,\xi))$	
		trivial action ξ	arbitrary action ξ
Gp	$\frac{R \wedge [F, F]}{[R, F]}$	$CentrExt^{1}(X,A)$	$OpExt^{1}(X, A, \xi)$
abelian categories	0	Ext^1	(X,A)
Barr-exact categories		$Tors^{1}[X,(A,\xi)]$	
semi-abelian categories	$\frac{R \wedge [F, F]}{[R, F]}$	$CentrExt^{1}(X,A)$	$OpExt^1(X, A, \xi)$

Overview, n = 1

	Homology $H_2(X)$	Cohomology $H^2(X,(A,\xi))$	
		trivial action ξ	arbitrary action ξ
Gр	$\frac{R \wedge [F, F]}{[R, F]}$	$CentrExt^{1}(X,A)$	$OpExt^1(X, A, \xi)$
abelian categories	0	Ext^1	(X,A)
Barr-exact categories		$Tors^{1}[X,(A,\xi)]$	
semi-abelian categories	$\frac{R \wedge [F, F]}{[R, F]}$	$CentrExt^1(X,A)$	$OpExt^{1}(X,A,\xi)$

Overview, n = 1

	Homology $H_2(X)$	Cohomology $H^2(X,(A,\xi))$	
		trivial action ξ	arbitrary action ξ
Gp	$\frac{R \wedge [F, F]}{[R, F]}$	$CentrExt^{1}(X,A)$	$OpExt^1(X, A, \xi)$
abelian categories	0	Ext ¹	(X,A)
Barr-exact categories		$Tors^{1}[X,(A,\xi)]$	
semi-abelian categories	$\frac{R \wedge [F, F]}{[R, F]}$	$CentrExt^1(X,A)$	$OpExt^1(X,A,\xi)$

[▶] $0 \to R \to F \to X \to 0$ is a projective presentation.

Overview, n = 1

	Homology $H_2(X)$	Cohomology $H^2(X,(A,\xi))$	
		trivial action ξ	arbitrary action ξ
	$\frac{R \wedge [F, F]}{[R, F]}$	$CentrExt^{1}(X,A)$	$OpExt^1(X, A, \xi)$
abelian categories	0	$Ext^{1}(X,A)$	
Barr-exact categories		$Tors^{1}[X,(A,\xi)]$	
semi-abelian categories	$\frac{R \wedge [F, F]}{[R, F]}$	$CentrExt^1(X,A)$	$OpExt^1(X,A,\xi)$

[▶] $0 \to R \to F \to X \to 0$ is a projective presentation.

[•] A priori, H_2 is a derived functor of $ab: \mathscr{X} \to Ab(\mathscr{X})$.

Overview, n = 1

	Homology $H_2(X)$	Cohomology $H^2(X, (A, \xi))$	
	Tiomology 772(X)	trivial action ξ	arbitrary action ξ
Gp	$\frac{R \wedge [F, F]}{[R, F]}$	$CentrExt^{1}(X,A)$	$OpExt^{1}(X, A, \xi)$
abelian categories	0	$Ext^{1}(X,A)$	
Barr-exact categories		$Tors^1[X,(A,\xi)]$	
semi-abelian categories	$\frac{R \wedge [F, F]}{[R, F]}$	$CentrExt^1(X,A)$	$OpExt^{1}(X,A,\xi)$

- ▶ $0 \rightarrow R \rightarrow F \rightarrow X \rightarrow 0$ is a projective presentation.
- ▶ A priori, H_2 is a derived functor of $ab: \mathscr{X} \to Ab(\mathscr{X})$.
- ▶ The Hopf formula is valid for any reflector $I \colon \mathscr{X} \to \mathscr{Y}$ from a semi-abelian category \mathscr{X} to a Birkhoff subcategory \mathscr{Y} ; then the commutators are relative with respect to I.

Overview, n = 1

	Homology $H_2(X)$	Cohomology $H^2(X,(A,\xi))$	
		trivial action ξ	arbitrary action ξ
Gp	$\frac{R \wedge [F, F]}{[R, F]}$	$CentrExt^{1}(X,A)$	$OpExt^1(X, A, \xi)$
abelian categories	see Julia's talk!	$Ext^{1}(X,A)$	
Barr-exact categories		$Tors^{1}[X,(A,\xi)]$	
semi-abelian categories	$\frac{R \wedge [F, F]}{[R, F]}$	$CentrExt^1(X,A)$	$OpExt^1(X,A,\xi)$

- ▶ $0 \to R \to F \to X \to 0$ is a projective presentation.
- ▶ A priori, H_2 is a derived functor of $ab: \mathscr{X} \to Ab(\mathscr{X})$.
- ▶ The Hopf formula is valid for any reflector $I \colon \mathscr{X} \to \mathscr{Y}$ from a semi-abelian category \mathscr{X} to a Birkhoff subcategory \mathscr{Y} ; then the commutators are relative with respect to I. Also in the abelian case, this gives something non-trivial.

Overview, n = 1

	Homology $H_2(X)$	Cohomology $H^2(X,(A,\xi))$	
		trivial action ξ	arbitrary action ξ
Gp	$\frac{R \wedge [F, F]}{[R, F]}$	$CentrExt^{1}(X,A)$	$OpExt^{1}(X, A, \xi)$
abelian categories	0	$Ext^{1}(X,A)$	
Barr-exact categories		$Tors^{1}[X,(A,\xi)]$	
semi-abelian categories	$\frac{R \wedge [F, F]}{[R, F]}$	$CentrExt^1(X,A)$	$OpExt^{1}(X,A,\xi)$

- ▶ $0 \to R \to F \to X \to 0$ is a projective presentation.
- ▶ A priori, H_2 is a derived functor of $ab: \mathscr{X} \to Ab(\mathscr{X})$.
- ▶ The Hopf formula is valid for any reflector $I \colon \mathscr{X} \to \mathscr{Y}$ from a semi-abelian category \mathscr{X} to a Birkhoff subcategory \mathscr{Y} ; then the commutators are relative with respect to I. Also in the abelian case, this gives something non-trivial.

Low-dimensional cohomology of groups, II

Consider an extension $0 \longrightarrow A \triangleright F \xrightarrow{f} \triangleright X \longrightarrow 0$.

Low-dimensional cohomology of groups, II

Consider an extension $0 \longrightarrow A \longmapsto E \xrightarrow{f} X \longrightarrow 0$.

Any action $\xi: X \to Aut(A)$ of X on A pulls back along f to an action $f^*(\xi): E \to Aut(A): e \mapsto \xi(f(e))$ of E on A.

- Any action $\xi: X \to Aut(A)$ of X on A pulls back along f to an action $f^*(\xi): E \to Aut(A): e \mapsto \xi(f(e))$ of E on A.
- ▶ If *A* is abelian, then there is a unique action ξ of *X* on *A* such that $f^*(\xi)$ is the conjugation action of *E* on *A*:

Low-dimensional cohomology of groups, II

Consider an extension $0 \longrightarrow A \longmapsto E \xrightarrow{f} X \longrightarrow 0$.

- Any action $\xi: X \to Aut(A)$ of X on A pulls back along f to an action $f^*(\xi): E \to Aut(A): e \mapsto \xi(f(e))$ of E on A.
- ▶ If *A* is abelian, then there is a unique action ξ of *X* on *A* such that $f^*(\xi)$ is the conjugation action of *E* on *A*: put $\xi(x)(a) = eae^{-1}$ for $e \in E$ with f(e) = x.

- Any action $\xi: X \to Aut(A)$ of X on A pulls back along f to an action $f^*(\xi): E \to Aut(A): e \mapsto \xi(f(e))$ of E on A.
- If A is abelian, then there is a unique action ξ of X on A such that $f^*(\xi)$ is the conjugation action of E on A: put $\xi(x)(a) = eae^{-1}$ for $e \in E$ with f(e) = x.
- ightharpoonup This action ξ is called the **direction** of the given extension.

- Any action $\xi: X \to Aut(A)$ of X on A pulls back along f to an action $f^*(\xi): E \to Aut(A): e \mapsto \xi(f(e))$ of E on A.
- If A is abelian, then there is a unique action ξ of X on A such that $f^*(\xi)$ is the conjugation action of E on A: put $\xi(x)(a) = eae^{-1}$ for $e \in E$ with f(e) = x.
- ► This action ξ is called the **direction** of the given extension. It determines a left $\mathbb{Z}(X)$ -module structure on A.

- Any action $\xi: X \to Aut(A)$ of X on A pulls back along f to an action $f^*(\xi): E \to Aut(A): e \mapsto \xi(f(e))$ of E on A.
- If A is abelian, then there is a unique action ξ of X on A such that $f^*(\xi)$ is the conjugation action of E on A: put $\xi(x)(a) = eae^{-1}$ for $e \in E$ with f(e) = x.
- ► This action ξ is called the **direction** of the given extension. It determines a left $\mathbb{Z}(X)$ -module structure on A.

Theorem (Cohomology with non-trivial coefficients) $H^2(X, (A, \xi)) \cong OpExt^1(X, A, \xi)$, the group of equivalence classes of extensions from A to X with direction (A, ξ) .

Low-dimensional cohomology of groups, II

Consider an extension $0 \longrightarrow A \triangleright E \xrightarrow{f} \triangleright X \longrightarrow 0$.

- ▶ Any action ξ : $X \to Aut(A)$ of X on A pulls back along f to an action $f^*(\xi)$: $E \to Aut(A)$: $e \mapsto \xi(f(e))$ of E on A.
- ▶ If *A* is abelian, then there is a unique action ξ of *X* on *A* such that $f^*(\xi)$ is the conjugation action of *E* on *A*: put $\xi(x)(a) = eae^{-1}$ for $e \in E$ with f(e) = x.
- ► This action ξ is called the **direction** of the given extension. It determines a left $\mathbb{Z}(X)$ -module structure on A.

Theorem (Cohomology with non-trivial coefficients) $H^2(X, (A, \xi)) \cong OpExt^1(X, A, \xi)$, the group of equivalence classes of extensions from A to X with direction (A, ξ) .

This agrees with the above: an extension with abelian kernel is central iff its direction is trivial.

$$f$$
 is central $\Leftrightarrow \forall_{a \in A} \forall_{e \in E} \quad a = eae^{-1}$
 $\Leftrightarrow \forall_{a \in A} \forall_{e \in E} \quad a = \xi(f(e))(a)$
 $\Leftrightarrow \forall_{x \in X} \quad 1_A = \xi(x)$

Low-dimensional cohomology of groups, II

Consider an extension $0 \longrightarrow A \triangleright \longrightarrow E \xrightarrow{f} \triangleright X \longrightarrow 0$.

