

DEPARTAMENTO DE MATEMÁTICAS

# A characterisation of Lie algebras amongst alternating algebras

Xabier García-Martínez

Universidade de Santiago de Compostela

CT 2017

Joint work with Tim Van der Linden

Vancouver, July 16-22, 2017

A category C is cartesian closed if for every object X, the functor

 $X \times (-) \colon \mathcal{C} \to \mathcal{C}$ 

has a right adjoint.

A category C is cartesian closed if for every object X, the functor

$$X \times (-) \colon \mathcal{C} \to \mathcal{C}$$

has a right adjoint.

A category C is cartesian closed if for every object X, the functor

$$X \times (-) \colon \mathcal{C} \to \mathcal{C}$$

has a right adjoint.

For any morphism  $a: A \to B$ , there is a functor  $a^*: (\mathcal{C} \downarrow B) \to (\mathcal{C} \downarrow A)$ 

 $X \\ \downarrow_{x} \\ B \\ B$ 

A category C is cartesian closed if for every object X, the functor

$$X \times (-) \colon \mathcal{C} \to \mathcal{C}$$

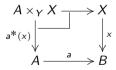
has a right adjoint.



A category C is cartesian closed if for every object X, the functor

$$X \times (-) \colon \mathcal{C} \to \mathcal{C}$$

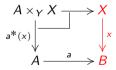
has a right adjoint.



A category C is cartesian closed if for every object X, the functor

$$X \times (-) \colon \mathcal{C} \to \mathcal{C}$$

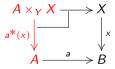
has a right adjoint.



A category C is cartesian closed if for every object X, the functor

$$X \times (-) \colon \mathcal{C} \to \mathcal{C}$$

has a right adjoint.

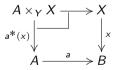


A category C is cartesian closed if for every object X, the functor

$$X \times (-) \colon \mathcal{C} \to \mathcal{C}$$

has a right adjoint.

For any morphism  $a: A \to B$ , there is a functor  $a^*: (\mathcal{C} \downarrow B) \to (\mathcal{C} \downarrow A)$ 



### Definition

A category C is locally cartesian closed if all functors  $a^*$  have a right adjoint.

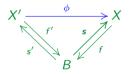
X. García-Martínez (USC)

Let  $\mathcal{C}$  be a category. For a fixed object  $B \in \mathcal{C}$ , we form the category of points over B, denoted by  $Pt_B(\mathcal{C})$ .

Let C be a category. For a fixed object  $B \in C$ , we form the category of points over B, denoted by  $Pt_B(C)$ . Objects are split epimorphisms (with chosen splitting)

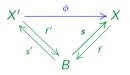
Let C be a category. For a fixed object  $B \in C$ , we form the category of points over B, denoted by  $Pt_B(C)$ .

Objects are split epimorphisms (with chosen splitting) Morphisms are arrows making the (reasonable) diagrams commute.



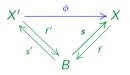
Let C be a category. For a fixed object  $B \in C$ , we form the category of points over B, denoted by  $Pt_B(C)$ .

Objects are split epimorphisms (with chosen splitting) Morphisms are arrows making the (reasonable) diagrams commute.



Let C be a category. For a fixed object  $B \in C$ , we form the category of points over B, denoted by  $Pt_B(C)$ .

Objects are split epimorphisms (with chosen splitting) Morphisms are arrows making the (reasonable) diagrams commute.

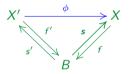


If  $\mathcal{C}$  has pullbacks, for any arrow  $a: A \to B$  there is an induced functor  $a^*: \operatorname{Pt}_B(\mathcal{C}) \to \operatorname{Pt}_A(\mathcal{C})$ 

X

Let C be a category. For a fixed object  $B \in C$ , we form the category of points over B, denoted by  $Pt_B(C)$ .

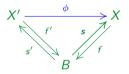
Objects are split epimorphisms (with chosen splitting) Morphisms are arrows making the (reasonable) diagrams commute.





