Topological Groupoids and Exponentiability

Susan Niefield (joint with Dorette Pronk)

July 2017

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Overview

Goal: Study exponentiability in categories of topological groupoid.

Starting Point: Consider exponentiability in $\mathbf{Gpd}(\mathcal{C})$, where \mathcal{C} is:

- finitely complete
- cartesian closed
- locally cartesian closed

Application: Adapt to various categories of orbigroupoids.

Exponentiability in $\ensuremath{\mathcal{C}}$

Suppose C is finitely complete. An object Y is called *exponentiable* if $- \times Y : C \longrightarrow C$ has a right adjoint, and C is called *cartesian closed* if every object is exponentiable.

A morphism $Y \longrightarrow B$ is *exponentiable* in C if it is exponentiable in the slice category C/B, and C is called *locally cartesian closed* if every morphism is exponentiable.

Note that if $q: Y \longrightarrow B$ is exponentiable and $r: Z \longrightarrow B$, we follow the abuse of notation and write the exponential as $r^q: Z^Y \longrightarrow B$.

Properties of Exponentiability

Composition of exponentiables is exponentiable, and pullback along any morphism preserves exponentiability.

If the diagonal $B \xrightarrow{\Delta} B \times B$ and Y are exponentiable, then every morphism $Y \xrightarrow{q} B$ is exponentiable, since

and

A space Y is exponentiable in **Top** iff $\mathcal{O}(Y)$ is a continuous lattice (Day/Kelly, 1970)

A sober space is exponentiable in **Top** iff it is locally compact (Hoffmann/Lawson, 1978)

A subspace inclusion is exponentiable in ${\bf Top}$ iff it is locally closed (N, 1978)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Cartesian Closed Coreflective Subcategories of Top

Suppose $\mathcal{M} \subseteq \mathbf{Top}$. Given a space X, let \hat{X} denote the set X with the topology generated by the set of continuous maps

$$\{f\colon M \longrightarrow X \mid M \in \mathcal{M}\}$$

Say a X is \mathcal{M} -generated if $X = \hat{X}$, and let $\mathbf{Top}_{\mathcal{M}}$ denote the full subcategory of **Top** consisting of \mathcal{M} -generated space.

Proposition (N, 1978) If \mathcal{M} is a class of exponentiable spaces s.t. $M \times N \in \mathbf{Top}_{\mathcal{M}}$, for all $M, N \in \mathcal{M}$, then $\mathbf{Top}_{\mathcal{M}}$ is cartesian closed.

Note
$$X \times Y = \widehat{X \times Y}$$
 is the product and $Z^Y = \lim_{M \to Y} \widehat{Z^M}$ is the exponential in **Top** _{\mathcal{M}} .

Examples

 $\mathcal{K} = \text{compact } \mathcal{T}_2 \text{ spaces; } \mathbf{Top}_{\mathcal{K}} = \text{compactly generated spaces}$

 $\mathcal{E}=$ exponentiable spaces; $\textbf{Top}_{\mathcal{E}}=$ exponentiably generated spaces

Note In both cases, one can show locally closed inclusions are exponentiable in $\mathbf{Top}_{\mathcal{M}}$. Thus, if $\Delta \colon B \longrightarrow B \hat{\times} B$ is locally closed, then the slice $\mathbf{Top}_{\mathcal{M}}/B$ is cartesian closed.

Groupoids in \mathcal{C}

An object G of $\mathbf{Gpd}(\mathcal{C})$ is a diagram in \mathcal{C} of the form

making G a category in C in which every morphism is invertible, where $G_2 = G_1 \times_{G_0} G_1$. Unless otherwise stated, $G_1 \longrightarrow G_0$ is t in the pullback when G_1 is on the left and s when it is on the right.

Morphisms $f: G \longrightarrow H$ are pairs $f_i: G_i \longrightarrow H_i$ (i = 0, 1) compatible with the groupoid structure, i.e., *homomorphisms*.