- Any action $\xi: X \to Aut(A)$ of X on A pulls back along f to an action $f^*(\xi): E \to Aut(A): e \mapsto \xi(f(e))$ of E on A.
- ▶ If *A* is abelian, then there is a unique action ξ of *X* on *A* such that $f^*(\xi)$ is the conjugation action of *E* on *A*: put $\xi(x)(a) = eae^{-1}$ for $e \in E$ with f(e) = x.
- ▶ This action ξ is called the **direction** of the given extension. It determines a left $\mathbb{Z}(X)$ -module structure on A.

Theorem (Cohomology with non-trivial coefficients)

 $H^2(X, (A, \xi)) \cong OpExt^1(X, A, \xi)$, the group of equivalence classes of extensions from A to X with direction (A, ξ) .

This agrees with the above: an
$$f$$
 is central $\Leftrightarrow \forall_{a \in A} \forall_{e \in E} \quad a = eae^{-1}$ extension with abelian kernel is $\Leftrightarrow \forall_{a \in A} \forall_{e \in E} \quad a = \xi(f(e))(a)$ central iff its direction is trivial. $\Leftrightarrow \forall_{x \in X} \quad 1_A = \xi(x)$

How to extend this to semi-abelian categories?

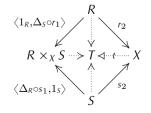
Three commutators

Smith-Pedicchio

For equivalence relations R, S on X

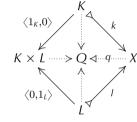
$$R \xrightarrow[r_2]{r_1} X \xleftarrow[s_2]{s_2} S,$$

the **Smith-Pedicchio commutator** $[R, S]^S$ is the kernel pair of t:



Huq & Higgins

For K, $L \triangleleft X$, the **Huq commutator** $[K, L]^Q$ is the kernel of q:



The **Higgins commutator** $[K, L] \leq X$ is the image of $(k \ l) \circ \iota_{K,L}$:

$$K \diamond L \xrightarrow{\iota_{K,L}} K + L \longrightarrow K \times L$$

$$\downarrow (k l)$$

$$[K, L] > \cdots > X$$

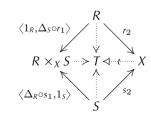
Pregroupoids

Smith-Pedicchio

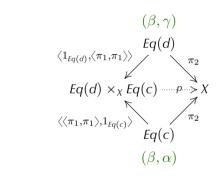
For equivalence relations *R*, *S* on *X*

$$R \xrightarrow[r_2]{r_1} X \xleftarrow[s_2]{} S,$$

the **Smith-Pedicchio commutator** $[R, S]^S$ is the kernel pair of t:



A span $D \leftarrow X \xrightarrow{c} C$ is a **pregroupoid** iff $[Eq(d), Eq(c)]^S = \Delta_X$. [Kock, 1989]



$$\begin{cases}
\rho(\alpha, \beta, \beta) = \alpha \\
\rho(\beta, \beta, \gamma) = \gamma
\end{cases}$$

Several categorical-algebraic conditions have been considered which "make a semi-abelian category behave more like *Gp* does".

Several categorical-algebraic conditions have been considered which "make a semi-abelian category behave more like *Gp* does".

$$K
ightharpoonup \xrightarrow{r_2 \circ \ker(r_1)} X \stackrel{s_2 \circ \ker(s_1)}{\longleftrightarrow} L$$
 normalisations of $R \xrightarrow{r_1} X \stackrel{s_2}{\longleftrightarrow} S$

Several categorical-algebraic conditions have been considered which "make a semi-abelian category behave more like *Gp* does".

One (weak and well-studied) such is the *Smith is Huq* condition (SH), which holds when two equivalence relations R and S on an object X commute iff their normalisations K, $L \triangleleft X$ do.

$$K
ightharpoonup r_2 \circ \ker(r_1) > X \stackrel{s_2 \circ \ker(s_1)}{\longleftrightarrow} L$$
 normalisations of $R \xrightarrow{r_1} X \stackrel{s_2}{\longleftrightarrow} S$

▶ One implication is automatic [Bourn & Gran, 2002].

Several categorical-algebraic conditions have been considered which "make a semi-abelian category behave more like *Gp* does".

$$K
ightharpoonup r_2 \circ \ker(r_1) > X \stackrel{s_2 \circ \ker(s_1)}{\longleftrightarrow} L$$
 normalisations of $R \xrightarrow{r_1} X \stackrel{s_2}{\longleftrightarrow} S$

- ▶ One implication is automatic [Bourn & Gran, 2002].
- ► All Orzech categories of interest [Orzech, 1972] satisfy (SH). Loop does not.

Several categorical-algebraic conditions have been considered which "make a semi-abelian category behave more like *Gp* does".

$$K
ightharpoonup r_2 \circ \ker(r_1) > X \stackrel{s_2 \circ \ker(s_1)}{\longleftrightarrow} L$$
 normalisations of $R \xrightarrow{r_1} X \stackrel{s_2}{\longleftrightarrow} S$

- ▶ One implication is automatic [Bourn & Gran, 2002].
- All Orzech categories of interest [Orzech, 1972] satisfy (SH). Loop does not.
- By [Martins-Ferreira & VdL, 2012] and [Hartl & VdL, 2013], under (SH) the description of internal crossed modules of [Janelidze, 2003] simplifies.

Several categorical-algebraic conditions have been considered which "make a semi-abelian category behave more like *Gp* does".

$$K
ightharpoonup r_2 \circ \ker(r_1) > X \stackrel{s_2 \circ \ker(s_1)}{\longleftrightarrow} L$$
 normalisations of $R \xrightarrow{r_1} X \stackrel{s_2}{\longleftrightarrow} S$

- ▶ One implication is automatic [Bourn & Gran, 2002].
- ▶ All Orzech categories of interest [Orzech, 1972] satisfy (SH). Loop does not.
- By [Martins-Ferreira & VdL, 2012] and [Hartl & VdL, 2013], under (SH) the description of internal crossed modules of [Janelidze, 2003] simplifies. This is, essentially, because then, a span $D \xleftarrow{d} X \xrightarrow{c} C$ is a pregroupoid iff [Ker(d), Ker(c)] = 0,

Several categorical-algebraic conditions have been considered which "make a semi-abelian category behave more like *Gp* does".

$$K
ightharpoonup r_2 \circ \ker(r_1) > X \stackrel{s_2 \circ \ker(s_1)}{\longleftrightarrow} L$$
 normalisations of $R \xrightarrow{r_1} X \stackrel{s_2}{\longleftrightarrow} S$

- ▶ One implication is automatic [Bourn & Gran, 2002].
- ▶ All Orzech categories of interest [Orzech, 1972] satisfy (SH). Loop does not.
- By [Martins-Ferreira & VdL, 2012] and [Hartl & VdL, 2013], under (SH) the description of internal crossed modules of [Janelidze, 2003] simplifies. This is, essentially, because then, a span $D \xleftarrow{d} X \xrightarrow{c} C$ is a pregroupoid iff [Ker(d), Ker(c)] = 0, so a reflexive graph $G_1 \xrightarrow{d} G_0$ is an internal groupoid iff [Ker(d), Ker(c)] = 0.

Several categorical-algebraic conditions have been considered which "make a semi-abelian category behave more like *Gp* does".

One (weak and well-studied) such is the *Smith is Huq* condition (SH), which holds when two equivalence relations R and S on an object X commute iff their normalisations K, $L \triangleleft X$ do.

$$K
ightharpoonup r_2 \circ \ker(r_1) > X \stackrel{s_2 \circ \ker(s_1)}{\longleftrightarrow} L$$
 normalisations of $R \xrightarrow{r_1} X \stackrel{s_2}{\longleftrightarrow} S$

- ▶ One implication is automatic [Bourn & Gran, 2002].
- ▶ All Orzech categories of interest [Orzech, 1972] satisfy (SH). Loop does not.
- By [Martins-Ferreira & VdL, 2012] and [Hartl & VdL, 2013], under (SH) the description of internal crossed modules of [Janelidze, 2003] simplifies. This is, essentially, because then, a span $D \xleftarrow{d} X \xrightarrow{c} C$ is a pregroupoid iff [Ker(d), Ker(c)] = 0, so a reflexive graph $G_1 \xrightarrow{d} G_0$ is an internal groupoid iff [Ker(d), Ker(c)] = 0.

This is important when defining abelian extensions.

The semi-abelian case: abelian extensions, I Let $\mathscr X$ be a semi-abelian category. An **abelian extension** in $\mathscr X$ is a short exact sequence

$$0 \longrightarrow A \triangleright \stackrel{a}{\longrightarrow} F \stackrel{f}{\longrightarrow} X \longrightarrow 0$$

$$0 \longrightarrow A \triangleright \xrightarrow{u} E \xrightarrow{v} X \longrightarrow$$

where *f* is an **abelian object** in $(\mathscr{X} \downarrow X)$:

The semi-abelian case: abelian extensions, I

Let \mathscr{X} be a semi-abelian category. An **abelian extension** in \mathscr{X} is a short exact sequence

$$0 \longrightarrow A \triangleright \xrightarrow{a} E \xrightarrow{f} X \longrightarrow 0$$

where f is an **abelian object** in $(\mathscr{X} \downarrow X)$: this means that, equivalently,

- 1 the span (f, f) is a pregroupoid;
- 2 the commutator $[Eq(f), Eq(f)]^S$ is trivial:
- $\langle 1_F, 1_F \rangle : E \to Eq(f)$ is a normal monomorphism $f \to f\pi_1$ in $(\mathcal{X} \downarrow X)$;
- 4 $\langle a, a \rangle$: $A \to Eq(f)$ is a normal monomorphism in \mathscr{X} .

Let \mathscr{X} be a semi-abelian category. An **abelian extension** in \mathscr{X} is a short exact sequence

$$0 \longrightarrow A \triangleright \xrightarrow{a} E \xrightarrow{f} X \longrightarrow 0$$

where f is an **abelian object** in $(\mathscr{X} \downarrow X)$: this means that, equivalently,

- 1 the span (f, f) is a pregroupoid:
- 2 the commutator $[Eq(f), Eq(f)]^S$ is trivial:
- $\langle 1_F, 1_F \rangle : E \to Eq(f)$ is a normal monomorphism $f \to f\pi_1$ in $(\mathcal{X} \downarrow X)$;
- 4 $\langle a, a \rangle$: $A \to Eq(f)$ is a normal monomorphism in \mathscr{X} .
- Example: a **split extension** (a point (f, s) with $a = \ker(f)$) is abelian

iff it is a **Beck module** [Beck, 1967]: an abelian group object in $(\mathcal{X} \downarrow X)$.

Let $\mathscr X$ be a semi-abelian category. An **abelian extension** in $\mathscr X$ is a short exact sequence

$$0 \longrightarrow A \triangleright \xrightarrow{a} E \xrightarrow{f} X \longrightarrow 0$$

where f is an **abelian object** in $(\mathcal{X} \downarrow X)$: this means that, equivalently,

- 1 the span (f, f) is a pregroupoid;
- the commutator $[Eq(f), Eq(f)]^S$ is trivial;
- $\{1_E, 1_E\}: E \to Eq(f) \text{ is a normal monomorphism } f \to f\pi_1 \text{ in } (\mathscr{X} \downarrow X);$
- 4 $\langle a, a \rangle$: $A \to Eq(f)$ is a normal monomorphism in \mathcal{X} .