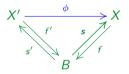
Let C be a category. For a fixed object  $B \in C$ , we form the category of points over B, denoted by  $Pt_B(C)$ .

Objects are split epimorphisms (with chosen splitting) Morphisms are arrows making the (reasonable) diagrams commute.



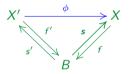
Let C be a category. For a fixed object  $B \in C$ , we form the category of points over B, denoted by  $Pt_B(C)$ .

Objects are split epimorphisms (with chosen splitting) Morphisms are arrows making the (reasonable) diagrams commute.



Let C be a category. For a fixed object  $B \in C$ , we form the category of points over B, denoted by  $Pt_B(C)$ .

Objects are split epimorphisms (with chosen splitting) Morphisms are arrows making the (reasonable) diagrams commute.



If C has pullbacks, for any arrow  $a: A \to B$  there is an induced functor  $a^*: Pt_B(\mathcal{C}) \to Pt_A(\mathcal{C})$ 

## Definition (Bourn, 1991)

A category  $\mathcal{C}$  is protomodular if all  $a^* : \operatorname{Pt}_B(\mathcal{C}) \to \operatorname{Pt}_A(\mathcal{C})$  reflect isomorphisms.

3

## Definition (Bourn, 1991)

A category  $\mathcal{C}$  is protomodular if all  $a^* : \operatorname{Pt}_{\mathcal{B}}(\mathcal{C}) \to \operatorname{Pt}_{\mathcal{A}}(\mathcal{C})$  reflect isomorphisms.

### Proposition

Assume that C has zero object and consider the unique map  $_{B}: 0 \rightarrow B$ .

## Definition (Bourn, 1991)

A category  $\mathcal{C}$  is protomodular if all  $a^* : \operatorname{Pt}_B(\mathcal{C}) \to \operatorname{Pt}_A(\mathcal{C})$  reflect isomorphisms.

### Proposition

$$\mathfrak{j}_B^*\colon \mathtt{Pt}_B(\mathcal{C})\to \mathtt{Pt}_0(\mathcal{C})\cong \mathcal{C}$$

## Definition (Bourn, 1991)

A category  $\mathcal{C}$  is protomodular if all  $a^* \colon Pt_B(\mathcal{C}) \to Pt_A(\mathcal{C})$  reflect isomorphisms.

### Proposition

$$\mathfrak{j}_B^* \colon \operatorname{Pt}_B(\mathcal{C}) \to \operatorname{Pt}_0(\mathcal{C}) \cong \mathcal{C}$$



## Definition (Bourn, 1991)

A category  $\mathcal{C}$  is protomodular if all  $a^* \colon Pt_B(\mathcal{C}) \to Pt_A(\mathcal{C})$  reflect isomorphisms.

### Proposition

$$\mathfrak{j}_B^*\colon \mathrm{Pt}_B(\mathcal{C})\to \mathrm{Pt}_0(\mathcal{C})\cong \mathcal{C}$$



## Definition (Bourn, 1991)

A category  $\mathcal{C}$  is protomodular if all  $a^* \colon Pt_B(\mathcal{C}) \to Pt_A(\mathcal{C})$  reflect isomorphisms.

### Proposition

$$\mathbf{j}_B^*\colon \mathrm{Pt}_B(\mathcal{C})\to \mathrm{Pt}_0(\mathcal{C})\cong \mathcal{C}$$



## Definition (Bourn, 1991)

A category  $\mathcal{C}$  is protomodular if all  $a^* \colon Pt_B(\mathcal{C}) \to Pt_A(\mathcal{C})$  reflect isomorphisms.

### Proposition

$$\mathfrak{j}_B^*\colon \mathbf{Pt}_B(\mathcal{C})\to \mathbf{Pt}_0(\mathcal{C})\cong \mathcal{C}$$



## Definition (Bourn, 1991)

A category  $\mathcal{C}$  is protomodular if all  $a^* \colon Pt_B(\mathcal{C}) \to Pt_A(\mathcal{C})$  reflect isomorphisms.

