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Overview

Categorical quantum mechanics has shown that compact
closed dagger categories provide an abstract framework to
develop many concepts in quantum physics.

Using a minimal axiomatic scheme can clarify structure.

I’ve been studying classical mechanics - Hamiltonian and
Lagrangian mechanics - in order to formalize those structures
in a tangent category.

In this talk, we’re going to explore the properties of vector
bundles in the category of smooth manifolds in order to
capture them in an abstract fibration.
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Overview

Categorical quantum mechanics has shown that compact
closed dagger categories provide an abstract framework to
develop many concepts in quantum physics.

Using a minimal axiomatic scheme can clarify structure.

I’ve been studying classical mechanics - Hamiltonian and
Lagrangian mechanics - in order to formalize those structures
in a tangent category.

In this talk, we’re going to explore the properties of vector
bundles in the category of smooth manifolds in order to
capture them in an abstract fibration.
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Vector Bundles

A smooth R-vector bundle is epimorphism E
q−−→ M and real

vector space V in the category of smooth manifolds such that:

E ×
M
E E E × R E

M M

+ ·

Such that for every point m ∈ M there exists U ⊆ M,m ∈ U such
that

q−1(U) ∼= U × V

Remark: The pullback of a vector bundle is a vector bundle!
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The tangent bundle

The canonical example of a vector bundle is the tangent bundle of
a smooth manifold M, T (M).

T (M): equivalence classes of curves R −→ M

p : T (M) −→ M is evaluation at 0.
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Phase Space and the Cotangent Bundle

Configuration space: The possible states of a physical system.
Each configuration - a valid set of parameters - is a point on a
manifold M.

Phase space: All possible configuration and momentum values for
a physical system.
A momentum value is a map T (M) −→ R, otherwise known as a
cotangent vector.

The phase space is the cotangent bundle of M, p∗M : T ∗(M) −→ M.
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The Vector Bundle Fibration

Consider two fibrations on the category of smooth manifolds:

VLin VBun

SMan

VBun: Full subcategory of SMan−→ whose objects are vector
bundles.
VLin: The subfibration of VBun restricted to linear bundle
morphisms.
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Some Issues

Cockett and Cruttwell showed that the fibres of “VBun” in a
“nice” tangent category admit the logic of calculus. However, it’s
missing many of the structures used in mechanics!

Tensor product of bundles and linear maps.

Dual bundles

R-module structure

In order to characterize these structures abstractly, we use the
machinery in:

Cartesian Differential Storage Categories, Blute, Cockett and
Seely.

Duality and Traces for Indexed Monoidal Categories, Ponto
and Shulman.

Categorical Models of PiLL, Birkedal, Møgelberg, and
Peterson.
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Simple Fibration

Suppose ∂ : E −→ B is a fibration with finite fibred products.
Define the simple fibration above ∂ (Jacobs) π : E[∂] −→ E as
follows

Objects: (I ,X ) in E×
B
E

Maps:

(u, f ) : (I ,X ) −→ (J,Y ) E[∂]

(u, f ) : (I , I ×
A
X ) −→ (J,Y ) E×

B
E

Cartesian maps:

E[∂] (I , ∂(u)∗(Y )) (J,Y )

E I J

π

(u,πA
1 ∂(u)∗Y )

u
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Fibred System of Linear Maps

A system of linear maps πL : L −→ E above a fibration ∂ is a
fibration

L E[∂]

E

L

πL
π

Such that

L is a bijection on objects

L is a fibred product preserving subfibration
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Linear maps

Linear in an argument:

(j , f ) : (I ,X ) −→ (J,Y ) in L
f : I ×

A
X −→ Y ∈ E is linear in X

There is a fibration ∂L of linear maps above B which is induced by
pullback of fibrations:

Lin L

B E

∂L πL

!
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Unit Representation

A system of linear maps L over ∂ : E −→ B has representable unit
when:

E 1A X

v∗(IC )

B A B

C

f

v∗(φuC ) ∃!f uC linear

w

v
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Strong Unit Representation

A system of linear maps L over ∂ : E −→ B has strong unit
representation when for every

Z ×
A
v∗(Y )×

A
1A X

Z ×
A
v∗(Y ×

C
IC )

f

1×
A

1×
A
v∗(φuC ) ∃!f uC linear in IC

Persistent unit representation:

f : Z ×
A

1A −→ X linear in Z

f UC : Z ×
A
v∗(IC ) −→ X linear in Z
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Example: Smooth Manifolds

Scalar multiplication arises from unit representation.

V

V ×
M

(M × R) V

M

1V

q

1×
M
u

q×
M

1

1UM

q

u(m) = (m, 1) ∈ M × R
1UM(v , (m, r)) = (m, r) · v
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Theorem

Given a system of linear maps πL : L −→ E over ∂ : E −→ B with
strong and persistent unit representation

1 There is a morphism of fibrations I : 1B −→ ∂

2 I sends each object of A to a commutative monoid object in
the fiber category above A whose multiplication is bilinear.
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Proof of 2

Define multiplication to be the unique map:

I I

I × I

〈1,u〉 ·

By persistence, · is bilinear.
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Proof of 2

Define multiplication to be the unique map:

1

I I

I × I

u u

〈1,u〉 ·

Note that 1I also has a universal property

Thus, · is the unique map such that u〈1, !u〉· = u.
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Proof of 2

Define multiplication to be the unique map:

