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Group cohomology via categorical algebra

In my work I mainly develop and apply categorical algebra
in its interactions with homology theory.

§ My concrete aim: to understand (co)homology of groups.
§ Several aspects:

§ general categorical versions of known results;
§ problems leading to further development of categorical algebra;
§ categorical methods leading to new results for groups.

Today, I would like to

§ explain how the concept of a higher central extension
unifies the interpretations of homology and cohomology;

§ give an overview of some categorical-algebraic methods used for this aim.

This is joint work with many people, done over the last 15 years.
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Homology vs. cohomology via higher central extensions

Several streams of development are relevant to us:

§ categorical Galois theory + semi-abelian categories ù higher central extensions ù

interpretation of homology objects via Hopf formulae

[Janelidze, 1991] [Everaert, Gran & VdL, 2008] [Duckerts-Antoine, 2013]

§ in an abelian context: Yoneda’s interpretation of Hn+1(X,A)
through equivalence classes of exact sequences of length n+ 1

[Yoneda, 1960]

§ in Barr-exact categories: cohomology classifies higher torsors

[Barr & Beck, 1969] [Duskin, 1975] [Glenn, 1982]

§ “directions approach to cohomology”

[Bourn & Rodelo, 2007] [Rodelo, 2009]

What are the connections between these developments?
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Overview, n = 1

Homology H2(X) Cohomology H2(X, (A, ξ))

trivial action ξ arbitrary action ξ

Gp
R ^ [F, F]

[R, F]
CentrExt1(X,A) OpExt1(X,A, ξ)

abelian
categories

0 Ext1(X,A)

Barr-exact
categories

Tors1[X, (A, ξ)]

semi-abelian
categories

R ^ [F, F]

[R, F]
CentrExt1(X,A) OpExt1(X,A, ξ)
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Low-dimensional cohomology of groups, I
An extension from A to X is a short exact sequence

0 ,2 A � ,2 ,2 E f � ,2 X ,2 0.

It is central if and only if [A, E] = 0: all eae´1a´1 vanish, a P A, e P E.
Then, in particular, A is an abelian group.

Theorem [Eckmann 1945-46; Eilenberg & Mac Lane, 1947]

For any abelian group A we have H2(X,A) – CentrExt1(X,A),
the group of equivalence classes of central extensions from A to X.

§ H2(´,A) is the first derived functor
of Hom(´,A) : Gpop Ñ Ab.

§ By the Short Five Lemma,
equivalence class = isomorphism class:

0 ,2 A � ,2 ,2 E

e
��

f � ,2 X ,2 0

0 ,2 A � ,2 ,2 E1

f1
� ,2 X ,2 0

The theorem remains true [Gran & VdL, 2008] in any semi-abelian category
[Janelidze, Márki & Tholen, 2002] with enough projectives;
centrality may be defined via commutator theory or via categorical Galois theory.
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Low-dimensional homology of groups
Theorem (Hopf formula for H2(X), [Hopf, 1942])
Consider a projective presentation X – F/R of X: an extension 0 Ñ R Ñ F Ñ X Ñ 0

where F is projective. Then the second integral homology group H2(X) is
R^[F,F]
[R,F] .

Basic analysis
§ H2 is a derived functor of the reflector
ab : Gp Ñ Ab : X ÞÑ X

[X,X] .

§ The commutator [R, F] occurs in/is determined by the reflector
ab1 : Ext(Gp) Ñ CExt(Gp) : (f : F Ñ X) ÞÑ (ab1(f) :

F
[R,F] Ñ X).

§ Through categorical Galois theory [Janelidze & Kelly, 1994],
the second adjunction may be obtained from the first.

§ In fact, f is central iff the bottom right square is a pullback.

Eq(f)
π2 ,2

π1

��

F

f
��

F
f

,2 X

Eq(f)
π2 ,2

ηEq(f)

��

F

ηF

��
ab(Eq(f))

ab(π2)
,2 ab(F)

All ingredients of the formula may be obtained from the reflector ab.

The theorem remains true [Everaert & VdL, 2004] for reflectors
of semi-abelian varieties of algebras to their subvarieties:
[X, X] is commutator (Gp vs. Ab), Lie bracket (LieK vs. VectK), product XX (AlgR vs.ModR), or …
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What is a semi-abelian category?
A category is Barr-exact [Barr, 1971] when

1 finite limits and coequalisers of kernel pairs exist;

2 regular epimorphisms are pullback-stable;

3 every internal equivalence relation is a kernel pair.

All varieties of algebras and all elementary toposes are such.

§ An abelian category is a Barr-exact category which is also additive:
it has finitary biproducts and is enriched over Ab.
[Buchsbaum, 1955; Grothendieck, 1957; Yoneda, 1960; Freyd, 1964]

Examples: ModR, sheaves of abelian groups.

§ A Barr-exact category is semi-abelian when it is pointed, has binary coproducts
and is protomodular: the Split Short Five Lemma holds [Bourn, 1991].

This definition [Janelidze, Márki & Tholen, 2002] unifies “old” approaches towards
an axiomatisation of categories “close to Gp” such as [Higgins, 1956] and [Huq, 1968]

with “new” categorical algebra—the concepts of Barr-exactness and Bourn-protomodularity.