### Proposition

$$\mathfrak{j}_B^*\colon \mathrm{Pt}_B(\mathcal{C})\to \mathrm{Pt}_0(\mathcal{C})\cong \mathcal{C}$$



## Definition (Bourn, 1991)

A category  $\mathcal{C}$  is protomodular if all  $a^* \colon Pt_B(\mathcal{C}) \to Pt_A(\mathcal{C})$  reflect isomorphisms.

### Proposition

Assume that C has zero object and consider the unique map  $_{iB}: 0 \rightarrow B$ . The category C is protomodular if and only if the kernel functor

$$\mathbf{j}_B^*\colon \mathrm{Pt}_B(\mathcal{C})\to \mathrm{Pt}_0(\mathcal{C})\cong \mathcal{C}$$



reflects isomorphisms for all B.



### Definition (Gray, 2010)

A category C is locally algebraically cartesian closed (or (LACC) for short) if all  $a^*$ :  $Pt_B(\mathcal{C}) \to Pt_A(\mathcal{C})$  have a right adjoint.

э



### Definition (Gray, 2010)

A category C is locally algebraically cartesian closed (or (LACC) for short) if all  $a^* : \operatorname{Pt}_B(C) \to \operatorname{Pt}_A(C)$  have a right adjoint.

#### Proposition

Assume that C has zero object and consider the unique map  $_{iB}: 0 \rightarrow B$ .



### Definition (Gray, 2010)

A category C is locally algebraically cartesian closed (or (LACC) for short) if all  $a^* : \operatorname{Pt}_B(C) \to \operatorname{Pt}_A(C)$  have a right adjoint.

#### Proposition

Assume that C has zero object and consider the unique map  $_{iB}: 0 \rightarrow B$ . The category C is locally algebraically cartesian closed if and only if the kernel functor

$$\mathfrak{j}_B^* \colon \operatorname{Pt}_B(\mathcal{C}) \to \operatorname{Pt}_0(\mathcal{C}) \cong \mathcal{C}$$



has a right adjoint for all B.

-

#### Examples

• Abelian categories,

#### Examples

- Abelian categories,
- Groups, Crossed modules, Cocommutative Hopf algebras over a field of characteristic zero,

#### Examples

- Abelian categories,
- Groups, Crossed modules, Cocommutative Hopf algebras over a field of characteristic zero,
- Lie algebras.

Let  $\mathbb{K}$  be a field. A non-associative algebra is a  $\mathbb{K}$ -vector space with a linear map

 $A \otimes A \rightarrow A$ .

We denote the category by  $Alg_{\mathbb{K}}$ .

Let  $\mathbb{K}$  be a field. A non-associative algebra is a  $\mathbb{K}$ -vector space with a linear map

 $A \otimes A \rightarrow A$ .

We denote the category by  $Alg_{\mathbb{K}}$ .

A subvariety of  $\mathtt{Alg}_{\mathbb{K}}$  is any equationally defined class of algebras, considered as a full subcategory  $\mathcal V$  of  $\mathtt{Alg}_{\mathbb{K}}.$ 

#### Definition

Let  $\mathbb{K}$  be a field. A non-associative algebra is a  $\mathbb{K}$ -vector space with a linear map

 $A \otimes A \rightarrow A$ .

We denote the category by  $Alg_{\mathbb{K}}$ .

A subvariety of  $\mathtt{Alg}_{\mathbb{K}}$  is any equationally defined class of algebras, considered as a full subcategory  $\mathcal V$  of  $\mathtt{Alg}_{\mathbb{K}}.$ 

#### Examples

Lie algebras, Associative algebras, Jordan algebras, Alternating algebras, the abelian case...

If  $\mathcal{V}$  is a variety of algebras over an infinite field  $\mathbb{K}$ , all of its laws are of the form  $\phi(x_1, \ldots, x_n)$ , where  $\phi$  is a non-associative polynomial.