2-Cells $f \Rightarrow g \colon G \longrightarrow H$ are morphisms $\varphi \colon G_0 \longrightarrow H_1$ such that

i.e., natural transformations.

Exponentiable Objects in $\mathbf{Gpd}(\mathcal{C})$

 $\mathbf{Gpd}(\mathcal{C})$ is cartesian closed whenever \mathcal{C} is, and $H^{\mathcal{G}}$ is defined by

$$(H^G)_0 \longrightarrow H_0^{G_0} \times H_1^{G_1} \xrightarrow{f_0} X_0$$

$$(H^G)_1 \longrightarrow (H^G)_0 \times H_1^{G_0} \times (H^G)_0 \xrightarrow[g_1]{f_1} X_1$$

where (f_0, g_0) and (f_1, g_1) make H^G the "groupoid of homomorphisms" $G \longrightarrow H$.

In particular, $\mathbf{Gpd}(\mathbf{Top}_{\mathcal{K}})$ and $\mathbf{Gpd}(\mathbf{Top}_{\mathcal{E}})$ are cartesian closed.

Exponentiable Objects in $\mathbf{Gpd}(\mathcal{C})$, cont.

This construction of H^G uses only the fact that G_0 , G_1 , and G_2 are exponentiable and not that C is cartesian closed, and so:

Proposition If G_0 , G_1 , and G_2 are exponentiable in C, then G is exponentiable in **Gpd**(C).

Proposition If G is exponentiable in $\mathbf{Gpd}(\mathcal{C})$, then G_0 is exponentiable in \mathcal{C} . The converse holds if s or t is exponentiable in \mathcal{C} .

Note If G is an étale groupoid, then all structure morphisms are exponentiable in **Top**. We conjecture that, in this case, H^G is étale when H is also étale and G_1/G_0 is compact.

Example

If C also has finite coproducts, we can consider $II: 0 \xrightarrow{\cong} 1$, which is exponentiable in **Gpd**(C).

 $(B^{II})_0 = B_1$, the "object of morphisms $\beta \colon b \longrightarrow \overline{b}$ "

 $(B^{\mathbb{I}})_1 = B_2 imes_{B_1} B_2$ via c, the "object of squares"

$$\begin{array}{ccc}
b_{s} \stackrel{\alpha}{\rightarrow} b_{t} \\
\beta_{s} \downarrow & \downarrow \beta_{t} \\
\overline{b}_{s} \stackrel{\sim}{\rightarrow} \overline{b}_{t}
\end{array}$$

with
$$s(\beta_s \xrightarrow{\alpha}{\overrightarrow{\alpha}} \beta_t) = \beta_s, t(\beta_s \xrightarrow{\alpha}{\overrightarrow{\alpha}} \beta_t) = \beta_t, \ldots$$

 $(B^{I})_2$ is the "object of horizontally composable squares"

Note B^{II} is an orbigroupoid when B is.

Exponentiable Morphisms in $\mathbf{Gpd}(\mathcal{C})$

 $G \xrightarrow{q} B$ is a *fibration* if $G_1 \xrightarrow{\langle s, q_1 \rangle} G_0 \times_{B_0} B_1$ has a right inverse in \mathcal{C} .

If C is locally cartesian closed, then every fibration $G \xrightarrow{q} B$ is exponentiable in **Gpd**(C) and $r^q : H^G \longrightarrow B$ is defined by

$$(H^G)_0 \longrightarrow H_0^{G_0} \times_{B_0} (B_0 \times_{B_1} H_1^{G_1}) \xrightarrow[g_0]{t_0} X_0$$
$$(H^G)_1 \longrightarrow (H^G)_0 \times_{B_0} H_1^{G_1} \times_{B_0} (H^G)_0 \xrightarrow[g_1]{t_0} X_1$$

making $(H^G)_0$ "the object of homomorphisms $G_b \xrightarrow{\sigma} H_b$," and $(H^G)_1$ "the object of 2-cells between distributers"

$$\begin{array}{cccc}
G_{b} \stackrel{\sigma}{\longrightarrow} H_{b} \\
G_{\beta} \stackrel{\bullet}{\downarrow} \stackrel{\Sigma}{\longrightarrow} \stackrel{\bullet}{\downarrow} H_{\beta} \\
G_{\overline{b}} \stackrel{\sigma}{\longrightarrow} H_{\overline{b}}
\end{array}$$

Note Composition is defined using the fibration assumption.