Examples: Gp, LieK, AlgK, XMod, Loop, HopfAlgK,coc, C
˚-Alg, Setop˚ , varieties of Ω-groups.
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More on protomodularity
Protomodular categories [Bourn, 1991] arose out of the idea that in algebra,
categories of points may be more fundamental than slice categories.

A point (f, s) over X is a split epimorphism f : Y Ñ X
with a chosen splitting s : X Ñ Y.

PtX(X ) = (1X Ó (X Ó X)) is the
category of points over X in X .

X

1X ��

s ,2 Y

f��
X

The Split Short Five Lemma is precisely the condition that the
pullback functor PtX(X ) Ñ Pt0(X ) – X reflects isomorphisms.

B � ,2 ,2

z�

��

Z

z�

_��

A � ,2 ,2

��

Y

_��

0

LR

,2 X
LR

LR

0

LR

,2 X
LR

LR

Points are actions.

If X is semi-abelian, then this change-of-base functor is monadic [Bourn & Janelidze, 1998];
the algebras for the monad are called internal actions, and correspond to split extensions:
if X acts on A via ξ, we obtain

0 ,2 A � ,2 ,2 A ¸ξ X
fξ

� ,2 Xlr
sξlr ,2 0.
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Overview, n = 1

Homology H2(X) Cohomology H2(X, (A, ξ))

trivial action ξ arbitrary action ξ

Gp
R ^ [F, F]

[R, F]
CentrExt1(X,A) OpExt1(X,A, ξ)

abelian
categories

0 Ext1(X,A)

Barr-exact
categories

Tors1[X, (A, ξ)]

semi-abelian
categories

R ^ [F, F]

[R, F]
CentrExt1(X,A) OpExt1(X,A, ξ)

§ 0 Ñ R Ñ F Ñ X Ñ 0 is a projective presentation.
§ A priori, H2 is a derived functor of ab : X Ñ Ab(X ).
§ The Hopf formula is valid for any reflector I : X Ñ Y from a semi-abelian category X
to a Birkhoff subcategory Y ; then the commutators are relative with respect to I.
Also in the abelian case, this gives something non-trivial.
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Low-dimensional cohomology of groups, II

Consider an extension 0 ,2A � ,2 ,2E f � ,2X ,20 .

§ Any action ξ : X Ñ Aut(A) of X on A pulls back along f
to an action f˚(ξ) : E Ñ Aut(A) : e ÞÑ ξ(f(e)) of E on A.

§ If A is abelian, then there is a unique action ξ of X on A such that
f˚(ξ) is the conjugation action of E on A: put ξ(x)(a) = eae´1 for e P E with f(e) = x.

§ This action ξ is called the direction of the given extension.
It determines a left Z(X)-module structure on A.

Theorem (Cohomology with non-trivial coefficients)
H2(X, (A, ξ)) – OpExt1(X,A, ξ), the group of equivalence classes
of extensions from A to X with direction (A, ξ).

This agrees with the above: an
extension with abelian kernel is
central iff its direction is trivial.

f is central ô @aPA@ePE a = eae´1

ô @aPA@ePE a = ξ(f(e))(a)

ô @xPX 1A = ξ(x)

How to extend this to semi-abelian categories?
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Three commutators

Smith-Pedicchio

For equivalence relations R, S on X

R
r1 ,2

r2
,2 X∆R

lr ∆S
,2 S,

s1
lr

s2lr

the Smith-Pedicchio commutator [R, S]S is
the kernel pair of t:

R
x1R,∆S˝r1y

z� ��

r2

�$
R ˆX S ,2 T Xt

�lr

S
x∆R˝s1,1Sy

Zd

s2

:DLR

Huq & Higgins

For K, L◁ X, the Huq commutator [K, L]Q is
the kernel of q:

K
x1K,0y

z� ��

��$
k

�$
K ˆ L ,2 Q Xq�lr

L
x0,1Ly

Zd

?:D l

:DLR

The Higgins commutator [K, L] ď X is
the image of pk lq˝ιK,L:

K ˛ L � ,2
ιK,L ,2

_��

K+ L

pk lq
��

� ,2 K ˆ L

[K, L] ,2 ,2 X



Pregroupoids

Smith-Pedicchio

For equivalence relations R, S on X

R
r1 ,2

r2
,2 X∆R

lr ∆S ,2 S,
s1

lr
s2lr

the Smith-Pedicchio commutator [R, S]S is
the kernel pair of t:

R
x1R,∆S˝r1y

z� ��

r2

�$
R ˆX S ,2 T Xt

�lr

S
x∆R˝s1,1Sy

Zd

s2

:DLR

A span D X
dlr c ,2C is a pregroupoid

iff [Eq(d), Eq(c)]S = ∆X. [Kock, 1989]

(β, γ)

Eq(d)
x1Eq(d),xπ1,π1yy

z�
π2

�$
Eq(d) ˆX Eq(c) p ,2 X

Eq(c)
xxπ1,π1y,1Eq(c)y

Zd

π2

:D

(β, α)

¨β
z�

γ
�$

¨ ¨

¨
α

Zd

p(α,β,γ)

:D

#

p(α, β, β) = α

p(β, β, γ) = γ



The Smith is Huq condition
Several categorical-algebraic conditions have been considered which
“make a semi-abelian category behave more like Gp does”.

One (weak and well-studied) such is the Smith is Huq condition (SH), which holds when
two equivalence relations R and S on an object X commute iff their normalisations K, L◁ X do.

