CT2017 - UBC - Vancouver

Quasi-toposes as elementary quotient completions

Fabio Pasquali University of Padova

j.w.w.

M. E. Maietti and G. Rosolini

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Elementary doctrines

An elementary doctrine is a functor

$$P: \mathcal{C}^{op} \to InfSL$$

such that

- C has finite products
- reindexing of the form

$$P(id_X \times \Delta_A)$$
: $P(X \times A \times A) \rightarrow P(X \times A)$

have a left adjoint

$$\exists_{id_X \times \Delta_A} : P(X \times A) \to P(X \times A \times A)$$

$$\models \exists_{id_X \times \Delta_A}(\alpha) = P(\langle \pi_1, \pi_2 \rangle)(\alpha) \land P(\langle \pi_2, \pi_3 \rangle)(\delta_A)$$

where $\delta_A = \exists_{\Delta_A}(\top_A)$ is the equality predicate over A

[F.W. Lawvere. Equality in hyperdoctrines and comprehension scheme as an adjoint functor. 1970]

Elementary doctrines (examples)

Subsets. $\mathcal{P}: \mathcal{Set}^{op} \to InfSL$ $\delta_A = \{(x, y) \in A \mid x = y\}$

Subobjects. C has finite limits. Sub: $C^{op} \rightarrow InfSL$

$$\delta_A$$
 is $\Delta_A: A \to A \times A$

Weak subobjects. C has finite limits. $\Psi: C^{op} \to InfSL$ is

 $A\mapsto (\mathcal{C}/A)_{\mathsf{po}}$

Pullbacks gives $\Psi(f)$

 δ_A is $\Delta_A: A \to A \times A$

Strong equality

An elementary doctrine $P: C^{op} \to InfSL$ has strong equality if for every pair of arrows $f, g: X \to Y$ it is

$$f = g$$
 If and only if $\top_X = P(\langle f, g \rangle)(\delta_Y)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Equivalence relations

 $P: \mathcal{C}^{op} \rightarrow \mathit{InfSL}$ is an elementary doctrine

 ρ in $P(A \times A)$ is a *P*-equivalence relation over A if ρ is

reflexive: $\delta_A \leq \rho$

symmetric: $P(\langle \pi_2, \pi_1 \rangle)(\rho) \leq \rho$

transitive: $P(\langle \pi_1, \pi_2 \rangle)(\rho) \wedge P(\langle \pi_2, \pi_3 \rangle)(\rho) \leq P(\langle \pi_1, \pi_3 \rangle)(\rho)$

Effective quotients

An elementary doctrine $P: C^{op} \to InfSL$ has quotients if for every A in C and every P-equivalence relation ρ over A there is an arrow

$$q: A \to A/\rho$$

such that

$$ho \leq \mathsf{P}(\mathsf{q} imes \mathsf{q})(\delta_{\mathsf{A}/
ho})$$

and for every $f: A \to Y$ with $\rho \leq P(f \times f)(\delta_Y)$ there is a unique $k: A/\rho \to Y$ with kq = f.

Quotients are said effective when $\rho = P(q \times q)(\delta_{A/\rho})$

Elementary quotient completion

Suppose $P: \mathcal{C}^{op} \to InfSL$ is an elementary doctrine. Consider the category \mathcal{Q}_P where

objects: (A, ρ) where ρ is a a *P*-equivalence relation over *A*

arrows: $[f]: (A, \rho) \longrightarrow (B, \sigma)$ where $f: A \rightarrow B$ is in \mathbb{C} such that $\rho \leq P(f \times f)(\sigma)$ and $g \in [f]$ if and only if $\top_A \leq P(\langle f, g \rangle)(\sigma)$

Elementary quotient completion

Consider the functor

$$\begin{array}{ll} (A,\rho) & \{\phi \in P(A) \mid P(\pi_1)(\phi) \land \rho \leq P(\pi_2)(\phi)\} \\ [f] & \mapsto & & \uparrow \\ (B,\sigma) & \{\phi \in P(B) \mid P(\pi_1)(\phi) \land \sigma \leq P(\pi_2)(\phi)\} \end{array}$$

 $P_q: \mathcal{Q}_P^{op} \longrightarrow InfSL$ is the elementary quotient completion of $P: C^{op} \rightarrow InfSL$