Example: a **split extension** (a point (f, s) with $a = \ker(f)$) is abelian iff it is a **Beck module** [Beck, 1967]: an abelian group object in $(\mathscr{X} \downarrow X)$.

Given an abelian extension, we may take cokernels as in the diagram on the left to find its **direction**: the *X*-module (A, ξ) .

Let $\mathscr X$ be a semi-abelian category. An **abelian extension** in $\mathscr X$ is a short exact sequence

$$0 \longrightarrow A \stackrel{a}{\triangleright} E \stackrel{f}{\longrightarrow} X \longrightarrow 0$$

where f is an **abelian object** in $(\mathcal{X} \downarrow X)$: this means that, equivalently,

- 1 the span (f, f) is a pregroupoid;
- the commutator $[Eq(f), Eq(f)]^S$ is trivial;
- $\{1_E, 1_E\}: E \to Eq(f)$ is a normal monomorphism $f \to f\pi_1$ in $(\mathscr{X} \downarrow X)$;
- 4 $\langle a, a \rangle$: $A \to Eq(f)$ is a normal monomorphism in \mathscr{X} .

Example: a **split extension** (a point (f, s) with $a = \ker(f)$) is abelian iff it is a **Beck module** [Beck, 1967]: an abelian group object in $(\mathcal{X} \downarrow X)$.

$$0 \longrightarrow A \stackrel{\langle a,a \rangle}{\longmapsto} Eq(f) \stackrel{1_A \rtimes f}{\longmapsto} A \rtimes_{\xi} X \longrightarrow 0$$
 Given an abelian extension, we may take cokernels as in the diagram on the left to find its **direction**: the *X*-module (A, ξ) .

The pullback $f^*(\xi)$ of ξ along f is the conjugation action of E on A.

► There are examples (e.g. in *Loop*) where *A* is abelian but *f* is not.

- ▶ There are examples (e.g. in *Loop*) where *A* is abelian but *f* is not.
- ▶ The condition (SH) implies that all extensions with abelian kernel are abelian, because $[A, A]^Q = 0$ implies that $[Eq(f), Eq(f)]^S$ is trivial.

In particular then, any internal action on an abelian group object is a Beck module.

- ▶ There are examples (e.g. in *Loop*) where *A* is abelian but *f* is not.
- ▶ The condition (SH) implies that all extensions with abelian kernel are abelian, because $[A, A]^Q = 0$ implies that $[Eq(f), Eq(f)]^S$ is trivial.

In particular then, any internal action on an abelian group object is a Beck module. (Actions are non-abelian modules.)

- ► There are examples (e.g. in *Loop*) where *A* is abelian but *f* is not.
- ► The condition (SH) implies that all extensions with abelian kernel are abelian, because $[A, A]^Q = 0$ implies that $[Eq(f), Eq(f)]^S$ is trivial.

In particular then, any internal action on an abelian group object is a Beck module. (Actions are non-abelian modules.)

Theorem (Cohomology with non-trivial coefficients) $H^2(X,(A,\xi)) \cong OpExt^1(X,A,\xi)$, the group of equivalence classes of extensions from A to X with direction (A,ξ) . Under (SH), cohomology classifies all extensions with abelian kernel.

- ► There are examples (e.g. in *Loop*) where *A* is abelian but *f* is not.
- ► The condition (SH) implies that all extensions with abelian kernel are abelian, because $[A, A]^Q = 0$ implies that $[Eq(f), Eq(f)]^S$ is trivial.

In particular then, any internal action on an abelian group object is a Beck module. (Actions are non-abelian modules.)

Theorem (Cohomology with non-trivial coefficients) $H^2(X, (A, \xi)) \cong OpExt^1(X, A, \xi)$, the group of equivalence classes of extensions from A to X with direction (A, ξ) . Under (SH), cohomology classifies all extensions with abelian kernel.

By [Bourn & Janelidze, 2004], abelian extensions are torsors, which by [Duskin, 1975]
 [Glenn, 1982] are classified by means of comonadic cohomology [Barr & Beck, 1969].

- ► There are examples (e.g. in *Loop*) where *A* is abelian but *f* is not.
- ► The condition (SH) implies that all extensions with abelian kernel are abelian, because $[A, A]^Q = 0$ implies that $[Eq(f), Eq(f)]^S$ is trivial.

In particular then, any internal action on an abelian group object is a Beck module. (Actions are non-abelian modules.)

Theorem (Cohomology with non-trivial coefficients) $H^2(X, (A, \xi)) \cong OpExt^1(X, A, \xi)$, the group of equivalence classes of extensions from A to X with direction (A, ξ) . Under (SH), cohomology classifies all extensions with abelian kernel.

- ▶ By [Bourn & Janelidze, 2004], abelian extensions are *torsors*, which by [Duskin, 1975] [Glenn, 1982] are classified by means of comonadic cohomology [Barr & Beck, 1969].
- ▶ $H^2(-, (A, \xi))$ is a derived functor of $Hom(-, A \bowtie_{\xi} X \to X)$: $(\mathscr{X} \downarrow X)^{\operatorname{op}} \to Ab$. We assume that \mathscr{X} carries a comonad $\mathbb G$ whose projectives are the regular projectives.

Overview, n = 1

	Homology $H_2(X)$	Cohomology $H^2(X,(A,\xi))$	
		trivial action ξ	arbitrary action ξ
Gр	$\frac{R \wedge [F, F]}{[R, F]}$	$CentrExt^{1}(X,A)$	$OpExt^1(X, A, \xi)$
abelian categories	0	$Ext^{1}(X,A)$	
Barr-exact categories		$Tors^{1}[X,(A,\xi)]$	
semi-abelian categories	$\frac{R \wedge [F, F]}{[R, F]}$	$CentrExt^{1}(X,A)$	$OpExt^1(X, A, \xi)$

Overview, arbitrary degrees $(n \ge 1)$

	Homology $H_{n+1}(X)$	Cohomology $H^{n+1}(X,(A,\xi))$	
	$Tiomology Tr_{n+1}(X)$		
		trivial action ξ	arbitrary action ξ
Gр	$\frac{\bigwedge_{i \in n} K_i \wedge [F_n, F_n]}{\bigvee_{I \subseteq n} [\bigwedge_{i \in I} K_i, \bigwedge_{i \in n \setminus I} K_i]}$	$CentrExt^n(X,A)$	$OpExt^n(X,A,\xi)$
abelian categories	0	$Ext^n(X,A)$	
Barr-exact categories		$Tors^n[X,(A,\xi)]$	
semi-abelian categories	$\frac{\bigwedge_{i\in n}K_i\wedge [F_n,F_n]}{L_n[F]}$	$CentrExt^n(X,A)$	$OpExt^n(X, A, \xi)$

Overview, arbitrary degrees $(n \ge 1)$

	Homology $H_{n+1}(X)$	Cohomology $H^{n+1}(X,(A,\xi))$	
		trivial action ξ	arbitrary action ξ
Gр	$\frac{\bigwedge_{i \in n} K_i \wedge [F_n, F_n]}{\bigvee_{I \subseteq n} [\bigwedge_{i \in I} K_i, \bigwedge_{i \in n \setminus I} K_i]}$	$CentrExt^n(X,A)$	$OpExt^n(X,A,\xi)$
abelian categories	0	$Ext^n(X,A)$	
Barr-exact categories		$Tors^n[X,(A,\xi)]$	
semi-abelian categories	$\frac{\bigwedge_{i\in n}K_i\wedge [F_n,F_n]}{L_n[F]}$	$CentrExt^n(X,A)$	$OpExt^n(X, A, \xi)$

Let *X* and *A* be objects in an abelian category \mathscr{A} .

A **Yoneda** 1-extension from *A* to *X* is a short exact sequence

$$0 \longrightarrow A \longmapsto E^1 \xrightarrow{f^1} X \longrightarrow 0.$$

Let X and A be objects in an abelian category \mathcal{A} .

A **Yoneda** 1-extension from *A* to *X* is a short exact sequence

$$0 \longrightarrow A \triangleright \longrightarrow E^1 \xrightarrow{f^1} \triangleright X \longrightarrow 0.$$

Consider $n \ge 2$. A **Yoneda** *n***-extension** from *A* to *X* is an exact sequence

$$0 \longrightarrow A \triangleright \longrightarrow E^n \xrightarrow{f^n} E^{n-1} \longrightarrow \cdots \xrightarrow{f^1} \triangleright X \longrightarrow 0.$$

Let *X* and *A* be objects in an abelian category \mathscr{A} .

A **Yoneda** 1-extension from *A* to *X* is a short exact sequence

$$0 \longrightarrow A \triangleright \longrightarrow E^1 \stackrel{f^1}{\longrightarrow} X \longrightarrow 0.$$

Consider $n \ge 2$. A **Yoneda** *n***-extension** from *A* to *X* is an exact sequence

$$0 \longrightarrow A \longmapsto E^n \xrightarrow{f^n} E^{n-1} \longrightarrow \cdots \xrightarrow{f^1} X \longrightarrow 0.$$

Taking commutative ladders between those as morphisms gives a category $EXT^n(X, A)$. Its set/abelian group of connected components is denoted $Ext^n(X, A)$.

Let X and A be objects in an abelian category \mathscr{A} .

A **Yoneda** 1-extension from *A* to *X* is a short exact sequence

$$0 \longrightarrow A \longmapsto E^1 \xrightarrow{f^1} \searrow X \longrightarrow 0.$$

Consider $n \ge 2$. A **Yoneda** *n***-extension** from *A* to *X* is an exact sequence

$$0 \longrightarrow A \longmapsto E^n \xrightarrow{f^n} E^{n-1} \longrightarrow \cdots \xrightarrow{f^1} X \longrightarrow 0.$$

Taking commutative ladders between those as morphisms gives a category $EXT^n(X, A)$. Its set/abelian group of connected components is denoted $Ext^n(X, A)$.

Theorem [Yoneda, 1960]

If \mathscr{A} has enough projectives, then for $n \ge 1$ we have $H^{n+1}(X,A) \cong Ext^n(X,A)$.

Let *X* and *A* be objects in an abelian category \mathscr{A} .

A **Yoneda** 1-extension from *A* to *X* is a short exact sequence

$$0 \longrightarrow A \longmapsto E^1 \xrightarrow{f^1} X \longrightarrow 0.$$

Consider $n \ge 2$. A **Yoneda** *n***-extension** from *A* to *X* is an exact sequence

$$0 \longrightarrow A \longmapsto E^n \xrightarrow{f^n} E^{n-1} \longrightarrow \cdots \xrightarrow{f^1} X \longrightarrow 0.$$

Taking commutative ladders between those as morphisms gives a category $EXT^n(X, A)$. Its set/abelian group of connected components is denoted $Ext^n(X, A)$.