K � ,2 r2˝ker(r1) ,2 X L�lr
s2˝ker(s1)lr normalisations of R

r1 ,2
r2

,2 X S
s1

lr
s2lr

§ One implication is automatic [Bourn & Gran, 2002].

§ All Orzech categories of interest [Orzech, 1972] satisfy (SH). Loop does not.

§ By [Martins-Ferreira & VdL, 2012] and [Hartl & VdL, 2013], under (SH) the description
of internal crossed modules of [Janelidze, 2003] simplifies. This is, essentially, because

then, a span D X
dlr c ,2C is a pregroupoid iff [Ker(d), Ker(c)] = 0,

so a reflexive graph G1

d ,2

c
,2G0elr is an internal groupoid iff [Ker(d), Ker(c)] = 0.

This is important when defining abelian extensions.
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The semi-abelian case: abelian extensions, I
Let X be a semi-abelian category. An abelian extension in X is a short exact sequence

0 ,2 A � ,2 a ,2 E f � ,2 X ,2 0

where f is an abelian object in (X Ó X):

this means that, equivalently,

1 the span (f, f) is a pregroupoid;

2 the commutator [Eq(f), Eq(f)]S is trivial;

3 x1E, 1Ey : E Ñ Eq(f) is a normal monomorphism f Ñ fπ1 in (X Ó X);

4 xa, ay : A Ñ Eq(f) is a normal monomorphism in X .

Example: a split extension (a point (f, s) with a = ker(f)) is abelian
iff it is a Beck module [Beck, 1967]: an abelian group object in (X Ó X).

0 ,2 A � ,2xa,ay ,2 Eq(f)
1A¸f� ,2

π1_��

A ¸ξ X

fξ_��

,2 0

0 ,2 A � ,2
a

,2 E
LR x1E,1Ey
LR

f

� ,2 X
LR sξ
LR

,2 0

Given an abelian extension, we may take
cokernels as in the diagram on the left to find
its direction: the X-module (A, ξ).

The pullback f˚(ξ) of ξ along f is the conjugation action of E on A.
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The semi-abelian case: abelian extensions, II

§ There are examples (e.g. in Loop) where A is abelian but f is not.

§ The condition (SH) implies that all extensions with abelian kernel are abelian,
because [A,A]Q = 0 implies that [Eq(f), Eq(f)]S is trivial.

In particular then, any internal action on an abelian group object is a Beck module.
(Actions are non-abelian modules.)

Theorem (Cohomology with non-trivial coefficients)
H2(X, (A, ξ)) – OpExt1(X,A, ξ), the group of equivalence classes
of extensions from A to X with direction (A, ξ).
Under (SH), cohomology classifies all extensions with abelian kernel.

§ By [Bourn & Janelidze, 2004], abelian extensions are torsors, which by [Duskin, 1975]

[Glenn, 1982] are classified by means of comonadic cohomology [Barr & Beck, 1969].

§ H2(´, (A, ξ)) is a derived functor of Hom(´, A ¸ξ X Ñ X) : (X Ó X)op Ñ Ab.
We assume that X carries a comonad G whose projectives are the regular projectives.
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because [A,A]Q = 0 implies that [Eq(f), Eq(f)]S is trivial.

In particular then, any internal action on an abelian group object is a Beck module.
(Actions are non-abelian modules.)
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H2(X, (A, ξ)) – OpExt1(X,A, ξ), the group of equivalence classes
of extensions from A to X with direction (A, ξ).
Under (SH), cohomology classifies all extensions with abelian kernel.

§ By [Bourn & Janelidze, 2004], abelian extensions are torsors, which by [Duskin, 1975]

[Glenn, 1982] are classified by means of comonadic cohomology [Barr & Beck, 1969].

§ H2(´, (A, ξ)) is a derived functor of Hom(´, A ¸ξ X Ñ X) : (X Ó X)op Ñ Ab.
We assume that X carries a comonad G whose projectives are the regular projectives.



The semi-abelian case: abelian extensions, II

§ There are examples (e.g. in Loop) where A is abelian but f is not.

§ The condition (SH) implies that all extensions with abelian kernel are abelian,
because [A,A]Q = 0 implies that [Eq(f), Eq(f)]S is trivial.

In particular then, any internal action on an abelian group object is a Beck module.
(Actions are non-abelian modules.)

Theorem (Cohomology with non-trivial coefficients)
H2(X, (A, ξ)) – OpExt1(X,A, ξ), the group of equivalence classes
of extensions from A to X with direction (A, ξ).
Under (SH), cohomology classifies all extensions with abelian kernel.

§ By [Bourn & Janelidze, 2004], abelian extensions are torsors, which by [Duskin, 1975]

[Glenn, 1982] are classified by means of comonadic cohomology [Barr & Beck, 1969].

§ H2(´, (A, ξ)) is a derived functor of Hom(´, A ¸ξ X Ñ X) : (X Ó X)op Ñ Ab.
We assume that X carries a comonad G whose projectives are the regular projectives.



Overview, n = 1
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Yoneda’s extensions

Let X and A be objects in an abelian category A .
A Yoneda 1-extension from A to X is a short exact sequence

0 ,2 A � ,2 ,2 E1 f1 � ,2 X ,2 0.

Consider n ě 2. A Yoneda n-extension from A to X is an exact sequence

0 ,2 A � ,2 ,2 En fn ,2 En´1 ,2 ¨ ¨ ¨
f1 � ,2 X ,2 0.