1

I I

I × I

u u

〈1,u〉 ·

Note that 1I also has a universal property
Thus, · is the unique map such that u〈1, !u〉· = u.
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Multiplication is symmetric

It follows that · is symmetric:

u〈1, !u〉τ · =〈u, u〉τ ·
=〈u, u〉·
=u〈1, !u〉·
=u

Ben MacAdam Fibred Representation of Linear Structure



Introduction
Fibred Linear Maps

Fibred Linear Structures

Fibred Units
Fibred Tensor
Hom Representation

Multiplication is associative

Induce another map via universal property:

1

I I

I × I

(I × I )× I

u u

〈1,u〉
·

〈1,u〉
(·)u
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Then observe that (·)u = (1× ·)· = (· × 1)·

u〈1, !u〉〈1, !u〉(1× ·)· =〈u, u, u〉(1× ·)·
=〈u, u〉·
=u

And:

u〈1, !u〉〈1, !u〉(· × 1)· =〈u, u, u〉(· × 1)·
=〈u, u〉·
=u
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Tensor Representation

A system of linear maps on a fibration ∂ : E −→ B has a
representable tensor whenever for any bilinear map f :

E v∗(X )×
A
v∗(Y ) Z

v∗(X ×
C
Y )

v∗(X ⊗
C
Y )

B A B

C

f

γ

v∗(ψ⊗
C )

∃!f ⊗ linear

w

v
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Strong Tensor Representation

W ×
A
v∗(X )×

A
v∗(Y ) Z

W ×
A
v∗(X ×

C
Y )

W ×
A
v∗(X ⊗

C
Y )

f

γ

v∗(ψ⊗
C )

∃!f ⊗ linear in v∗(X ⊗
C
Y )

Persistence:

f : W ×
A
v∗(X )×

A
v∗(Y ) −→ Z linear in W

f ⊗ : W ×
A
v∗(X ⊗

C
Y ) −→ Z linear in W
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Tensor representation of vector bundles:

Over each fibre of a bilinear map (f , u) : q1 ×
M
q2 −→ q3 restricts to

a bilinear morphism of vector spaces:

q−1
1 (m)× q−1

2 (m) q−1
3 (u(m))

q−1
1 (m)⊗ q−1

2 (m)

f

ψ⊗ ∃!f ⊗
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Theorem

If system of linear maps πL has strong and persistant unit and
tensor representation then ∂L is a fibred symmetric monoidal
category.

Need only show that ⊗ is a morphism of fibrations, the rest of the
proof can be lifted from Blute-Cockett-Seely.
First, define f ⊗

w
g :

W ×
A
X Y ×

B
Z

W ⊗
A
X Y ⊗

B
Z

f×
w
g

ψ⊗ ψ⊗

∃!f⊗
w
g
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Proof of 1

First, note:

w∗(X )×
A
w∗(X ) w∗(X )⊗

A
w∗(Y )

w∗(X ×
B
Y )

w∗(X ⊗
B
Y )

ψ⊗
A

γ

∃!

w∗(ψ⊗
B )

∃!

Thus we have an isomorphism w∗(X ⊗
B
Y ) ∼= w∗(X )⊗

A
w∗(Y ).
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Proof of 1

w∗(X )
w∗
X−−−→ X ,w∗(Y )

w∗
Y−−−→ Y cartesian above A

w−−→ B:

w∗(X )×
A
w∗(X ) w∗(X )⊗

A
w∗(Y ) X ⊗

B
Y

w∗(X ×
B
Y )

w∗(X ⊗
B
Y )

ψ⊗
A

γ

w∗
X⊗w

w∗
Y

w∗(ψ⊗
B )

w∗
X⊗
B
Y

∼=
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Representable Hom

A linear system of maps has a representable hom ( if for every
map f linear in v∗(X )

v∗(X ( Y )×
B
v∗(X )

v∗(X ( Y ×
B
X )

W ×
A
w∗(v∗(X )) v∗(Y )

A B C

γ

v∗(ev) bilinear
f

∃!λ(f )×
w
w∗
X

w v

Persistent:
f : X × Y −→ Z bilinear
λf : X −→ Y ( Z linear
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Theorem

Given a linear system of maps πL of E[∂]
π−−→ E

1 If πL has a strong persistent representable unit and persistent
representable hom then ∂L is a fibred closed category.

2 If πL has a strong persistent representable unit and tensor,
and a persistent representable hom then ∂L is a fibred
symmetric monoidal closed category .
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X ⊗ Y Zf
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X × Y

X ⊗ Y Z

ψ⊗f
ψ⊗

f
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X × Y

X ⊗ Y Z

Y ( Z × Y

ψ⊗f
ψ⊗

λ(ψ⊗f )×1
f

ev
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X × Y

X ⊗ Y Z

Y ( Z ⊗ Y

Y ( Z × Y

ψ⊗f
ψ⊗

λ(ψ⊗f )×1

f

ev⊗

ev

ψ
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X × Y

X ⊗ Y Z

Y ( Z ⊗ Y

Y ( Z × Y

ψ⊗f
ψ⊗

λ(ψ⊗f )×1

f

∃!λ(f )⊗1
ev⊗

ev

ψ
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Future Work

Develop symplectic geometry in this setting

Momentum maps and Noether’s theorem

The linear hom in a type system

Expand this to include storage

Develop a graphical calculus
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Thank You.
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