Theorem [Yoneda, 1960]

If \mathscr{A} has enough projectives, then for $n \ge 1$ we have $H^{n+1}(X,A) \cong Ext^n(X,A)$.

► The cohomology on the left is a derived functor of Hom(-,A): $\mathscr{A}^{op} \to Ab$.

Let *X* and *A* be objects in an abelian category \mathscr{A} .

A **Yoneda** 1-extension from *A* to *X* is a short exact sequence

$$0 \longrightarrow A \triangleright \longrightarrow E^1 \stackrel{f^1}{\longrightarrow} X \longrightarrow 0.$$

Consider $n \ge 2$. A **Yoneda** *n***-extension** from *A* to *X* is an exact sequence

$$0 \longrightarrow A \longmapsto E^n \xrightarrow{f^n} E^{n-1} \longrightarrow \cdots \xrightarrow{f^1} X \longrightarrow 0.$$

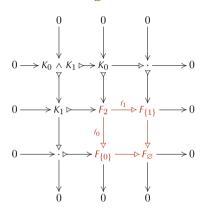
Taking commutative ladders between those as morphisms gives a category $EXT^n(X, A)$. Its set/abelian group of connected components is denoted $Ext^n(X, A)$.

Theorem [Yoneda, 1960]

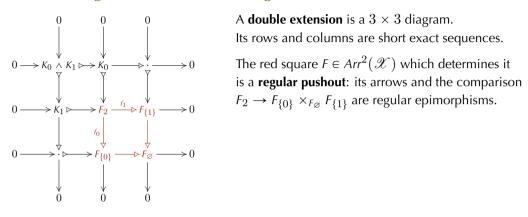
If \mathscr{A} has enough projectives, then for $n \ge 1$ we have $H^{n+1}(X,A) \cong Ext^n(X,A)$.

▶ The cohomology on the left is a derived functor of $Hom(-,A): \mathscr{A}^{op} \to Ab$.

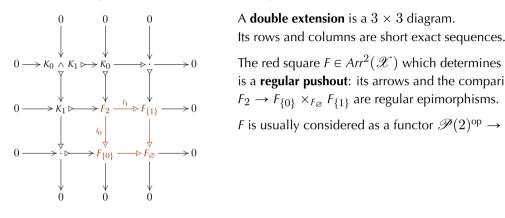
How to extend this to semi-abelian categories?



A **double extension** is a 3×3 diagram. Its rows and columns are short exact sequences.



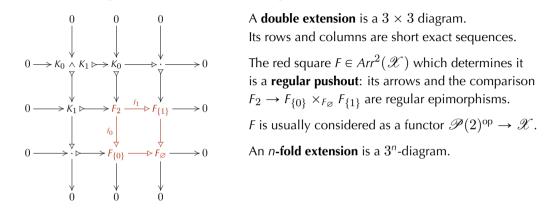
A **double extension** is a 3×3 diagram.



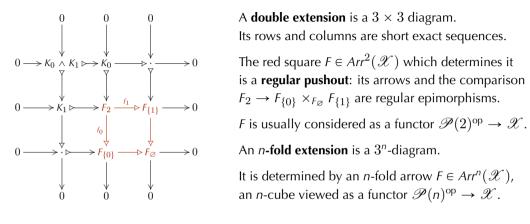
A **double extension** is a 3×3 diagram. Its rows and columns are short exact sequences.

The red square $F \in Arr^2(\mathscr{X})$ which determines it is a **regular pushout**: its arrows and the comparison

F is usually considered as a functor $\mathscr{P}(2)^{\mathrm{op}} \to \mathscr{X}$.



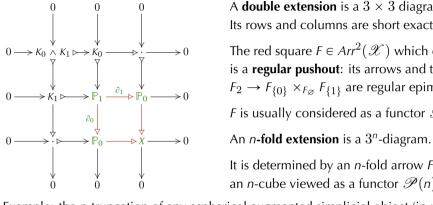
A **double extension** is a 3×3 diagram.



A **double extension** is a 3×3 diagram.

F is usually considered as a functor $\mathscr{P}(2)^{\mathrm{op}} \to \mathscr{X}$.

It is determined by an *n*-fold arrow $F \in Arr^n(\mathcal{X})$, an *n*-cube viewed as a functor $\mathscr{P}(n)^{\mathrm{op}} \to \mathscr{X}$.



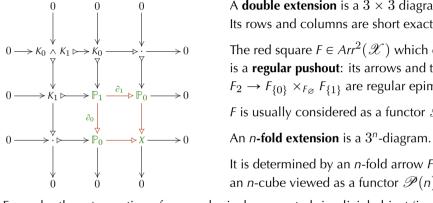
A **double extension** is a 3×3 diagram. Its rows and columns are short exact sequences.

The red square $F \in Arr^2(\mathscr{X})$ which determines it is a **regular pushout**: its arrows and the comparison $F_2 \rightarrow F_{\{0\}} \times_{F_{\emptyset}} F_{\{1\}}$ are regular epimorphisms.

F is usually considered as a functor $\mathscr{P}(2)^{\mathrm{op}} \to \mathscr{X}$.

It is determined by an *n*-fold arrow $F \in Arr^n(\mathcal{X})$, an *n*-cube viewed as a functor $\mathscr{P}(n)^{\mathrm{op}} \to \mathscr{X}$.

Example: the *n*-truncation of any aspherical augmented simplicial object (in particular, any simplicial resolution) determines an (n + 1)-fold extension (presentation). In fact, the extension property characterises being aspherical [Everaert, Goedecke & VdL, 2012].



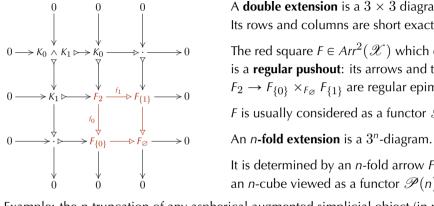
A **double extension** is a 3×3 diagram. Its rows and columns are short exact sequences.

The red square $F \in Arr^2(\mathscr{X})$ which determines it is a **regular pushout**: its arrows and the comparison $F_2 \rightarrow F_{\{0\}} \times_{F_{\varnothing}} F_{\{1\}}$ are regular epimorphisms.

F is usually considered as a functor $\mathscr{P}(2)^{\mathrm{op}} \to \mathscr{X}$.

It is determined by an *n*-fold arrow $F \in Arr^n(\mathcal{X})$, an *n*-cube viewed as a functor $\mathscr{P}(n)^{\mathrm{op}} \to \mathscr{X}$.

Example: the *n*-truncation of any aspherical augmented simplicial object (in particular, any simplicial **resolution**) determines an (n + 1)-fold extension (**presentation**). In fact, the extension property characterises being aspherical [Everaert, Goedecke & VdL, 2012].



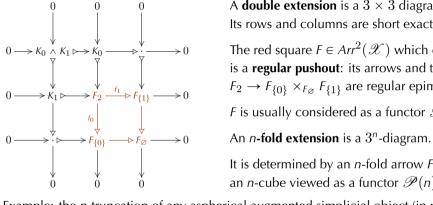
A **double extension** is a 3×3 diagram. Its rows and columns are short exact sequences.

The red square $F \in Arr^2(\mathscr{X})$ which determines it is a **regular pushout**: its arrows and the comparison $F_2 \rightarrow F_{\{0\}} \times_{F_{\varnothing}} F_{\{1\}}$ are regular epimorphisms.

F is usually considered as a functor $\mathscr{P}(2)^{\mathrm{op}} \to \mathscr{X}$.

It is determined by an *n*-fold arrow $F \in Arr^n(\mathcal{X})$, an *n*-cube viewed as a functor $\mathscr{P}(n)^{\mathrm{op}} \to \mathscr{X}$.

Example: the *n*-truncation of any aspherical augmented simplicial object (in particular, any simplicial resolution) determines an (n + 1)-fold extension (presentation). In fact, the extension property characterises being aspherical [Everaert, Goedecke & VdL, 2012].



A **double extension** is a 3×3 diagram. Its rows and columns are short exact sequences.

The red square $F \in Arr^2(\mathcal{X})$ which determines it is a **regular pushout**: its arrows and the comparison $F_2 \to F_{\{0\}} \times_{F_{\varnothing}} F_{\{1\}}$ are regular epimorphisms.

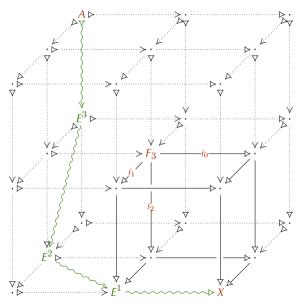
F is usually considered as a functor $\mathscr{P}(2)^{\mathrm{op}} \to \mathscr{X}$.

It is determined by an *n*-fold arrow $F \in Arr^n(\mathcal{X})$, an *n*-cube viewed as a functor $\mathscr{P}(n)^{\mathrm{op}} \to \mathscr{X}$.

Example: the *n*-truncation of any aspherical augmented simplicial object (in particular, any simplicial resolution) determines an (n + 1)-fold extension (presentation). In fact, the extension property characterises being aspherical [Everaert, Goedecke & VdL, 2012].

In the abelian case, Yoneda *n*-extensions are equivalent to *n*-fold extensions (by Dold-Kan).

Abelian case: 3-fold extension vs. Yoneda 3-extension

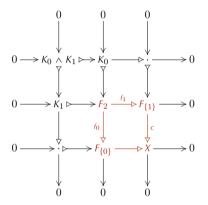


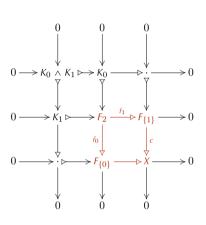
Overview, arbitrary degrees $(n \ge 1)$

	Homology $H_{n+1}(X)$	Cohomology $H^{n+1}(X,(A,\xi))$	
	$Tiomology Tr_{n+1}(X)$		
		trivial action ξ	arbitrary action ξ
Gр	$\frac{\bigwedge_{i \in n} K_i \wedge [F_n, F_n]}{\bigvee_{I \subseteq n} [\bigwedge_{i \in I} K_i, \bigwedge_{i \in n \setminus I} K_i]}$	$CentrExt^n(X,A)$	$OpExt^n(X,A,\xi)$
abelian categories	0	$Ext^n(X,A)$	
Barr-exact categories		$Tors^n[X,(A,\xi)]$	
semi-abelian categories	$\frac{\bigwedge_{i\in n}K_i\wedge [F_n,F_n]}{L_n[F]}$	$CentrExt^n(X,A)$	$OpExt^n(X, A, \xi)$

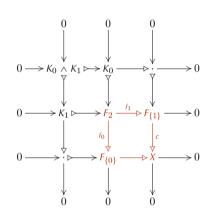
Overview, arbitrary degrees $(n \ge 1)$

	Homology $H_{n+1}(X)$	Cohomology $H^{n+1}(X, (A, \xi))$	
		trivial action ξ	arbitrary action ξ
Gp	$\frac{\bigwedge_{i \in n} K_i \wedge [F_n, F_n]}{\bigvee_{I \subseteq n} [\bigwedge_{i \in I} K_i, \bigwedge_{i \in n \setminus I} K_i]}$	$CentrExt^n(X,A)$	$OpExt^n(X, A, \xi)$
abelian categories	0	$Ext^n(X,A)$	
Barr-exact categories		$Tors^n[X,(A,\xi)]$	
semi-abelian categories	$\frac{\bigwedge_{i\in n}K_i\wedge [F_n,F_n]}{L_n[F]}$	$CentrExt^n(X,A)$	$OpExt^n(X, A, \xi)$





This question was answered in [Janelidze, 1991].