Taking commutative ladders between those as morphisms gives a category EXTn(X,A).
Its set/abelian group of connected components is denoted Extn(X,A).

Theorem [Yoneda, 1960]
If A has enough projectives, then for n ě 1 we have Hn+1(X,A) – Extn(X,A).

§ The cohomology on the left is a derived functor of Hom(´,A) : A op Ñ Ab.

How to extend this to semi-abelian categories?
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Non-abelian higher extensions: 3n-diagrams

0

��

0

��

0

��
0 ,2 K0 ^ K1_��

��

� ,2 ,2 K0_��

��

� ,2
_̈��

��

,2 0

0 ,2 K1

_��

� ,2 ,2 F2

f0
_��

f1 � ,2 Ft1u

_��

,2 0

0 ,2 ¨

��

� ,2 ,2 Ft0u

��

� ,2 F∅

��

,2 0

0 0 0

A double extension is a 3 ˆ 3 diagram.
Its rows and columns are short exact sequences.

The red square F P Arr2(X ) which determines it
is a regular pushout: its arrows and the comparison
F2 Ñ Ft0u ˆF∅ Ft1u are regular epimorphisms.

F is usually considered as a functor P(2)op Ñ X .

An n-fold extension is a 3n-diagram.

It is determined by an n-fold arrow F P Arrn(X ),
an n-cube viewed as a functor P(n)op Ñ X .

Example: the n-truncation of any aspherical augmented simplicial object (in particular,
any simplicial resolution) determines an (n+ 1)-fold extension (presentation).
In fact, the extension property characterises being aspherical [Everaert, Goedecke & VdL, 2012].

In the abelian case, Yoneda n-extensions are equivalent to n-fold extensions (by Dold-Kan).
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Abelian case: 3-fold extension vs. Yoneda 3-extension
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Overview, arbitrary degrees (n ě 1)
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What is a double central extension?

0
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This question was answered in [Janelidze, 1991].

Theorem
Given a double extension of groups as on the left,
F P Arr2(Gp), viewed as an arrow f0 Ñ c,
is central with respect to the adjunction

Ext(Gp)
ab1 ,2
K CExt(Gp)
Ą

lr

iff the square on the right
is a pullback

Eq(F)
π2 ,2

ηEq(F)

��

f0

ηf0
��

ab1(Eq(F))
ab1(π2)

,2 ab1(f0)

if and only if [K0, K1] = 0 = [K0 ^ K1, F2].

§ [K0 ^ K1, F2] = 0 means that the comparison F2 Ñ Ft0u ˆX Ft1u is a central extension.
§ [K0, K1] = 0 iff the span (f0, f1) is a pregroupoid in (Gp Ó X), since (SH) holds in Gp.
§ Valid in (SH) semi-abelian categories. [Everaert, Gran & VdL, 2008] [Rodelo & VdL, 2010]

Repeating this construction gives a definition of n-fold central extensions for all n.
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The higher homology objects
Categorical Galois theory says when an (n+ 1)-extension F
is central: this happens if, considered as an arrow between
n-fold extensions F : D Ñ C, it is central with respect to the
adjunction

Extn(X )
abn ,2
K CExtn(X ).
Ą

lr

Eq(F)
π2 ,2

ηEq(F)

��

D

ηD

��
abn(Eq(F))

abn(π2)
,2 abn(D)

Theorem [Everaert, Gran & VdL, 2008]

The derived functors of ab : X Ñ Ab(X ) are Hn+1(X, ab) –

Ź

iPn Ki ^ [Fn, Fn]

Ln[F]
.

§ F is an n-fold projective presentation; its “initial maps” fi : Fn Ñ Fnztiu have kernel Ki.
§ The object Ln[F] is what must be divided out of Fn to make F central.

§ By [Rodelo & VdL, 2012], under (SH), the object Ln[F] is a join
Ž

IĎn

[
Ź

iPI Ki,
Ź

iPnzI Ki
]

as in [Brown & Ellis, 1988] [Donadze, Inassaridze & Porter, 2005].
§ In fact, the Hopf formula is valid for any Birkhoff reflector I : X Ñ Y .
§ Alternatively, Hn+1(X, I) – lim(CExtnI,X(X ) Ñ Y : F ÞÑ

Ź

iPn Ki).
[Goedecke & VdL, 2009]
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Overview, arbitrary degrees (n ě 1)

Homology Hn+1(X) Cohomology Hn+1(X, (A, ξ))

trivial action ξ arbitrary action ξ

Gp

Ź

iPn Ki ^ [Fn, Fn]
Ž

IĎn[
Ź

iPI Ki,
Ź

iPnzI Ki]
CentrExtn(X,A) OpExtn(X,A, ξ)

abelian
categories

0 Extn(X,A)

Barr-exact
categories

Torsn[X, (A, ξ)]

semi-abelian
categories

Ź

iPn Ki ^ [Fn, Fn]

Ln[F]
CentrExtn(X,A) OpExtn(X,A, ξ)



Overview, arbitrary degrees (n ě 1)

Homology Hn+1(X) Cohomology Hn+1(X, (A, ξ))

trivial action ξ arbitrary action ξ

Gp

Ź

iPn Ki ^ [Fn, Fn]
Ž

IĎn[
Ź

iPI Ki,
Ź

iPnzI Ki]
CentrExtn(X,A) OpExtn(X,A, ξ)

abelian
categories

0 Extn(X,A)

Barr-exact
categories

Torsn[X, (A, ξ)]

semi-abelian
categories

Ź

iPn Ki ^ [Fn, Fn]