Moreover, each of its homogeneous components  $\psi(x_{i_1}, \ldots, x_{i_n})$  is also a law.

If  $\mathcal{V}$  is a variety of algebras over an infinite field  $\mathbb{K}$ , all of its laws are of the form  $\phi(x_1, \ldots, x_n)$ , where  $\phi$  is a non-associative polynomial.

Moreover, each of its homogeneous components  $\psi(x_{i_1}, \ldots, x_{i_n})$  is also a law.

This means that if

$$(xy)z + x^2$$

is a law of  $\mathcal{V}$ , then

If  $\mathcal{V}$  is a variety of algebras over an infinite field  $\mathbb{K}$ , all of its laws are of the form  $\phi(x_1, \ldots, x_n)$ , where  $\phi$  is a non-associative polynomial.

Moreover, each of its homogeneous components  $\psi(x_{i_1}, \ldots, x_{i_n})$  is also a law.

This means that if

$$(xy)z + x^2$$

is a law of  $\mathcal{V}$ , then

x(yz) $x^2$ 

are also laws of  $\mathcal{V}$ .

If  $\mathcal{V}$  is a variety of algebras over an infinite field  $\mathbb{K}$ , all of its laws are of the form  $\phi(x_1, \ldots, x_n)$ , where  $\phi$  is a non-associative polynomial.

Moreover, each of its homogeneous components  $\psi(x_{i_1}, \ldots, x_{i_n})$  is also a law.

This means that if

$$x(yz) + y(zx) + z(xy) + xy + yx$$

is a law of  $\mathcal{V}$ , then

If  $\mathcal{V}$  is a variety of algebras over an infinite field  $\mathbb{K}$ , all of its laws are of the form  $\phi(x_1, \ldots, x_n)$ , where  $\phi$  is a non-associative polynomial.

Moreover, each of its homogeneous components  $\psi(x_{i_1}, \ldots, x_{i_n})$  is also a law.

This means that if

$$x(yz) + y(zx) + z(xy) + xy + yx$$

is a law of  $\mathcal{V}$ , then

$$x(yz) + y(zx) + z(xy)$$
$$xy + yx$$

are also laws of  $\mathcal{V}$ .

Let  $\mathcal{V}$  be a variety of algebras, the free  $\mathcal{V}$ -algebra generated by a set  $X = \{x, y, z, ...\}$  is the  $\mathbb{K}$ -vector space with basis the free magma generated by X

```
 \begin{array}{l} x, y, z, \dots \\ (xx), (xy), (xz), (yz), \dots \\ (x(xx)), ((xx)x), (x(yz)), (y(xz)), \dots \end{array}
```

÷

Let  $\mathcal{V}$  be a variety of algebras, the free  $\mathcal{V}$ -algebra generated by a set  $X = \{x, y, z, ...\}$  is the  $\mathbb{K}$ -vector space with basis the free magma generated by X

```
 \begin{array}{l} x, y, z, \dots \\ (xx), (xy), (xz), (yz), \dots \\ (x(xx)), ((xx)x), (x(yz)), (y(xz)), \dots \end{array}
```

quotiented by the equations of  $\mathcal{V}$ . Multiplication is juxtaposition.

Let  $\mathcal{V}$  be a variety of algebras, the free  $\mathcal{V}$ -algebra generated by a set  $X = \{x, y, z, ...\}$  is the  $\mathbb{K}$ -vector space with basis the free magma generated by X

```
 \begin{array}{l} x, y, z, \dots \\ (xx), (xy), (xz), (yz), \dots \\ (x(xx)), ((xx)x), (x(yz)), (y(xz)), \dots \end{array}
```

quotiented by the equations of  $\mathcal{V}$ . Multiplication is juxtaposition.

The coproduct in  $\mathcal{V}$  of two algebras A and B, is the free algebra generated by A and B where if we find a word formed by just elements from one of them, we substitute by its multiplication.