This question was answered in [Janelidze, 1991].

Theorem

Given a double extension of groups as on the left, $F \in Arr^2(Gp)$, viewed as an arrow $f_0 \to c$,

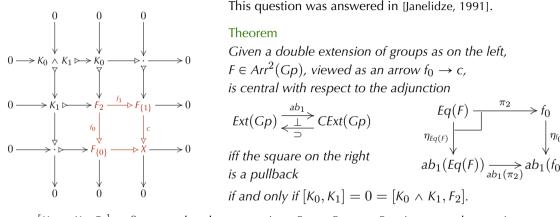
is central with respect to the adjunction

$$Ext(Gp) \xrightarrow{ab_1} CExt(Gp)$$

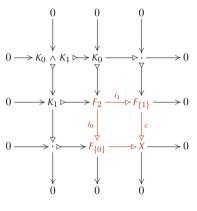
$$iff the square on the right$$
is a pullback
$$ab_1(Eq(F)) \xrightarrow{n_2} f_0$$

$$\eta_{Eq(F)} \downarrow \qquad \qquad \downarrow$$

$$ab_1(Eq(F)) \xrightarrow{ab_1(\pi_2)} ab_1(\pi_2)$$
iff and only if $[K_0, K_1] = 0 = [K_0 \land K_1, F_2]$.



• $[K_0 \wedge K_1, F_2] = 0$ means that the comparison $F_2 \to F_{\{0\}} \times_X F_{\{1\}}$ is a central extension.



This question was answered in [Janelidze, 1991].

Theorem

Given a double extension of groups as on the left, $F \in Arr^2(Gp)$, viewed as an arrow $f_0 \to c$,

is central with respect to the adjunction

$$Ext(Gp) \xrightarrow{ab_1} CExt(Gp)$$

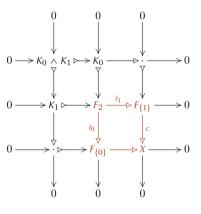
$$iff the square on the right$$
is a pullback
$$if and only if [K_0, K_1] = 0 = [K_0 \land K_1, F_2].$$

$$Eq(F) \xrightarrow{\pi_2}$$

$$\eta_{Eq(F)} \downarrow$$

$$ab_1(Eq(F)) \xrightarrow{ab_1(\pi_2)} ab_1(\pi_2)$$

- $[K_0 \wedge K_1, F_2] = 0$ means that the comparison $F_2 \to F_{\{0\}} \times_X F_{\{1\}}$ is a central extension.
- $[K_0, K_1] = 0$ iff the span (f_0, f_1) is a pregroupoid in $(Gp \downarrow X)$, since (SH) holds in Gp.



This question was answered in [Janelidze, 1991].

Theorem

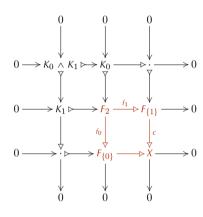
Given a double extension of groups as on the left, $F \in Arr^2(Gp)$, viewed as an arrow $f_0 \to c$,

is central with respect to the adjunction

$$Ext(Gp) \xrightarrow{ab_1} CExt(Gp) \qquad Eq(F) \xrightarrow{\pi_2} f_0$$
iff the square on the right is a pullback
$$ab_1(Eq(F)) \xrightarrow{ab_1(\pi_2)} ab_1(f_0)$$
iff and only if $[K_0, K_1] = 0 = [K_0 \land K_1, F_2].$

- $[K_0 \wedge K_1, F_2] = 0$ means that the comparison $F_2 \to F_{\{0\}} \times_X F_{\{1\}}$ is a central extension.
- $[K_0, K_1] = 0$ iff the span (f_0, f_1) is a pregroupoid in $(Gp \downarrow X)$, since (SH) holds in Gp.
- ▶ Valid in (SH) semi-abelian categories. [Everaert, Gran & VdL, 2008] [Rodelo & VdL, 2010]

What is a double central extension?



This question was answered in [Janelidze, 1991].

Theorem

Given a double extension of groups as on the left, $F \in Arr^2(Gp)$, viewed as an arrow $f_0 \to c$,

is central with respect to the adjunction

$$Ext(Gp) \xrightarrow{ab_1} CExt(Gp)$$

$$iff the square on the right is a pullback$$

$$if and only if [K_0, K_1] = 0 = [K_0 \land K_1, F_2].$$

$$Eq(F) \xrightarrow{\pi_2} f_0$$

$$\eta_{Eq(F)} \downarrow \eta$$

$$ab_1(Eq(F)) \xrightarrow{ab_1(\pi_2)} ab_1(f_0)$$

- $[K_0 \wedge K_1, F_2] = 0$ means that the comparison $F_2 \to F_{\{0\}} \times_X F_{\{1\}}$ is a central extension.
- $[K_0, K_1] = 0$ iff the span (f_0, f_1) is a pregroupoid in $(Gp \downarrow X)$, since (SH) holds in Gp.
- ▶ Valid in (SH) semi-abelian categories. [Everaert, Gran & VdL, 2008] [Rodelo & VdL, 2010]

Repeating this construction gives a definition of n-fold central extensions for all n.

Categorical Galois theory says when an (n+1)-extension F is **central**: this happens if, considered as an arrow between n-fold extensions $F \colon D \to C$, it is central with respect to the adjunction $\underbrace{Ext^n(\mathscr{X})} \xrightarrow{ab_n} CExt^n(\mathscr{X}).$

$$Eq(F) \xrightarrow{\pi_2} D$$

$$\downarrow^{\eta_{Eq(F)}} \downarrow^{\eta_D} \downarrow^{\eta_D}$$

$$ab_n(Eq(F)) \xrightarrow[ab_n(\pi_2)]{} ab_n(D)$$

Categorical Galois theory says when an (n + 1)-extension F is **central**: this happens if, considered as an arrow between *n*-fold extensions $F: D \to C$, it is central with respect to the adjunction $\operatorname{Ext}^n(\mathscr{X}) \xrightarrow{ab_n} \operatorname{CExt}^n(\mathscr{X}).$

$$Eq(F) \xrightarrow{\pi_2} D$$

$$\downarrow_{\eta_{Eq(F)}} \downarrow \qquad \qquad \downarrow_{\eta_D}$$

$$ab_n(Eq(F)) \xrightarrow[ab_n(\pi_2)]{} ab_n(D)$$

The derived functors of
$$ab: \mathscr{X} \to Ab(\mathscr{X})$$
 are $H_{n+1}(X, ab) \cong \frac{\bigwedge_{i \in n} K_i \wedge [F_n, F_n]}{L_n[F]}$.

Categorical Galois theory says when an (n + 1)-extension F is **central**: this happens if, considered as an arrow between n-fold extensions $F \colon D \to C$, it is central with respect to the adjunction $Ext^n(\mathscr{X}) \xrightarrow{ab_n} CExt^n(\mathscr{X}).$

$$Eq(F) \xrightarrow{\pi_2} D$$

$$\eta_{Eq(F)} \downarrow \qquad \qquad \downarrow \eta_D$$

$$ab_n(Eq(F)) \xrightarrow{ab_n(\pi_2)} ab_n(D)$$

Theorem [Everaert, Gran & VdL, 2008]

The derived functors of $ab: \mathscr{X} \to Ab(\mathscr{X})$ are $H_{n+1}(X,ab) \cong \frac{\bigwedge_{i \in n} K_i \wedge [F_n,F_n]}{L_n[F]}$.

▶ *F* is an *n*-fold projective presentation; its "initial maps" $f_i: F_n \to F_{n\setminus\{i\}}$ have kernel K_i .

Categorical Galois theory says when an (n + 1)-extension F is **central**: this happens if, considered as an arrow between n-fold extensions $F: D \to C$, it is central with respect to the adjunction $Ext^n(\mathscr{X}) \xrightarrow{ab_n} CExt^n(\mathscr{X}).$

$$Eq(F) \xrightarrow{\pi_2} D$$

$$\downarrow^{\eta_{Eq(F)}} \downarrow^{\eta_D}$$

$$ab_n(Eq(F)) \xrightarrow[ab_n(\pi_2)]{} ab_n(D)$$

Theorem [Everaert, Gran & VdL, 2008]

The derived functors of
$$ab: \mathscr{X} \to Ab(\mathscr{X})$$
 are $H_{n+1}(X,ab) \cong \frac{\bigwedge_{i \in n} K_i \wedge [F_n,F_n]}{L_n[F]}$.

- ► *F* is an *n*-fold projective presentation; its "initial maps" $f_i \colon F_n \to F_{n \setminus \{i\}}$ have kernel K_i .
- ▶ The object $L_n[F]$ is what must be divided out of F_n to make F central.

Categorical Galois theory says when an (n + 1)-extension F is **central**: this happens if, considered as an arrow between n-fold extensions $F \colon D \to C$, it is central with respect to the adjunction $Ext^n(\mathscr{X}) \xrightarrow{ab_n} CExt^n(\mathscr{X}).$

$$Eq(F) \xrightarrow{\pi_2} D$$

$$\eta_{Eq(F)} \downarrow \qquad \qquad \downarrow \eta_D$$

$$ab_n(Eq(F)) \xrightarrow{ab_n(\pi_2)} ab_n(D)$$

Theorem [Everaert, Gran & VdL, 2008]

The derived functors of
$$ab: \mathscr{X} \to Ab(\mathscr{X})$$
 are $H_{n+1}(X, ab) \cong \frac{\bigwedge_{i \in n} K_i \wedge [F_n, F_n]}{L_n[F]}$.

- ► *F* is an *n*-fold projective presentation; its "initial maps" $f_i: F_n \to F_{n\setminus\{i\}}$ have kernel K_i .
- ▶ The object $L_n[F]$ is what must be divided out of F_n to make F central.
- ▶ By [Rodelo & VdL, 2012], under (SH), the object $L_n[F]$ is a join $\bigvee_{I\subseteq n} \left[\bigwedge_{i\in I} K_i, \bigwedge_{i\in n\setminus I} K_i\right]$ as in [Brown & Ellis, 1988] [Donadze, Inassaridze & Porter, 2005].