Ln[F]
CentrExtn(X,A) OpExtn(X,A, ξ)



Overview, arbitrary degrees (n ě 1)

Homology Hn+1(X) Cohomology Hn+1(X, (A, ξ))

trivial action ξ arbitrary action ξ

Gp

Ź

iPn Ki ^ [Fn, Fn]
Ž

IĎn[
Ź

iPI Ki,
Ź

iPnzI Ki]
CentrExtn(X,A) OpExtn(X,A, ξ)

abelian
categories

0 Extn(X,A)

Barr-exact
categories

Torsn[X, (A, ξ)]

semi-abelian
categories

Ź

iPn Ki ^ [Fn, Fn]

Ln[F]
CentrExtn(X,A) OpExtn(X,A, ξ)



Cohomology classifies higher central extensions

A � ,2 ,2
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E

d

_��

c � ,2 C

_��
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� ,2 ,2 ¨

z�

� ,2 X

¨
� ,2 ,2 D � ,2 X

End of 2008, with Diana Rodelo we proved that
cohomology in the sense of [Bourn & Rodelo, 2007]

[Rodelo, 2009] classifies double central extensions.

Defining a category with maps as on the left, its
set/abelian group of connected components
CentrExt2(X,A) is isomorphic to H3

BR(X,A).

Indeed any pregroupoid over X is connected to
a groupoid over X with the same direction A:
pull back xd, cy along d ˆX c : E ˆX E Ñ D ˆX C.

We failed to prove Hn+1
BR (X,A) – CentrExtn(X,A).

Instead, we used Duskin and Glenn’s interpretation of comonadic cohomology
[Barr & Beck, 1969] in terms of higher torsors [Duskin, 1975] [Glenn, 1982] to show for n ě 2

Theorem [Rodelo & VdL, 2016]

Hn+1(X,A) – CentrExtn(X,A) if X is an object, and A an abelian object,
in any semi-abelian variety that satisfies (SH).



Cohomology classifies higher central extensions

A � ,2 ,2
_��

��

¨

z�

_��

��

� ,2 ¨

z�

_��

��

A � ,2 ,2
_��

��

_̈��

��

� ,2
_̈��

��

¨

z�

� ,2 ,2

_��

¨

z�

_��

� ,2 ¨

z�

_��

¨
� ,2 ,2

_��

E

d

_��

c � ,2 C

_��

¨

z�

� ,2 ,2 ¨

z�

� ,2 X

¨
� ,2 ,2 D � ,2 X

End of 2008, with Diana Rodelo we proved that
cohomology in the sense of [Bourn & Rodelo, 2007]

[Rodelo, 2009] classifies double central extensions.

Defining a category with maps as on the left, its
set/abelian group of connected components
CentrExt2(X,A) is isomorphic to H3

BR(X,A).

Indeed any pregroupoid over X is connected to
a groupoid over X with the same direction A:
pull back xd, cy along d ˆX c : E ˆX E Ñ D ˆX C.

We failed to prove Hn+1
BR (X,A) – CentrExtn(X,A).

Instead, we used Duskin and Glenn’s interpretation of comonadic cohomology
[Barr & Beck, 1969] in terms of higher torsors [Duskin, 1975] [Glenn, 1982] to show for n ě 2

Theorem [Rodelo & VdL, 2016]

Hn+1(X,A) – CentrExtn(X,A) if X is an object, and A an abelian object,
in any semi-abelian variety that satisfies (SH).



Cohomology classifies higher central extensions

A � ,2 ,2
_��

��

¨

z�

_��

��

� ,2 ¨

z�

_��

��

A � ,2 ,2
_��

��

_̈��

��

� ,2
_̈��

��

¨

z�

� ,2 ,2

_��

¨

z�

_��

� ,2 ¨

z�

_��

¨
� ,2 ,2

_��

E

d

_��

c � ,2 C

_��

¨

z�

� ,2 ,2 ¨

z�

� ,2 X

¨
� ,2 ,2 D � ,2 X

End of 2008, with Diana Rodelo we proved that
cohomology in the sense of [Bourn & Rodelo, 2007]

[Rodelo, 2009] classifies double central extensions.

Defining a category with maps as on the left, its
set/abelian group of connected components
CentrExt2(X,A) is isomorphic to H3

BR(X,A).

Indeed any pregroupoid over X is connected to
a groupoid over X with the same direction A:
pull back xd, cy along d ˆX c : E ˆX E Ñ D ˆX C.

We failed to prove Hn+1
BR (X,A) – CentrExtn(X,A).

Instead, we used Duskin and Glenn’s interpretation of comonadic cohomology
[Barr & Beck, 1969] in terms of higher torsors [Duskin, 1975] [Glenn, 1982] to show for n ě 2

Theorem [Rodelo & VdL, 2016]

Hn+1(X,A) – CentrExtn(X,A) if X is an object, and A an abelian object,
in any semi-abelian variety that satisfies (SH).