Let  $X, B \in \mathcal{V}$ . Consider the split extension

$$B + X \stackrel{\iota_1}{\underset{(1 \ 0)}{\leftarrow}} B$$

∃ 𝒫𝔅

Let  $X, B \in \mathcal{V}$ . Consider the split extension

$$B \flat X \xrightarrow{k} B + X \xrightarrow{\iota_1} B$$

∃ 𝒫𝔅

Let  $X, B \in \mathcal{V}$ . Consider the split extension

$$B \flat X \xrightarrow{k} B + X \xrightarrow{\iota_1} B$$

#### Definition (Bourn-Janelidze, 1998)

An action of B on X (or a B-action) is a morphism  $\xi : B \flat X \to X$ .

3

Let  $X, B \in \mathcal{V}$ . Consider the split extension

$$B \flat X \xrightarrow{k} B + X \xrightarrow{\iota_1} B$$

#### Definition (Bourn-Janelidze, 1998)

An action of B on X (or a B-action) is a morphism  $\xi \colon B\flat X \to X$ .

#### Theorem (Bourn-Janelidze, 1998)

There is an equivalence of categories

$$\mathtt{Pt}_B(\mathcal{V})\simeq B\mathtt{-Act}(\mathcal{V})$$

Assume that C has zero object and consider the unique map  $_{B}: 0 \rightarrow B$ .

э.

(E)

Assume that C has zero object and consider the unique map  $_{iB}: 0 \rightarrow B$ . The category C is locally algebraically cartesian closed if and only if the kernel functor

$$\mathfrak{j}_B^*: \qquad \operatorname{Pt}_B(\mathcal{C}) \to \operatorname{Pt}_0(\mathcal{C})$$

has a right adjoint for all B.

Assume that C has zero object and consider the unique map  $_{iB}: 0 \rightarrow B$ . The category C is locally algebraically cartesian closed if and only if the kernel functor

$$\mathfrak{i}_B^*$$
:  $\operatorname{Pt}_B(\mathcal{C}) \to \operatorname{Pt}_0(\mathcal{C}) \cong \mathcal{C}$ 

has a right adjoint for all B.

Assume that C has zero object and consider the unique map  $_{iB}: 0 \rightarrow B$ . The category C is locally algebraically cartesian closed if and only if the kernel functor

 $\mathfrak{j}_B^*\colon \underline{B}\operatorname{-Act}(\mathcal{C})\simeq \operatorname{Pt}_B(\mathcal{C})\to \operatorname{Pt}_0(\mathcal{C})\cong \mathcal{C}$ 

has a right adjoint for all B.

Assume that C has zero object and consider the unique map  $_{iB}: 0 \rightarrow B$ . The category C is locally algebraically cartesian closed if and only if the kernel functor

$$\mathfrak{j}_B^*\colon \operatorname{{\textbf{B-Act}}}(\operatorname{{\mathcal{C}}})\simeq\operatorname{{\mathtt{Pt}}}_B(\operatorname{{\mathcal{C}}}) o\operatorname{{\mathtt{Pt}}}_0(\operatorname{{\mathcal{C}}})\cong\operatorname{{\mathcal{C}}}$$



has a right adjoint for all B.

3

# Proposition (Gray, 2012)

The following are equivalent:

- V is (LACC).
- $i_B^*: B$ -Act $(\mathcal{V}) \to \mathcal{V}$  preserves binary sums.
- The cannonical comparison  $(B\flat X + B\flat Y) \rightarrow B\flat (X + Y)$  is an isomorphism.

ヨ▶ ▲ヨ▶ ヨ のへ⊙

### Proposition

If  $\mathcal{V}$  is (LACC) and x(yz) = 0 is a law in  $\mathcal{V}$ , then  $\mathcal{V}$  is abelian.

3

#### Proposition

If  $\mathcal{V}$  is (LACC) and x(yz) = 0 is a law in  $\mathcal{V}$ , then  $\mathcal{V}$  is abelian.

Proof: Let B, X, Y be free algebras on one generator. Since  $\mathcal{V}$  is (LACC), the morphism  $(B\flat X + B\flat Y) \to B\flat (X + Y)$ 

is an isomorphism.