Categorical Galois theory says when an (n + 1)-extension F is **central**: this happens if, considered as an arrow between n-fold extensions $F \colon D \to C$, it is central with respect to the adjunction $Ext^n(\mathscr{X}) \xrightarrow{ab_n} CExt^n(\mathscr{X}).$

$$Eq(F) \xrightarrow{\pi_2} D$$

$$\downarrow^{\eta_{Eq(F)}} \downarrow^{\eta_D}$$

$$ab_n(Eq(F)) \xrightarrow[ab_n(\pi_2)]{\pi_2} ab_n(D)$$

Theorem [Everaert, Gran & VdL, 2008]

The derived functors of $ab: \mathscr{X} \to Ab(\mathscr{X})$ are $H_{n+1}(X, ab) \cong \frac{\bigwedge_{i \in n} K_i \wedge [F_n, F_n]}{L_n[F]}$.

- ► *F* is an *n*-fold projective presentation; its "initial maps" $f_i: F_n \to F_{n\setminus\{i\}}$ have kernel K_i .
- ▶ The object $L_n[F]$ is what must be divided out of F_n to make F central.
- ▶ By [Rodelo & VdL, 2012], under (SH), the object $L_n[F]$ is a join $\bigvee_{I \subseteq n} \left[\bigwedge_{i \in I} K_i, \bigwedge_{i \in n \setminus I} K_i \right]$ as in [Brown & Ellis, 1988] [Donadze, Inassaridze & Porter, 2005].
- ▶ In fact, the Hopf formula is valid for any Birkhoff reflector $I: \mathscr{X} \to \mathscr{Y}$.

Categorical Galois theory says when an (n + 1)-extension F is **central**: this happens if, considered as an arrow between n-fold extensions $F \colon D \to C$, it is central with respect to the adjunction $Ext^n(\mathscr{X}) \xrightarrow{ab_n} CExt^n(\mathscr{X}).$

$$Eq(F) \xrightarrow{\pi_2} D$$

$$\downarrow_{\eta_{Eq(F)}} \downarrow_{\eta_D}$$

$$ab_n(Eq(F)) \xrightarrow[ab_n(\pi_2)]{} ab_n(D)$$

Theorem [Everaert, Gran & VdL, 2008]

The derived functors of $ab: \mathscr{X} \to Ab(\mathscr{X})$ are $H_{n+1}(X, ab) \cong \frac{\bigwedge_{i \in n} K_i \wedge [F_n, F_n]}{L_n[F]}$.

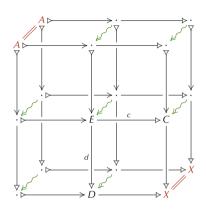
- ▶ *F* is an *n*-fold projective presentation; its "initial maps" $f_i: F_n \to F_{n\setminus\{i\}}$ have kernel K_i .
- ▶ The object $L_n[F]$ is what must be divided out of F_n to make F central.
- ▶ By [Rodelo & VdL, 2012], under (SH), the object $L_n[F]$ is a join $\bigvee_{I \subseteq n} \left[\bigwedge_{i \in I} K_i, \bigwedge_{i \in n \setminus I} K_i \right]$ as in [Brown & Ellis, 1988] [Donadze, Inassaridze & Porter, 2005].
- ▶ In fact, the Hopf formula is valid for any Birkhoff reflector $I: \mathcal{X} \to \mathcal{Y}$.
- ► Alternatively, $H_{n+1}(X, I) \cong \lim(CExt_{I,X}^n(\mathscr{X}) \to \mathscr{Y} : F \mapsto \bigwedge_{i \in n} K_i)$. [Goedecke & VdL. 2009]

	Homology $H_{n+1}(X)$	Cohomology $H^{n+1}(X,(A,\xi))$	
		trivial action ξ	arbitrary action ξ
Gp	$\frac{\bigwedge_{i \in n} K_i \wedge [F_n, F_n]}{\bigvee_{I \subseteq n} [\bigwedge_{i \in I} K_i, \bigwedge_{i \in n \setminus I} K_i]}$	$CentrExt^n(X,A)$	$OpExt^n(X, A, \xi)$
abelian categories	0	$Ext^n(X,A)$	
Barr-exact categories		$Tors^n[X,(A,\xi)]$	
semi-abelian categories	$\frac{\bigwedge_{i\in n}K_i\wedge [F_n,F_n]}{L_n[F]}$	$CentrExt^n(X,A)$	$OpExt^n(X, A, \xi)$

	Homology $H_{n+1}(X)$	Cohomology $H^{n+1}(X, (A, \xi))$	
	$Tiomology Tr_{n+1}(X)$	Conomology i	
		trivial action ξ	arbitrary action ξ
Gр	$\frac{\bigwedge_{i \in n} K_i \wedge [F_n, F_n]}{\bigvee_{I \subseteq n} [\bigwedge_{i \in I} K_i, \bigwedge_{i \in n \setminus I} K_i]}$	$CentrExt^n(X,A)$	$OpExt^n(X,A,\xi)$
abelian categories	0	$Ext^n(X,A)$	
Barr-exact categories		$Tors^n[X,(A,\xi)]$	
semi-abelian categories	$\frac{\bigwedge_{i\in n}K_i\wedge [F_n,F_n]}{L_n[F]}$	$CentrExt^n(X,A)$	$OpExt^n(X, A, \xi)$

	Homology $H_{n+1}(X)$	Cohomology I	$H^{n+1}(X,(A,\xi))$
		trivial action ξ	arbitrary action ξ
Gр	$\frac{\bigwedge_{i\in n} K_i \wedge [F_n, F_n]}{\bigvee_{I\subseteq n} [\bigwedge_{i\in I} K_i, \bigwedge_{i\in n\setminus I} K_i]}$	$CentrExt^n(X,A)$	$OpExt^n(X,A,\xi)$
abelian categories	0	$Ext^n(X,A)$	
Barr-exact categories		$Tors^n[X,(A,\xi)]$	
semi-abelian categories	$\frac{\bigwedge_{i\in n}K_i\wedge [F_n,F_n]}{L_n[F]}$	$CentrExt^n(X,A)$	$OpExt^n(X,A,\xi)$

End of 2008, with Diana Rodelo we proved that cohomology in the sense of [Bourn & Rodelo, 2007] [Rodelo, 2009] classifies double central extensions.



End of 2008, with Diana Rodelo we proved that cohomology in the sense of [Bourn & Rodelo, 2007] [Rodelo, 2009] classifies double central extensions.

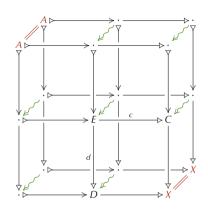
Defining a category with maps as on the left, its set/abelian group of connected components $CentrExt^2(X, A)$ is isomorphic to $H^3_{BR}(X, A)$.



End of 2008, with Diana Rodelo we proved that cohomology in the sense of [Bourn & Rodelo, 2007] [Rodelo, 2009] classifies double central extensions.

Defining a category with maps as on the left, its set/abelian group of connected components $CentrExt^2(X,A)$ is isomorphic to $H^3_{BR}(X,A)$.

Indeed any pregroupoid over *X* is connected to a groupoid over *X* with the same direction *A*: pull back $\langle d, c \rangle$ along $d \times_X c \colon E \times_X E \to D \times_X C$.

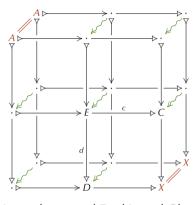


End of 2008, with Diana Rodelo we proved that cohomology in the sense of [Bourn & Rodelo, 2007] [Rodelo, 2009] classifies double central extensions.

Defining a category with maps as on the left, its set/abelian group of connected components $CentrExt^2(X,A)$ is isomorphic to $H^3_{BR}(X,A)$.

Indeed any pregroupoid over *X* is connected to a groupoid over *X* with the same direction *A*: pull back $\langle d, c \rangle$ along $d \times_X c \colon E \times_X E \to D \times_X C$.

We failed to prove $H^{n+1}_{BR}(X,A) \cong CentrExt^n(X,A)$.



End of 2008, with Diana Rodelo we proved that cohomology in the sense of [Bourn & Rodelo, 2007] [Rodelo, 2009] classifies double central extensions.

Defining a category with maps as on the left, its set/abelian group of connected components $CentrExt^2(X,A)$ is isomorphic to $H^3_{BR}(X,A)$.

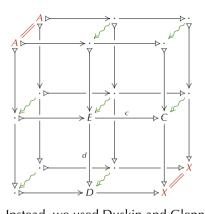
Indeed any pregroupoid over *X* is connected to a groupoid over *X* with the same direction *A*: pull back $\langle d, c \rangle$ along $d \times_X c \colon E \times_X E \to D \times_X C$.

We failed to prove $H^{n+1}_{BR}(X,A) \cong CentrExt^n(X,A)$.

Instead, we used Duskin and Glenn's interpretation of comonadic cohomology [Barr & Beck, 1969] in terms of *higher torsors* [Duskin, 1975] [Glenn, 1982] to show for $n \ge 2$

Theorem [Rodelo & VdL, 2016]

 $H^{n+1}(X,A) \cong CentrExt^n(X,A)$ if X is an object, and A an abelian object, in any semi-abelian variety that satisfies (SH).



End of 2008, with Diana Rodelo we proved that cohomology in the sense of [Bourn & Rodelo, 2007] [Rodelo, 2009] classifies double central extensions.

Defining a category with maps as on the left, its set/abelian group of connected components $CentrExt^2(X,A)$ is isomorphic to $H^3_{BR}(X,A)$.

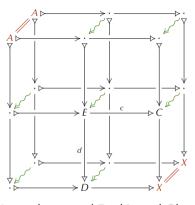
Indeed any pregroupoid over *X* is connected to a groupoid over *X* with the same direction *A*: pull back $\langle d, c \rangle$ along $d \times_X c \colon E \times_X E \to D \times_X C$.

We failed to prove $H^{n+1}_{BR}(X,A) \cong CentrExt^n(X,A)$.

Instead, we used Duskin and Glenn's interpretation of comonadic cohomology [Barr & Beck, 1969] in terms of *higher torsors* [Duskin, 1975] [Glenn, 1982] to show for $n \ge 2$

Theorem [Rodelo & VdL, 2016]

 $H^{n+1}(X,A) \cong CentrExt^n(X,A)$ if X is an object, and A an abelian object, in any semi-abelian variety that satisfies (SH).



End of 2008, with Diana Rodelo we proved that cohomology in the sense of [Bourn & Rodelo, 2007] [Rodelo, 2009] classifies double central extensions.

Defining a category with maps as on the left, its set/abelian group of connected components $CentrExt^2(X,A)$ is isomorphic to $H^3_{BR}(X,A)$.