If σ is a P_q -equivalence relation over (A, ρ) , the quotient is

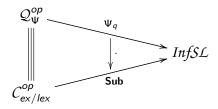
$$[id_A]: (A, \rho) \to (A, \sigma)$$

[M. E. Maietti, G. Rosolini. Elementary quotient completion. 2013]

Example: the ex/lex completion

 $\ensuremath{\mathcal{C}}$ has finite limits

 $\Psi: \mathcal{C}^{op} \longrightarrow \mathit{InfSL}$ is the doctrine of weak subobjects



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Projectivity

An object X of C is said q-projective if for every diagram of the form

there is an arrow $k: X \to Y$ such that

$$\top_{\boldsymbol{X}} = P(\langle \boldsymbol{s}\boldsymbol{k}, \boldsymbol{f} \rangle)(\delta_{\boldsymbol{Y}/\rho})$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Enough q-projective

An elementary doctrine $P: C^{op} \rightarrow InfSL$ is said to have enough q-projectives if every object is the effective quotient of a q-projective object.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theorem: An elementary doctrine $P: \mathcal{C}^{op} \to InfSL$ with effective quotients and strong equality is of the form $P'_q: \mathcal{Q}^{op}_{P'} \to InfSL$ for some $P': \mathcal{C}'^{op} \to InfSL$ if and only it has enough q-projectives and these are closed under binary products.

First order doctrine

A first order doctrine is an elementary doctrine $P: C^{op} \rightarrow InfSL$ where

- i) $P: \mathcal{C}^{op} \longrightarrow \mathbf{Heyt}$
- ii) for every projection $\pi_A: A \times X \to A$, the map $P(\pi_A)$ has both a right adjoint (\forall_{π_A}) and a left adjoint (\exists_{π_A}) natural in A(Beck-Chevalley condition)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Weak comprehension

An elementary doctrine $P: \mathcal{C}^{op} \to InfSL$ has weak comprehensions if for every A in C and every α in P(A), there is an arrow

$$\lfloor \alpha \rfloor : X \longrightarrow A$$

with $P(\lfloor \alpha \rfloor)(\alpha) = \top_X$ such that for every arrow $f: Y \longrightarrow A$ with $P(f)(\alpha) = \top_Y$ there is $k: Y \longrightarrow X$ making commute

Comprehension is full if $P(\lfloor \alpha \rfloor)(\alpha) \leq P(\lfloor \alpha \rfloor)(\beta)$ iff $\alpha \leq \beta$

The doctrine of weak subobjects has full weak comprehension

Properties of the elementary quotient completion

Suppose $P: C^{op} \rightarrow InfSL$ is a first order doctrine with weak full comprehensions and strong equality.

Theorem: Q_P has finite limits

Theorem: C has weak U iff Q_P has U, where U is any of finite coproducts natural number object parametrized list objects arbitrary limits (if arbitrary meets in the fibers) arbitrary coproducts (if arbitrary joins in the fibers) a classifier of comprehensions

Theorem: C is weak U iff Q_P is U, where U is any of cartesian closed locally cartesian closed

Application: the ex/lex completion

 $\ensuremath{\mathcal{C}}$ has finite limits

 $\Psi : \mathcal{C}^{op} \longrightarrow \mathit{InfSL} \text{ is the doctrine of weak subobjects}$

Theorem (Carboni-Rosolini): $C_{ex/lex}$ is lcc iff C is weakly lcc.

Theorem (Menni): $C_{ex/lex}$ is an elementary topos iff C is weakly locally cartesian closed with a weak proof classifier.

Triposes

A tripos is a first order doctrine with weak powerobjects

i.e. for every A in C there is $\mathbb{P}A$ in C and \in_A in $P(A \times \mathbb{P}A)$ such that for every ψ in $P(A \times Y)$ there is $\{\psi\}: Y \to \mathbb{P}A$ such that $P(id_A \times \{\psi\})(\in_A) = \psi$

Every tripos $P: C^{op} \rightarrow InfSL$ canonically generates an elementary topos C[P] via the Tripos-To-Topos construction.