∃ 𝒫𝔅

#### Proposition

If  $\mathcal{V}$  is (LACC) and x(yz) = 0 is a law in  $\mathcal{V}$ , then  $\mathcal{V}$  is abelian.

Proof: Let B, X, Y be free algebras on one generator. Since  $\mathcal{V}$  is (LACC), the morphism

 $(B\flat X + B\flat Y) \to B\flat (X + Y)$ 

is an isomorphism.

The element

$$x(yb) \in B\flat(X+Y)$$

is equal to zero. Therefore, it has to come from zero.

∃ nar

#### Proposition

If  $\mathcal{V}$  is (LACC) and x(yz) = 0 is a law in  $\mathcal{V}$ , then  $\mathcal{V}$  is abelian.

Proof: Let B, X, Y be free algebras on one generator. Since  $\mathcal{V}$  is (LACC), the morphism

 $(B\flat X + B\flat Y) \to B\flat (X + Y)$ 

is an isomorphism.

The element

$$x(yb) \in B\flat(X+Y)$$

is equal to zero. Therefore, it has to come from zero.

But it also comes from  $x(yb_2) \in B\flat(X + Y)$ .

∃ nar

#### Proposition

If  $\mathcal{V}$  is (LACC) and x(yz) = 0 is a law in  $\mathcal{V}$ , then  $\mathcal{V}$  is abelian.

Proof: Let B, X, Y be free algebras on one generator. Since  $\mathcal{V}$  is (LACC), the morphism

 $(B\flat X + B\flat Y) \to B\flat (X + Y)$ 

is an isomorphism.

The element

$$x(yb) \in B\flat(X+Y)$$

is equal to zero. Therefore, it has to come from zero.

But it also comes from  $x(yb_2) \in B\flat(X + Y)$ .

Since  $yb_2$  plays the role of "one element" in  $B \flat Y$ , either  $yb_2$  is zero, or x multiplied by something from  $B \flat Y$  is zero. In both cases it implies that the algebra is abelian.

X. García-Martínez (USC)

A characterisation of Lie algebras

The variety of associative algebras is not (LACC).

э.

The variety of associative algebras is not (LACC).

Proof: Consider again B, X, Y as free algebras on one generator. Assume that we have an isomorphism:

 $(B\flat X + B\flat Y) \to B\flat (X + Y)$ 

∃ <2 <</p>

The variety of associative algebras is not (LACC).

Proof: Consider again B, X, Y as free algebras on one generator. Assume that we have an isomorphism:

$$(B\flat X + B\flat Y) \to B\flat (X + Y)$$

Then (xb)y and x(by) go to the same element in  $B\flat(X+Y)$  but they are different in  $(B\flat X + B\flat Y)$ .

E nac

The variety of Leibniz algebras is not (LACC).

Proof: In the Leibniz case, we have the identities

b(xy) = (bx)y + x(by)

X. García-Martínez (USC)

э.

The variety of Leibniz algebras is not (LACC).

Proof: In the Leibniz case, we have the identities

b(xy) = (bx)y + x(by)

b(xy) = -(xb)y + x(by)

X. García-Martínez (USC)

3

The variety of Leibniz algebras is not (LACC).

Proof: In the Leibniz case, we have the identities

b(xy) = (bx)y + x(by)

$$b(xy) = -(xb)y + x(by)$$

Then, we have that (bx)y + (xb)y = 0.

э.

The variety of Leibniz algebras is not (LACC).

Proof: In the Leibniz case, we have the identities

b(xy) = (bx)y + x(by)

$$b(xy) = -(xb)y + x(by)$$

Then, we have that (bx)y + (xb)y = 0. Again, (bx)y + (xb)y is zero in  $B\flat(X + Y)$  but it does not need to be in  $(B\flat X + B\flat Y)$ .