Indeed any pregroupoid over *X* is connected to a groupoid over *X* with the same direction *A*: pull back $\langle d, c \rangle$ along $d \times_X c \colon E \times_X E \to D \times_X C$.

We failed to prove $H^{n+1}_{BR}(X,A) \cong CentrExt^n(X,A)$.

Instead, we used Duskin and Glenn's interpretation of comonadic cohomology [Barr & Beck, 1969] in terms of *higher torsors* [Duskin, 1975] [Glenn, 1982] to show for $n \ge 2$

Theorem [Rodelo & VdL, 2016]

 $H^{n+1}(X,A) \cong CentrExt^n(X,A)$ if X is an object, and A an abelian object, in any semi-abelian variety that satisfies (SH).

Theorem [Duskin, 1975] [Glenn, 1982]

Let \mathscr{X} be Barr-exact and \mathbb{G} a comonad on \mathscr{X} where (\mathbb{G} -projectives = regular projectives).

For any X in \mathscr{X} and any X-module (A, ξ) , the cotriple cohomology $H^{n+1}_{\mathbb{G}}(X, (A, \xi))$ is

$$H^nHom_{(\mathscr{X}\downarrow X)}(\mathbb{G}(1_X),\ A\rtimes_{\xi}X\rightleftarrows X)$$

$$\cong \pi_0 Tors^n(X, (A, \xi))$$

 $\implies Tors^n[X, (A, \xi)]$

Theorem [Duskin, 1975] [Glenn, 1982]

Let $\mathscr X$ be Barr-exact and $\mathbb G$ a comonad on $\mathscr X$ where (\mathbb{G} -projectives = regular projectives).

For any X in \mathcal{X} and any X-module (A, \mathcal{E}) , the cotriple cohomology $H^{n+1}_{\mathbb{G}}(X,(A,\xi))$ is

cotriple cohomology
$$H^{n+1}_{\mathbb{G}}(X,(A,\xi))$$
 is

► *Tors*ⁿ(X, (A, ξ)) denotes the category of *torsors* over $\mathbb{K}((A, \xi), n)$ in ($\mathcal{X} \downarrow X$).

 $H^nHom_{(\mathscr{X}+X)}(\mathbb{G}(1_X), A \bowtie_{\varepsilon} X \rightleftharpoons X)$

 $\cong \pi_0 Tors^n(X, (A, \mathcal{E}))$

 $\Rightarrow Tors^n[X, (A, \xi)]$

Theorem [Duskin, 1975] [Glenn, 1982]

Let $\mathscr X$ be Barr-exact and $\mathbb G$ a comonad on $\mathscr X$ where (\mathbb{G} -projectives = regular projectives).

For any X in \mathcal{X} and any X-module (A, \mathcal{E}) , the cotriple cohomology $H^{n+1}_{\mathbb{G}}(X,(A,\xi))$ is

$$H^n Hom_{(\mathscr{X}\downarrow X)}(\mathbb{G}(1_X), A \bowtie_{\xi} X \rightleftharpoons X)$$

 $\cong \pi_0 Tors^n(X, (A, \xi))$
 $\Longrightarrow Tors^n[X, (A, \xi)]$

► *Tors*ⁿ(X, (A, ξ)) denotes the category of *torsors* over $\mathbb{K}((A, \xi), n)$ in ($\mathcal{X} \downarrow X$).

$$\mathbb{K}((A,\xi),n) \text{ is determined by } (A,\xi)^{n+1} \rtimes X \xrightarrow{\stackrel{C_{n+1}\rtimes 1_X}{-\pi_n\rtimes 1_X}} (A,\xi) \rtimes X \xrightarrow{\stackrel{f_{\xi}}{=}} X \xrightarrow{\vdots} X \cdots X = X$$

where
$$\partial_{n+1} = (-1)^n \sum_{i=0}^n (-1)^i \pi_i$$
.

Theorem [Duskin, 1975] [Glenn, 1982]

Let $\mathscr X$ be Barr-exact and $\mathbb G$ a comonad on $\mathscr X$ where ($\mathbb G$ -projectives = regular projectives).

For any X in $\mathscr X$ and any X-module (A,ξ) , the cotriple cohomology $H^{n+1}_{\mathbb G}(X,(A,\xi))$ is

$$H^n Hom_{(\mathscr{X}\downarrow X)}(\mathbb{G}(1_X), A \bowtie_{\xi} X \rightleftarrows X)$$

 $\cong \pi_0 Tors^n(X, (A, \xi))$

 $\Rightarrow Tors^n[X, (A, \xi)]$

- ► $Tors^n(X, (A, \xi))$ denotes the category of *torsors* over $\mathbb{K}((A, \xi), n)$ in $(\mathscr{X} \downarrow X)$.
- $\mathbb{K}((A,\xi),n) \text{ is determined by } (A,\xi)^{n+1} \rtimes X \xrightarrow{\frac{f_{n+1} \rtimes 1_X}{-\pi_n \rtimes 1_X}} (A,\xi) \rtimes X \xrightarrow{\frac{f_{\xi}}{-\xi}} X \xrightarrow{\underline{\qquad \qquad }} X \longrightarrow X$

where
$$\partial_{n+1} = (-1)^n \sum_{i=0}^n (-1)^i \pi_i$$
.

- ▶ An augmented simplicial morphism $\mathfrak{k} \colon \mathbb{T} \to \mathbb{K}((A, \xi), n)$ is called a **torsor** when (T1) \mathfrak{k} is a fibration which is exact from degree n on;
 - (T2) $\mathbb{T} \cong \operatorname{Cosk}_{n-1}(\mathbb{T});$
 - (T3) \mathbb{T} is aspherical.

Theorem [Duskin, 1975] [Glenn, 1982]

Let \mathscr{X} be Barr-exact and \mathbb{G} a comonad on \mathscr{X} where (\mathbb{G} -projectives = regular projectives).

where (\mathbb{G} -projectives = regular projectives). For any X in \mathscr{X} and any X-module (A, ξ) , the cotriple cohomology $H_{\mathbb{G}}^{n+1}(X, (A, \xi))$ is

$$H^{n}Hom_{(\mathscr{X}\downarrow X)}\big(\mathbb{G}(1_{X}), \ A\rtimes_{\xi}X\rightleftarrows X\big)$$

$$\cong \pi_{0}Tors^{n}(X, (A, \xi))$$

$$=: Tors^{n}[X, (A, \xi)]$$

►
$$Tors^n(X, (A, \xi))$$
 denotes the category of *torsors* over $\mathbb{K}((A, \xi), n)$ in $(\mathscr{X} \downarrow X)$.

$$\mathbb{K}((A,\xi),n) \text{ is determined by } (A,\xi)^{n+1} \rtimes X \xrightarrow{\frac{\ell_{n+1} \rtimes 1_X}{-\pi_n \rtimes 1_X}} (A,\xi) \rtimes X \xrightarrow{\frac{\ell_{\xi}}{-\ell_{\xi}}} X \xrightarrow{\underline{\qquad \qquad }} X \longrightarrow X$$
where $\partial_{n+1} = (-1)^n \sum_{i=0}^n (-1)^i \pi_i$.

An augmented simplicial morphism
$$\mathbb{t} \colon \mathbb{T} \to \mathbb{K}((A, \xi), n)$$
 is called a **torsor** when (T1) \mathbb{t} is a fibration which is exact from degree n on;

(T2) $\mathbb{T} \cong \operatorname{Cosk}_{n-1}(\mathbb{T});$

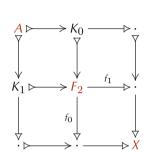
(T3) \mathbb{T} is aspherical.

If (A, ξ) is a trivial X-module in a semi-abelian category with (SH), then (1) any torsor, viewed as an n-extension, is central; and (2) every class in $CentrExt^n(X,A)$ contains a torsor.

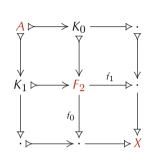
	Homology $H_{n+1}(X)$	Cohomology A	$H^{n+1}(X,(A,\xi))$
		trivial action ξ	arbitrary action ξ
Gp	$\frac{\bigwedge_{i\in n} K_i \wedge [F_n, F_n]}{\bigvee_{I\subseteq n} [\bigwedge_{i\in I} K_i, \bigwedge_{i\in n\setminus I} K_i]}$	$CentrExt^n(X,A)$	$OpExt^n(X, A, \xi)$
abelian categories	0	$Ext^n(X,A)$	
Barr-exact categories		$Tors^n[X,(A,\xi)]$	
semi-abelian categories	$\frac{\bigwedge_{i\in n}K_i\wedge [F_n,F_n]}{L_n[F]}$	$CentrExt^n(X,A)$	$OpExt^n(X, A, \xi)$

	Homology $H_{n+1}(X)$	Cohomology A	$H^{n+1}(X,(A,\xi))$
		trivial action ξ	arbitrary action ξ
Gр	$\frac{\bigwedge_{i\in n} K_i \wedge [F_n, F_n]}{\bigvee_{I\subseteq n} [\bigwedge_{i\in I} K_i, \bigwedge_{i\in n\setminus I} K_i]}$	$CentrExt^n(X,A)$	$OpExt^n(X,A,\xi)$
abelian categories	0	$Ext^n(X,A)$	
Barr-exact categories		$Tors^n[X,(A,\xi)]$	
semi-abelian categories	$\frac{\bigwedge_{i\in n}K_i\wedge [F_n,F_n]}{L_n[F]}$	$CentrExt^n(X,A)$	$OpExt^n(X, A, \xi)$

	Homology $H_{n+1}(X)$	Cohomology A	$H^{n+1}(X,(A,\xi))$
		trivial action ξ	arbitrary action ξ
Gр	$\frac{\bigwedge_{i\in n} K_i \wedge [F_n, F_n]}{\bigvee_{I\subseteq n} [\bigwedge_{i\in I} K_i, \bigwedge_{i\in n\setminus I} K_i]}$	$CentrExt^n(X,A)$	$OpExt^n(X, A, \xi)$
abelian categories	0	$Ext^n(X,A)$	
Barr-exact categories		$Tors^n[X,(A,\xi)]$	
semi-abelian categories	$\frac{\bigwedge_{i\in n}K_i\wedge [F_n,F_n]}{L_n[F]}$	$CentrExt^n(X,A)$	$OpExt^n(X, A, \xi)$



• When n=2 this means that $[K_0,K_1]=0=[A,F_2]$.

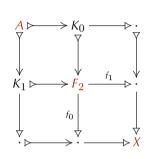


• When n=2 this means that $[K_0,K_1]=0=[A,F_2]$.

The case of non-trivial coefficients is much harder, because here the proof techniques by induction of categorical Galois theory are no longer available.

Non-trivial coefficients

[Peschke, Simeu & VdL, work-in-progress]



If (A, ξ) is a trivial *X*-module, then an *n*-extension from *A* to *X* is connected to a torsor over $\mathbb{K}((A, \xi), n)$ iff it is central.