Cohomology classifies higher central extensions

A � ,2 ,2
_��

��

¨

z�

_��

��

� ,2 ¨

z�

_��

��

A � ,2 ,2
_��

��

_̈��

��

� ,2
_̈��

��

¨

z�

� ,2 ,2

_��

¨

z�

_��

� ,2 ¨

z�

_��

¨
� ,2 ,2

_��

E

d

_��

c � ,2 C

_��

¨

z�

� ,2 ,2 ¨

z�

� ,2 X

¨
� ,2 ,2 D � ,2 X

End of 2008, with Diana Rodelo we proved that
cohomology in the sense of [Bourn & Rodelo, 2007]

[Rodelo, 2009] classifies double central extensions.

Defining a category with maps as on the left, its
set/abelian group of connected components
CentrExt2(X,A) is isomorphic to H3

BR(X,A).

Indeed any pregroupoid over X is connected to
a groupoid over X with the same direction A:
pull back xd, cy along d ˆX c : E ˆX E Ñ D ˆX C.

We failed to prove Hn+1
BR (X,A) – CentrExtn(X,A).

Instead, we used Duskin and Glenn’s interpretation of comonadic cohomology
[Barr & Beck, 1969] in terms of higher torsors [Duskin, 1975] [Glenn, 1982] to show for n ě 2

Theorem [Rodelo & VdL, 2016]

Hn+1(X,A) – CentrExtn(X,A) if X is an object, and A an abelian object,
in any semi-abelian variety that satisfies (SH).
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Higher torsors: Duskin and Glenn’s interpretation of cohomology

Theorem [Duskin, 1975] [Glenn, 1982]

Let X be Barr-exact and G a comonad on X
where (G-projectives = regular projectives).
For any X in X and any X-module (A, ξ), the
cotriple cohomology Hn+1

G (X, (A, ξ)) is

HnHom(X ÓX)

(
G(1X), A ¸ξ X Õ X

)
– π0Tors

n(X, (A, ξ))

— Torsn[X, (A, ξ)]

§ Torsn(X, (A, ξ)) denotes the category of torsors over K((A, ξ), n) in (X Ó X).

§ K((A, ξ), n) is determined by (A, ξ)n+1 ¸ X

Bn+1¸1X ,2
πn¸1X ,2

π0¸1X

... ,2
(A, ξ) ¸ X

fξ ,2

fξ

... ,2
X ... X ¨¨¨ X X

where Bn+1 = (´1)n
řn

i=0(´1)iπi.

§ An augmented simplicial morphism t : T Ñ K((A, ξ), n) is called a torsor when
(T1) t is a fibration which is exact from degree n on;
(T2) T – Coskn´1(T);
(T3) T is aspherical.

If (A, ξ) is a trivial X-module in a semi-abelian category with (SH), then (1) any torsor, viewed
as an n-extension, is central; and (2) every class in CentrExtn(X,A) contains a torsor.
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Overview, arbitrary degrees (n ě 1)

Homology Hn+1(X) Cohomology Hn+1(X, (A, ξ))

trivial action ξ arbitrary action ξ

Gp

Ź

iPn Ki ^ [Fn, Fn]
Ž

IĎn[
Ź

iPI Ki,
Ź

iPnzI Ki]
CentrExtn(X,A) OpExtn(X,A, ξ)

abelian
categories

0 Extn(X,A)

Barr-exact
categories

Torsn[X, (A, ξ)]

semi-abelian
categories
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iPn Ki ^ [Fn, Fn]

Ln[F]
CentrExtn(X,A) OpExtn(X,A, ξ)
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Non-trivial coefficients [Peschke, Simeu & VdL, work-in-progress]

A_��

��

� ,2 ,2 K0_��

��

� ,2
_̈��

��
K1

_��

� ,2 ,2 F2

f0
_��

f1 � ,2 ¨

_��
¨
� ,2 ,2 ¨ � ,2 X

If (A, ξ) is a trivial X-module, then an n-extension from A to X
is connected to a torsor over K((A, ξ), n) iff it is central.

§ When n = 2 this means that [K0, K1] = 0 = [A, F2].

The case of non-trivial coefficients is much harder, because here
the proof techniques by induction of categorical Galois theory
are no longer available.

Question: When is an n-extension connected to an (A, ξ)-torsor?
Answer: When it is an n-pregroupoid with direction (A, ξ).

An n-extension is in a class in OpExtn(X,A, ξ) iff it satisfies the following two conditions:

n-pregroupoid condition

An n-fold analogue [Eq(f0), . . . , Eq(fn´1)]
S

of the Smith commutator of the Eq(fi) is
trivial ù higher-order Mal’tsev operation

Is it
Ž

∅‰IĹn[
Ź

iPI Ki,
Ź

iPnzI Ki] = 0?

direction is (A, ξ)

The pullback (Fn Ñ X)˚(ξ) of ξ is
the conjugation action of Fn on A.

Under (SH), any n-extension from A to X has
a direction which is an X-module (A, ξ).



Non-trivial coefficients [Peschke, Simeu & VdL, work-in-progress]

A_��

��

� ,2 ,2 K0_��

��

� ,2
_̈��

��
K1

_��

� ,2 ,2 F2

f0
_��

f1 � ,2 ¨

_��
¨
� ,2 ,2 ¨ � ,2 X

If (A, ξ) is a trivial X-module, then an n-extension from A to X
is connected to a torsor over K((A, ξ), n) iff it is central.

§ When n = 2 this means that [K0, K1] = 0 = [A, F2].

The case of non-trivial coefficients is much harder, because here
the proof techniques by induction of categorical Galois theory
are no longer available.