∃ <2 <</p>

## Theorem (G.M.-Van der Linden, 2017)

Let  $\mathcal{V}$  a variety of non-associative algebras. Then, the following are equivalent:

•  $\mathcal{V}$  is algebraic coherent, i.e. the map  $(B\flat X + B\flat Y) \rightarrow B\flat(X + Y)$  is a regular epimorphism (Cigoli-Gray-Van der Linden, 2015).

э.

## Theorem (G.M.-Van der Linden, 2017)

Let  $\mathcal{V}$  a variety of non-associative algebras. Then, the following are equivalent:

- $\mathcal{V}$  is algebraic coherent, i.e. the map  $(B\flat X + B\flat Y) \rightarrow B\flat(X + Y)$  is a regular epimorphism (Cigoli-Gray-Van der Linden, 2015).
- There exist  $\lambda_1,\ldots,\lambda_{16}\in\mathbb{K}$  such that

$$z(xy) = \lambda_1(zx)y + \lambda_2(zy)x + \dots + \lambda_8y(xz)$$
  
(xy)z =  $\lambda_9(zx)y + \lambda_{10}(zy)x + \dots + \lambda_{16}y(xz)$ 

are laws of  $\mathcal{V}$ .

3

## Theorem (G.M.-Van der Linden, 2017)

Let  $\mathcal{V}$  a variety of non-associative algebras. Then, the following are equivalent:

- $\mathcal{V}$  is algebraic coherent, i.e. the map  $(B\flat X + B\flat Y) \rightarrow B\flat(X + Y)$  is a regular epimorphism (Cigoli-Gray-Van der Linden, 2015).
- There exist  $\lambda_1,\ldots,\lambda_{16}\in\mathbb{K}$  such that

$$z(xy) = \lambda_1(zx)y + \lambda_2(zy)x + \dots + \lambda_8y(xz)$$
  
(xy)z =  $\lambda_9(zx)y + \lambda_{10}(zy)x + \dots + \lambda_{16}y(xz)$ 

are laws of  $\mathcal{V}$ .

•  $\mathcal{V}$  is an Orzech category of interest.

э.



#### Theorem (G.M.-Van der Linden)

If V is an alternating variety of non-associative algebras, i.e. xx = 0 is a law, the following are equivalent:

## Theorem (G.M.-Van der Linden)

If V is an alternating variety of non-associative algebras, i.e. xx = 0 is a law, the following are equivalent:

•  $\mathcal{V}$  is a subvariety of a (LACC) variety of alternating  $\mathbb{K}$ -algebras

## Theorem (G.M.-Van der Linden)

If V is an alternating variety of non-associative algebras, i.e. xx = 0 is a law, the following are equivalent:

- $\mathcal{V}$  is a subvariety of a (LACC) variety of alternating  $\mathbb{K}$ -algebras
- The Jacobi identity is a law in V.

## Theorem (G.M.-Van der Linden)

If V is an alternating variety of non-associative algebras, i.e. xx = 0 is a law, the following are equivalent:

- $\mathcal{V}$  is a subvariety of a (LACC) variety of alternating  $\mathbb{K}$ -algebras
- The Jacobi identity is a law in V.

#### Theorem

Let V be an alternating variety of non-associative algebras. If V is (LACC) then it is a subvariety of Lie algebras.

## Theorem (G.M.-Van der Linden)

If V is an alternating variety of non-associative algebras, i.e. xx = 0 is a law, the following are equivalent:

- $\mathcal V$  is a subvariety of a (LACC) variety of alternating  $\mathbb K\text{-algebras}$
- The Jacobi identity is a law in V.

#### Theorem?

Let V be an alternating variety of non-associative algebras If V is (LACC) then it is a subvariety of Lie algebras.

## Theorem (G.M.-Van der Linden)

If V is an alternating variety of non-associative algebras, i.e. xx = 0 is a law, the following are equivalent:

- $\mathcal{V}$  is a subvariety of a (LACC) variety of alternating  $\mathbb{K}$ -algebras
- The Jacobi identity is a law in V.

#### Theorem???

Let V be an alternating variety of non-associative algebras If V is (LACC) then it is a subvariety of Lie algebras.