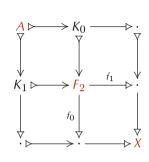
• When n = 2 this means that $[K_0, K_1] = 0 = [A, F_2]$.

The case of non-trivial coefficients is much harder, because here the proof techniques by induction of categorical Galois theory are no longer available.

Question: When is an *n*-extension connected to an (A, ξ) -torsor?

Non-trivial coefficients

[Peschke, Simeu & VdL, work-in-progress]

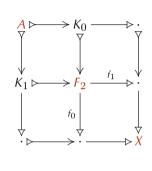


If (A, ξ) is a trivial *X*-module, then an *n*-extension from *A* to *X* is connected to a torsor over $\mathbb{K}((A, \xi), n)$ iff it is central.

• When n = 2 this means that $[K_0, K_1] = 0 = [A, F_2]$.

The case of non-trivial coefficients is much harder, because here the proof techniques by induction of categorical Galois theory are no longer available.

Question: When is an n-extension connected to an (A, ξ) -torsor? Answer: When it is an n-pregroupoid with direction (A, ξ) .

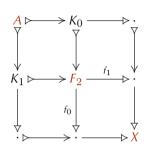


• When n = 2 this means that $[K_0, K_1] = 0 = [A, F_2]$.

The case of non-trivial coefficients is much harder, because here the proof techniques by induction of categorical Galois theory are no longer available.

Question: When is an n-extension connected to an (A, ξ) -torsor? Answer: When it is an n-pregroupoid with direction (A, ξ) .

An *n*-extension is in a class in $OpExt^n(X, A, \xi)$ iff it satisfies the following two conditions:



• When n = 2 this means that $[K_0, K_1] = 0 = [A, F_2]$.

The case of non-trivial coefficients is much harder, because here the proof techniques by induction of categorical Galois theory are no longer available.

Question: When is an n-extension connected to an (A, ξ) -torsor? Answer: When it is an n-pregroupoid with direction (A, ξ) .

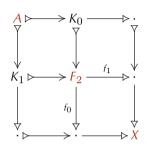
An *n*-extension is in a class in $OpExt^n(X, A, \xi)$ iff it satisfies the following two conditions:

n-pregroupoid condition

An *n*-fold analogue $[Eq(f_0), \ldots, Eq(f_{n-1})]^S$ of the Smith commutator of the $Eq(f_i)$ is trivial \rightsquigarrow higher-order Mal'tsev operation

Non-trivial coefficients

[Peschke, Simeu & VdL, work-in-progress]



If (A, ξ) is a trivial *X*-module, then an *n*-extension from *A* to *X* is connected to a torsor over $\mathbb{K}((A, \xi), n)$ iff it is central.

• When n = 2 this means that $[K_0, K_1] = 0 = [A, F_2]$.

The case of non-trivial coefficients is much harder, because here the proof techniques by induction of categorical Galois theory are no longer available.

Question: When is an n-extension connected to an (A, ξ) -torsor? Answer: When it is an n-pregroupoid with direction (A, ξ) .

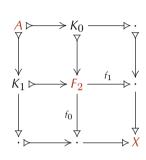
An *n*-extension is in a class in $OpExt^n(X, A, \xi)$ iff it satisfies the following two conditions:

n-pregroupoid condition

An *n*-fold analogue $[Eq(f_0), \dots, Eq(f_{n-1})]^S$ of the Smith commutator of the $Eq(f_i)$ is trivial \rightsquigarrow *higher-order Mal'tsev operation*

direction is (A, ξ)

The pullback $(F_n \to X)^*(\xi)$ of ξ is the conjugation action of F_n on A.



▶ When n = 2 this means that $[K_0, K_1] = 0 = [A, F_2]$.

The case of non-trivial coefficients is much harder, because here the proof techniques by induction of categorical Galois theory are no longer available.

Question: When is an n-extension connected to an (A, ξ) -torsor? Answer: When it is an n-pregroupoid with direction (A, ξ) .

An *n*-extension is in a class in $OpExt^n(X, A, \xi)$ iff it satisfies the following two conditions:

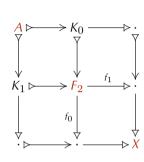
n-pregroupoid condition

An *n*-fold analogue $[Eq(f_0), \dots, Eq(f_{n-1})]^S$ of the Smith commutator of the $Eq(f_i)$ is trivial \rightsquigarrow *higher-order Mal'tsev operation*

direction is (A,ξ)

The pullback $(F_n \to X)^*(\xi)$ of ξ is the conjugation action of F_n on A.

Under (SH), any *n*-extension from A to X has a direction which is an X-module (A, ξ) .



▶ When n = 2 this means that $[K_0, K_1] = 0 = [A, F_2]$.

The case of non-trivial coefficients is much harder, because here the proof techniques by induction of **categorical Galois theory** are no longer available.

Question: When is an n-extension connected to an (A, ξ) -torsor? Answer: When it is an n-pregroupoid with direction (A, ξ) .

An *n*-extension is in a class in $OpExt^n(X, A, \xi)$ iff it satisfies the following two conditions:

n-pregroupoid condition

Is it $\bigvee_{\varnothing\neq I\subset n} [\bigwedge_{i\in I} K_i, \bigwedge_{i\in n\setminus I} K_i] = 0$?

An *n*-fold analogue $[Eq(f_0), \ldots, Eq(f_{n-1})]^S$ of the Smith commutator of the $Eq(f_i)$ is trivial \rightsquigarrow higher-order Mal'tsev operation

direction is (A, ξ)

The pullback $(F_n \to X)^*(\xi)$ of ξ is the conjugation action of F_n on A. Under (SH), any n-extension from A to X has a direction which is an X-module (A, ξ) .

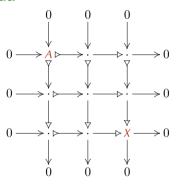
► For a complete picture of cohomology with non-trivial coefficients, mainly certain aspects of commutator theory need to be further developed: in particular, higher Smith commutators, and their decomposition into (potentially non-binary) Higgins commutators.

It seems here something stronger than (SH) may be needed.

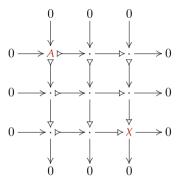
- For a complete picture of cohomology with non-trivial coefficients, mainly certain aspects of commutator theory need to be further developed: in particular, higher Smith commutators, and their decomposition into (potentially non-binary) Higgins commutators.
 - It seems here something stronger than (SH) may be needed.
- Results in group theory/non-abelian algebra may only extend to the semi-abelian context when certain additional conditions are satisfied.

- For a complete picture of cohomology with non-trivial coefficients, mainly certain aspects of commutator theory need to be further developed: in particular, higher Smith commutators, and their decomposition into (potentially non-binary) Higgins commutators.
 - It seems here something stronger than (SH) may be needed.
- Results in group theory/non-abelian algebra may only extend to the semi-abelian context when certain additional conditions are satisfied.
 - We made heavy use of the condition (SH), but a whole hierarchy of categorical-algebraic conditions has been introduced and studied over the last few years: some examples are (local) algebraic cartesian closedness, action representability, action accessibility, algebraic coherence, strong protomodularity, normality of Higgins commutators.

- For a complete picture of cohomology with non-trivial coefficients, mainly certain aspects of commutator theory need to be further developed: in particular, higher Smith commutators, and their decomposition into (potentially non-binary) Higgins commutators.
 - It seems here something stronger than (SH) may be needed.
- Results in group theory/non-abelian algebra may only extend to the semi-abelian context when certain additional conditions are satisfied.
 - We made heavy use of the condition (SH), but a whole hierarchy of categorical-algebraic conditions has been introduced and studied over the last few years: some examples are (local) algebraic cartesian closedness, action representability, action accessibility, algebraic coherence, strong protomodularity, normality of Higgins commutators.
- ► These categorical conditions may help us understand algebra from a new perspective. For instance, they might lead to a categorical characterisation of Gp, $Lie_{\mathbb{K}}$, etc.

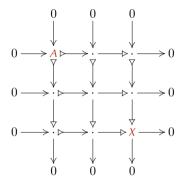


Higher central extensions play "dual" roles in the interpretation of homology and cohomology (with trivial coefficients):



Higher central extensions play "dual" roles in the interpretation of homology and cohomology (with trivial coefficients):

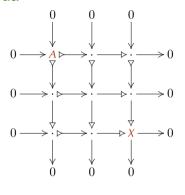
Homology $H_{n+1}(X)$: take the limit over the diagram of all n-fold central extensions over X of the functor which forgets to A.



Higher central extensions play "dual" roles in the interpretation of homology and cohomology (with trivial coefficients):

Homology $H_{n+1}(X)$: take the limit over the diagram of all n-fold central extensions over X of the functor which forgets to A.

Cohomology $H^{n+1}(X, A)$: take connected components of the category with maps of n-fold central extensions that keep A and X fixed.

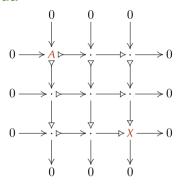


Higher central extensions play "dual" roles in the interpretation of homology and cohomology (with trivial coefficients):

Homology $H_{n+1}(X)$: take the limit over the diagram of all n-fold central extensions over X of the functor which forgets to A.

Cohomology $H^{n+1}(X, A)$: take connected components of the category with maps of *n*-fold central extensions that keep *A* and *X* fixed.

The relationship between homology and cohomology of groups (with trivial coefficients) may be simplified by viewing it yet another way:



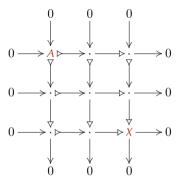
Higher central extensions play "dual" roles in the interpretation of homology and cohomology (with trivial coefficients):

Homology $H_{n+1}(X)$: take the limit over the diagram of all n-fold central extensions over X of the functor which forgets to A.

Cohomology $H^{n+1}(X, A)$: take connected components of the category with maps of *n*-fold central extensions that keep *A* and *X* fixed.

The relationship between homology and cohomology of groups (with trivial coefficients) may be simplified by viewing it yet another way:

Theorem [Peschke & VdL, 2016] If X is a group and $n \ge 1$, then $H_{n+1}(X) \cong Hom(H^{n+1}(X, -), 1_{Ab})$.



Higher central extensions play "dual" roles in the interpretation of homology and cohomology (with trivial coefficients):

Homology $H_{n+1}(X)$: take the limit over the diagram of all n-fold central extensions over X of the functor which forgets to A.

Cohomology $H^{n+1}(X, A)$: take connected components of the category with maps of *n*-fold central extensions that keep *A* and *X* fixed.

The relationship between homology and cohomology of groups (with trivial coefficients) may be simplified by viewing it yet another way:

Theorem [Peschke & VdL, 2016] If X is a group and $n \ge 1$, then $H_{n+1}(X) \cong Hom(H^{n+1}(X, -), 1_{Ab})$.

► This may also be shown via a non-additive derived Yoneda lemma.

Thank you!