[J. M. E. Hyland, P. T. Johnstone, A. M. Pitts. Tripos theory. 1980] [A. M. Pitts. Tripos theory in retrospect. 2002] A quasitopos is a finitely complete, finitely cocomplete, locally cartesian closed category in which there exists an object that classifies strong monomorphisms

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

An arithmetic quasitopos a quasitopos with a NNO

Quasitoposes

Theorem: If $P: C^{op} \to InfSL$ is a tripos with weak full comprehension, where C is weakly locally cartesian closed, with weak co-products and a weak natural number objects, then Q_P is an arithmetic quasitopos.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Quasitoposes

Theorem: If $P: C^{op} \to InfSL$ is a tripos with weak full comprehension, where C is weakly locally cartesian closed, with weak co-products and a weak natural number objects, then Q_P is an arithmetic quasitopos.

Remark: NNO + lcc give list objects.

List objects give the transitive closure of a relation

The coequalizer of $f, g: A \rightarrow B$ is the quotient of the equivalence relation over B generated by

$$\exists a \ (f(a) = b \land g(a) = b')$$

Applications

We have already commented on the $\ensuremath{\mathsf{ex/lex}}$ completion of a category with finite limits.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

We shall discuss also

General equilogical spaces

Assemblies

Bishop total setoids model over CIC

Applications: General equilogical spaces

 $\mathcal{P}: \mathcal{T}op^{op} \longrightarrow InfSL$ maps a space A to the powerset of its set of points and each continuous functions to the inverse image mapping.

 \mathscr{P} is a tripos: $\mathbb{P}(A)$ is $\{0,1\}^A$ and $\in_A: A \times \{0,1\}^A \to \{0,1\}$

 $\ensuremath{\mathcal{P}}$ has full comprehensions: subspaces

 $\mathcal{T}\!\mathit{op}$ is weakly locally cartesian closed with a natural number object ($\mathbb N$ discrete)

Each $\mathcal{P}(A)$ has arbitrary meets and joins and these are preserved by maps of the form $\mathcal{P}(f)$

 $Q_{\mathcal{P}}$ is Gequ.

Corollary: *Gequ* is an arithmetic quasi-topos which is complete and cocomplete.

Applications: Assemblies

Denote by *Asm* the quasitopos of assemblies.

S-Sub: $Asm^{op} \longrightarrow InfSL$ is the tripos of strong subobjects

This tripos has effective quotients and strong equality.

 $\mathcal{A}\!\mathit{sm}$ has enough q-projectives and these are the partitioned assemblies.

Then **S-Sub** is the elementary quotient completion of the restriction of **S-Sub** to \mathcal{PAsm}

Applications: Calculus of Inductive Constructions (CIC)

Denote by CT the category whose objects are closed types of CIC and an arrow $A \rightarrow B$ is an equivalence class of terms t: B[x:A]where t and t' are equivalent if there is $p: Id_B(t, t')[x:A]$

Pr(A) denotes the poset reflection of the order whose elements are propositions depending on A where $B \leq C$ if $q: B \Rightarrow C[x: A]$. The action of Pr on arrows of CT is given by substitution.

The pair (CT, Pr) is a tripos with weak full comprehension.

 \mathcal{CT} is weakly lcc with a weak NNO.

 Q_{Pr} is equivalent to the setoid model.

Corollary: The total setoid model over CIC is an arithmetic quasitopos

Conclusions

$P: \mathcal{C}^{op} \rightarrow \mathit{InfSL}$	\mathcal{Q}_P	$\mathcal{C}[P]$
$\mathcal{P}: \mathcal{T}op^{op} \to \mathit{InfSL}$	Gequ	Set
$\textbf{S-Sub:} \mathscr{PAsm}^{op} \rightarrow \mathit{InfSL}$	Asm	Set

Conclusions

$P: C^{op} \rightarrow InfSL$	Q_P	$\mathcal{C}[P]$
$\mathcal{P}: \mathcal{T}op^{op} \to \mathit{InfSL}$	Gequ	Set
$\textbf{S-Sub:} \ \mathcal{PAsm}^{op} \rightarrow \textit{InfSL}$	Asm	Set

 $Q_P \equiv C[P]$ iff the tripos P_q validates AUC

Study of models of type theories that do not validate AUC, such as CIC (Coquand, Paulin-Mohring) or the Minimalist Foundation (Maietti, Sambin)

Thank you