Question: When is an n-extension connected to an (A, ξ)-torsor?
Answer: When it is an n-pregroupoid with direction (A, ξ).

An n-extension is in a class in OpExtn(X,A, ξ) iff it satisfies the following two conditions:

n-pregroupoid condition

An n-fold analogue [Eq(f0), . . . , Eq(fn´1)]
S

of the Smith commutator of the Eq(fi) is
trivial ù higher-order Mal’tsev operation

Is it
Ž

∅‰IĹn[
Ź

iPI Ki,
Ź

iPnzI Ki] = 0?

direction is (A, ξ)

The pullback (Fn Ñ X)˚(ξ) of ξ is
the conjugation action of Fn on A.

Under (SH), any n-extension from A to X has
a direction which is an X-module (A, ξ).



Non-trivial coefficients [Peschke, Simeu & VdL, work-in-progress]

A_��

��

� ,2 ,2 K0_��

��

� ,2
_̈��

��
K1

_��

� ,2 ,2 F2

f0
_��

f1 � ,2 ¨

_��
¨
� ,2 ,2 ¨ � ,2 X

If (A, ξ) is a trivial X-module, then an n-extension from A to X
is connected to a torsor over K((A, ξ), n) iff it is central.

§ When n = 2 this means that [K0, K1] = 0 = [A, F2].

The case of non-trivial coefficients is much harder, because here
the proof techniques by induction of categorical Galois theory
are no longer available.

Question: When is an n-extension connected to an (A, ξ)-torsor?
Answer: When it is an n-pregroupoid with direction (A, ξ).

An n-extension is in a class in OpExtn(X,A, ξ) iff it satisfies the following two conditions:

n-pregroupoid condition

An n-fold analogue [Eq(f0), . . . , Eq(fn´1)]
S

of the Smith commutator of the Eq(fi) is
trivial ù higher-order Mal’tsev operation

Is it
Ž

∅‰IĹn[
Ź

iPI Ki,
Ź

iPnzI Ki] = 0?

direction is (A, ξ)

The pullback (Fn Ñ X)˚(ξ) of ξ is
the conjugation action of Fn on A.

Under (SH), any n-extension from A to X has
a direction which is an X-module (A, ξ).



Non-trivial coefficients [Peschke, Simeu & VdL, work-in-progress]

A_��

��

� ,2 ,2 K0_��

��

� ,2
_̈��

��
K1

_��

� ,2 ,2 F2

f0
_��

f1 � ,2 ¨

_��
¨
� ,2 ,2 ¨ � ,2 X

If (A, ξ) is a trivial X-module, then an n-extension from A to X
is connected to a torsor over K((A, ξ), n) iff it is central.

§ When n = 2 this means that [K0, K1] = 0 = [A, F2].

The case of non-trivial coefficients is much harder, because here
the proof techniques by induction of categorical Galois theory
are no longer available.

Question: When is an n-extension connected to an (A, ξ)-torsor?

Answer: When it is an n-pregroupoid with direction (A, ξ).

An n-extension is in a class in OpExtn(X,A, ξ) iff it satisfies the following two conditions:

n-pregroupoid condition

An n-fold analogue [Eq(f0), . . . , Eq(fn´1)]
S

of the Smith commutator of the Eq(fi) is
trivial ù higher-order Mal’tsev operation

Is it
Ž

∅‰IĹn[
Ź

iPI Ki,
Ź

iPnzI Ki] = 0?

direction is (A, ξ)

The pullback (Fn Ñ X)˚(ξ) of ξ is
the conjugation action of Fn on A.

Under (SH), any n-extension from A to X has
a direction which is an X-module (A, ξ).



Non-trivial coefficients [Peschke, Simeu & VdL, work-in-progress]

A_��

��

� ,2 ,2 K0_��

��

� ,2
_̈��

��
K1

_��

� ,2 ,2 F2

f0
_��

f1 � ,2 ¨

_��
¨
� ,2 ,2 ¨ � ,2 X

If (A, ξ) is a trivial X-module, then an n-extension from A to X
is connected to a torsor over K((A, ξ), n) iff it is central.

§ When n = 2 this means that [K0, K1] = 0 = [A, F2].

The case of non-trivial coefficients is much harder, because here
the proof techniques by induction of categorical Galois theory
are no longer available.

Question: When is an n-extension connected to an (A, ξ)-torsor?
Answer: When it is an n-pregroupoid with direction (A, ξ).

An n-extension is in a class in OpExtn(X,A, ξ) iff it satisfies the following two conditions:

n-pregroupoid condition

An n-fold analogue [Eq(f0), . . . , Eq(fn´1)]
S

of the Smith commutator of the Eq(fi) is
trivial ù higher-order Mal’tsev operation

Is it
Ž

∅‰IĹn[
Ź

iPI Ki,
Ź

iPnzI Ki] = 0?

direction is (A, ξ)

The pullback (Fn Ñ X)˚(ξ) of ξ is
the conjugation action of Fn on A.

Under (SH), any n-extension from A to X has
a direction which is an X-module (A, ξ).



Non-trivial coefficients [Peschke, Simeu & VdL, work-in-progress]

A_��

��

� ,2 ,2 K0_��

��

� ,2
_̈��

��
K1

_��

� ,2 ,2 F2

f0
_��

f1 � ,2 ¨

_��
¨
� ,2 ,2 ¨ � ,2 X

If (A, ξ) is a trivial X-module, then an n-extension from A to X
is connected to a torsor over K((A, ξ), n) iff it is central.