Exponentiable Morphisms in $\mathbf{Gpd}(\mathcal{C})$, cont.

The construction of H^G uses only that $G \xrightarrow{q} B$ is a fibration with the q_i exponentiable, and not that C is locally cartesian closed.

Proposition If $G \rightarrow B$ is a fibration with $G_i \rightarrow B_i$ (i = 0, 1, 2) exponentiable in C, then $G \rightarrow B$ is exponentiable in **Gpd**(C).

Corollary Suppose the diagonals $B_i \xrightarrow{\Delta_i} B_i \times B_i$ (i = 0, 1) are exponentiable in a cartesian closed category C. Then every fibration $G \longrightarrow B$ is exponentiable in **Gpd**(C)

Note This implies that fibrations $G \rightarrow B$ are exponentiable in $\mathbf{Gpd}(\mathbf{Top}_{\mathcal{M}})$, for $\mathcal{M} = \mathcal{K}$ or \mathcal{E} , if $B_i \xrightarrow{\Delta_i} B_i \hat{\times} B_i$ are locally closed.

Example Revisited

Define
$$B^{II} \xrightarrow{s}_{t} B$$
 by $s_{0} = s$, $t_{0} = t$, $s_{1} \colon B_{2} \times_{B_{1}} B_{2} \xrightarrow{\pi_{2}} B_{2} \xrightarrow{\pi_{1}} B_{1}$, and
 $t_{1} \colon B_{2} \times_{B_{1}} B_{2} \xrightarrow{\pi_{1}} B_{2} \xrightarrow{\pi_{2}} B_{1}$, i.e., $s_{1}(\beta_{s} \xrightarrow{\alpha}_{\overline{\alpha}} \beta_{t}) = \alpha$, $t_{1}(\beta_{s} \xrightarrow{\alpha}_{\overline{\alpha}} \beta_{t}) = \overline{\alpha}$.
Proposition $B^{II} \xrightarrow{s}_{t} B$ are fibrations in $\mathbf{Gpd}(\mathcal{C})$.
Proof. $\langle s, s_{1} \rangle \colon (B^{II})_{1} \longrightarrow (B^{II})_{0} \times_{B_{0}} B_{1}$ is given by
 $\begin{array}{c} b_{s} \xrightarrow{\alpha} b_{t} & b_{s} \xrightarrow{\alpha} b_{t} & b_{s} \xrightarrow{\alpha} b_{t} \\ \beta_{s} \checkmark & \sqrt[\beta_{b_{t}} \mapsto \beta_{s} \checkmark & and so & \beta_{s} \checkmark & \mapsto & \beta_{s} \checkmark & \sqrt[\beta_{s}] \\ \overline{b}_{s} \xrightarrow{\alpha} \overline{b}_{t} & \overline{b}_{s} & \overline{b}_{s} & \overline{b}_{s} & \overline{b}_{s} \end{array}$

is a right inverse. The proof for t is similar.

Note Can also show $B^{\mathbb{I}} \times_B G \xrightarrow{s\pi_1} B$ is a fibration, for all $G \longrightarrow B$.

◆□ → ◆□ → ◆ 三 → ◆ 三 → のへで

Example Revisited, cont.

Proposition $B^{\mathbb{I}} \times_B G \xrightarrow{s\pi_1} B$ is exponentiable in $\mathbf{Gpd}(\mathcal{C})$, if the components are exponentiable in \mathcal{C} .

Corollary Suppose the diagonals $B_i \xrightarrow{\Delta_i} B_i \times B_i$ (i = 0, 1) are exponentiable in a cartesian closed category C. Then $B^{\mathbb{I}} \times_B G \xrightarrow{s\pi_1} B$ is exponentiable, for all $G \longrightarrow B$ in **Gpd**(C).