§ When n = 2 this means that [K0, K1] = 0 = [A, F2].

The case of non-trivial coefficients is much harder, because here
the proof techniques by induction of categorical Galois theory
are no longer available.

Question: When is an n-extension connected to an (A, ξ)-torsor?
Answer: When it is an n-pregroupoid with direction (A, ξ).

An n-extension is in a class in OpExtn(X,A, ξ) iff it satisfies the following two conditions:

n-pregroupoid condition

An n-fold analogue [Eq(f0), . . . , Eq(fn´1)]
S

of the Smith commutator of the Eq(fi) is
trivial ù higher-order Mal’tsev operation

Is it
Ž

∅‰IĹn[
Ź

iPI Ki,
Ź

iPnzI Ki] = 0?

direction is (A, ξ)

The pullback (Fn Ñ X)˚(ξ) of ξ is
the conjugation action of Fn on A.

Under (SH), any n-extension from A to X has
a direction which is an X-module (A, ξ).



Non-trivial coefficients [Peschke, Simeu & VdL, work-in-progress]

A_��

��

� ,2 ,2 K0_��

��

� ,2
_̈��

��
K1

_��

� ,2 ,2 F2

f0
_��

f1 � ,2 ¨

_��
¨
� ,2 ,2 ¨ � ,2 X

If (A, ξ) is a trivial X-module, then an n-extension from A to X
is connected to a torsor over K((A, ξ), n) iff it is central.

§ When n = 2 this means that [K0, K1] = 0 = [A, F2].

The case of non-trivial coefficients is much harder, because here
the proof techniques by induction of categorical Galois theory
are no longer available.

Question: When is an n-extension connected to an (A, ξ)-torsor?
Answer: When it is an n-pregroupoid with direction (A, ξ).

An n-extension is in a class in OpExtn(X,A, ξ) iff it satisfies the following two conditions:

n-pregroupoid condition

An n-fold analogue [Eq(f0), . . . , Eq(fn´1)]
S

of the Smith commutator of the Eq(fi) is
trivial ù higher-order Mal’tsev operation

Is it
Ž

∅‰IĹn[
Ź

iPI Ki,
Ź

iPnzI Ki] = 0?

direction is (A, ξ)

The pullback (Fn Ñ X)˚(ξ) of ξ is
the conjugation action of Fn on A.

Under (SH), any n-extension from A to X has
a direction which is an X-module (A, ξ).



Non-trivial coefficients [Peschke, Simeu & VdL, work-in-progress]

A_��

��

� ,2 ,2 K0_��

��

� ,2
_̈��

��
K1

_��

� ,2 ,2 F2

f0
_��

f1 � ,2 ¨

_��
¨
� ,2 ,2 ¨ � ,2 X

If (A, ξ) is a trivial X-module, then an n-extension from A to X
is connected to a torsor over K((A, ξ), n) iff it is central.

§ When n = 2 this means that [K0, K1] = 0 = [A, F2].

The case of non-trivial coefficients is much harder, because here
the proof techniques by induction of categorical Galois theory
are no longer available.

Question: When is an n-extension connected to an (A, ξ)-torsor?
Answer: When it is an n-pregroupoid with direction (A, ξ).

An n-extension is in a class in OpExtn(X,A, ξ) iff it satisfies the following two conditions:

n-pregroupoid condition

An n-fold analogue [Eq(f0), . . . , Eq(fn´1)]
S

of the Smith commutator of the Eq(fi) is
trivial ù higher-order Mal’tsev operation

Is it
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∅‰IĹn[
Ź

iPI Ki,
Ź

iPnzI Ki] = 0?

direction is (A, ξ)

The pullback (Fn Ñ X)˚(ξ) of ξ is
the conjugation action of Fn on A.

Under (SH), any n-extension from A to X has
a direction which is an X-module (A, ξ).
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Some final remarks

§ For a complete picture of cohomology with non-trivial coefficients,
mainly certain aspects of commutator theory need to be further developed:
in particular, higher Smith commutators, and their decomposition
into (potentially non-binary) Higgins commutators.

It seems here something stronger than (SH) may be needed.

§ Results in group theory/non-abelian algebra may only extend
to the semi-abelian context when certain additional conditions are satisfied.

We made heavy use of the condition (SH), but a whole hierarchy of categorical-algebraic
conditions has been introduced and studied over the last few years: some examples are
(local) algebraic cartesian closedness, action representability, action accessibility,
algebraic coherence, strong protomodularity, normality of Higgins commutators.

§ These categorical conditions may help us understand algebra from a new perspective.
For instance, they might lead to a categorical characterisation of Gp, LieK, etc.
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Higher central extensions play “dual” roles
in the interpretation of homology and cohomology
(with trivial coefficients):

Homology Hn+1(X): take the limit
over the diagram of all n-fold central extensions over X
of the functor which forgets to A.

Cohomology Hn+1(X,A): take connected components
of the category with maps of n-fold central extensions
that keep A and X fixed.

The relationship between homology and cohomology of groups
(with trivial coefficients) may be simplified by viewing it yet another way:

Theorem [Peschke & VdL, 2016]

If X is a group and n ě 1, then Hn+1(X) – Hom(Hn+1(X,´), 1Ab).

§ This may also be shown via a non-additive derived Yoneda lemma.
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Thank you!