Note So, $B^{\mathbb{I}} \times_B G \xrightarrow{s\pi_1} B$ is exponentiable in $\mathbf{Gpd}(\mathbf{Top}_{\mathcal{M}})$, for $\mathcal{M} = \mathcal{K}$ or \mathcal{E} , if the diagonals $B_i \xrightarrow{\Delta_i} B_i \hat{\times} B_i$ are locally closed.

くしゃ (雪) (雪) (雪) (雪) (雪) (

The Pseudo-Slice 2-Category $\mathbf{Gpd}(\mathcal{C})//B$

The functor $(G \longrightarrow B) \mapsto (B^{\mathbb{I}} \times_B G \xrightarrow{s\pi_1} B)$ is part of a 2-monad on the 2-category **Gpd** $(\mathcal{C})/B$ induced by the internal groupoid

$$B^{\mathrm{I}} \times_{B} B^{\mathrm{I}} \xrightarrow{c} B^{\mathrm{I}} \xrightarrow{s}_{t} B^{\mathrm{I}}$$

and the 2-Kleisli category is the pseudo-slice $\mathbf{Gpd}(\mathcal{C})/\!/B$ whose objects are homomorphism $q: G \longrightarrow B$, morphisms are triangles

and 2-cells $\theta \colon (f, \varphi) \longrightarrow (g, \psi)$ are 2-cells $\theta \colon f \longrightarrow g$ such that

Pseudo-Exponentiability in 2-Kleisli Categories

An object Y is *pseudo-exponentiable* in a 2-category \mathcal{K} if, for every Z, there is an object Z^{Y} and natural equivalences

$$\mathcal{K}(X \times Y, Z) \simeq \mathcal{K}(X, Z^Y)$$

Theorem (N, 2007) Suppose that \mathcal{K} is a 2-category with finite products and T, η, μ is a 2-monad on \mathcal{K} such that $\eta T \cong T\eta$ and $T(X \times TY) \rightarrow TX \times TY$ is an isomorphism in \mathcal{K} , for all X, Y. If TY is 2-exponentiable in \mathcal{K} , then $T(TZ^{TY}) \rightarrow TZ^{TY}$ is an equivalence and Y is pseudo-exponentiable in the Kleisli 2-category \mathcal{K}_T .

Remarks

- 1. $|\mathcal{K}_{\mathsf{T}}| = |\mathcal{K}|$, $\mathcal{K}_{\mathsf{T}}(X, Y) = \mathcal{K}(X, TY)$, with composition via μ .
- One can show that the 2-monad on Gpd(C)/B related to B^{II} satisfies the hypotheses of the theorem.

Pseudo-Exponentiability in $\mathbf{Gpd}(\mathcal{C})/\!/B$

Corollary $G \rightarrow B$ is pseudo-exponentiable in $\mathbf{Gpd}(\mathcal{C})//B$, if the components of $B^{\mathbb{I}} \times_B G \xrightarrow{s\pi_1} B$ are exponentiable in \mathcal{C} .

Corollary **Gpd**(C)//B is pseudo-cartesian closed, if the diagonals $B_i \xrightarrow{\Delta_i} B_i \times B_i$ are exponentiable in a cartesian closed category C.

Note So, $\mathbf{Gpd}(\mathbf{Top}_{\mathcal{M}})/\!/B$ is pseudo-cartesian closed, for $\mathcal{M} = \mathcal{K}$ or \mathcal{E} , if the diagonals $B_i \xrightarrow{\Delta_i} B_i \hat{\times} B_i$ are locally closed.

Corollary If C is locally cartesian closed category, then $\mathbf{Gpd}(C)$ is pseudo-locally cartesian closed.

Note A proof that **Gpd**(**Sets**) is pseudo-locally cartesian closed appeared in a 2003 paper by Palmgren posted on the arxiv.