
Introduction Cartesian model Model of circuit families Circuit description language

A categorical model for a quantum
circuit description language

Francisco Rios
(joint work with Peter Selinger)

Department of Mathematics and Statistics
Dalhousie University

CT
July 16th–22th, 2017

Introduction Cartesian model Model of circuit families Circuit description language

What is this talk about?

It is about a categorical model of a small, but useful fragment of
Quipper called Proto-Quipper-M.
Quipper is a functional programming language for quantum
computing.
The fragment Proto-Quipper-M is

I a stand-alone programming language (i.e., not embedded in a
host language),

I it has its own custom type system and semantics, and
I it is also more general than Quipper: it can describe families

of morphisms in any symmetric monoidal category, of which
quantum circuits are but one example.

Introduction Cartesian model Model of circuit families Circuit description language

What is this talk about?

It is about a categorical model of a small, but useful fragment of
Quipper called Proto-Quipper-M.
Quipper is a functional programming language for quantum
computing.
The fragment Proto-Quipper-M is

I a stand-alone programming language (i.e., not embedded in a
host language),

I it has its own custom type system and semantics, and
I it is also more general than Quipper: it can describe families

of morphisms in any symmetric monoidal category, of which
quantum circuits are but one example.

Introduction Cartesian model Model of circuit families Circuit description language

What it Quipper?

It is a circuit description language. This means two things:
I the language can be used to construct quantum circuits in a

structured way, essentially by applying one gate at a time.
I the completed circuits themselves become data, which can be

stored in variables, and on which meta-operations (such as
circuit transformations, gate counts, inversion, error
correction, etc) can be performed.

Quipper is practical: it has been used to implement several
large-scale quantum algorithms, generating circuits containing
trillions of gates.

Introduction Cartesian model Model of circuit families Circuit description language

What it Quipper?

It is a circuit description language. This means two things:
I the language can be used to construct quantum circuits in a

structured way, essentially by applying one gate at a time.
I the completed circuits themselves become data, which can be

stored in variables, and on which meta-operations (such as
circuit transformations, gate counts, inversion, error
correction, etc) can be performed.

Quipper is practical: it has been used to implement several
large-scale quantum algorithms, generating circuits containing
trillions of gates.

Introduction Cartesian model Model of circuit families Circuit description language

Quipper’s limitations

However, there are some drawbacks:
I Quipper is not type-safe (there are some well-typed programs

that lead to run-time errors)
I Quipper has no formal semantics; its behavior is only defined

by its implementation.
Proto-Quipper-M deals some of these issues!

Introduction Cartesian model Model of circuit families Circuit description language

Parameters and states

A fundamental concept that arises in Quipper is the distinction
between parameters and states.
A Quipper program has two distinct run times:

I circuit generation time: when the circuits are built, and
I circuit execution time: when circuits are run.

A parameter is a value that is known at circuit generation time.
A state is a value that is known at circuit execution time.
Example: given a list of qubits [q1, . . . , qn], the length n of the list
is typically known at circuit construction time, and is therefore a
parameter, whereas the actual qubits are state.

Introduction Cartesian model Model of circuit families Circuit description language

Key observation

A state can depend on a parameter, but since states are not known
at circuit generation time, parameters cannot be a function of
states!

Enforcing this condition soundly is one of the guiding principles in
the design of Proto-Quipper-M.
We devise Proto-Quipper-M from the ground up by

I first giving a categorical model of parameters and states, and
I then defining the language to fit the model.

Some advantages of this approach:
I Our programming language is almost “correct by design.”
I It can describe families of morphisms of an arbitrary symmetric

monoidal category, rather than just quantum circuits.

Introduction Cartesian model Model of circuit families Circuit description language

A cartesian model of parameters and states

Set2op model is a simplified categorical model of parameters and
states!

I This model is cartesian, and therefore could be used to model
a language for describing classical, rather than quantum
circuits.

Nevertheless, several important notions will already be visible in
this model.

Introduction Cartesian model Model of circuit families Circuit description language

The model Set2op

Let us take a more concrete look at the model Set2op .
I Obj(Set2op): A = (A0, A1, a), where A0, A1 are sets and

a : A1 → A0 is a function.
I Mor(Set2op): f : A→ B is a commutative diagram

A1

a
��

f1 // B1

b
��

A0
f0 // B0.

(1)

I For each x ∈ A0, we define the fiber of A over x:

Ax = {s ∈ A1 | a(s) = x}. (2)

I We call the elements of A0 parameters and the elements of Ax
states.

Introduction Cartesian model Model of circuit families Circuit description language

Some observations on Set2op

I An object A = (A0, A1, a) describes a family of sets: up to
isomorphism, A is uniquely determined by the family (Ax)x∈A0 .

I The elements of A1 can be identified with pairs (x , s), where
x ∈ A0 and s ∈ Ax , the generalized elements of A.

I Key point: The requirement that the diagram (1) commutes
is exactly equivalent to the statement “states may depend on
parameters, but parameters may not depend on states”!

Introduction Cartesian model Model of circuit families Circuit description language

States may depend on parameters, but not viceversa!

To see this, just consider the effect of a morphism f : A→ B on a
parameter-state pair (x , s):

I Let y = f0(x) and t = f1(s). Then y ∈ B0 and t ∈ B1.
I By the commutativity of (1),

y = f0(x) = f0(a(s)) = b(f1(s)) = b(t). So, y = b(t), i.e.,
t ∈ By = Bf0(x). Thus, for each x ∈ A0, f1 : A1 → B1 restricts
to a function fx : Ax → Bf0(x).

I Note that t is a function of both x and s, because t = fx (s).
I Therefore, states may depend on parameters and states.
I Now, y is only a function of x , because y = f0(x).
I Therefore, parameters may not depend on states.

Introduction Cartesian model Model of circuit families Circuit description language

States may depend on parameters, but not viceversa!

To see this, just consider the effect of a morphism f : A→ B on a
parameter-state pair (x , s):

I Let y = f0(x) and t = f1(s). Then y ∈ B0 and t ∈ B1.
I By the commutativity of (1),

y = f0(x) = f0(a(s)) = b(f1(s)) = b(t). So, y = b(t), i.e.,
t ∈ By = Bf0(x). Thus, for each x ∈ A0, f1 : A1 → B1 restricts
to a function fx : Ax → Bf0(x).

I Note that t is a function of both x and s, because t = fx (s).
I Therefore, states may depend on parameters and states.
I Now, y is only a function of x , because y = f0(x).
I Therefore, parameters may not depend on states.

Introduction Cartesian model Model of circuit families Circuit description language

An example in Set2op

Let bool = (2, 2, id), where 2 = {0, 1} is a 2-element set and id is
the identity function. Let bit = (1, 2, u), where 1 = {∗} is a
1-element set and u : 2→ 1 is the unique function. In diagrams:

bool =
2

id
��

2

bit =
2

u
��

1

Note:
I The two generalized elements of bool are (0, 0) and (1, 1),

which we identify with “false” and “true”, respectively.
I The two generalized elements of bit are (∗, 0) and (∗, 1),

which we again identify with “false” and “true”.

Introduction Cartesian model Model of circuit families Circuit description language

What is the difference between bool and bit?

I Informally, a boolean is only a parameter and has no state,
whereas a bit is only state and has no parameters.

I Note that there is an “identity” function f : bool→ bit,
mapping false to false and true to true. This function is given
by the commutative diagram

2 id //

id
��

2
u
��

2 u // 1,

(3)

and it satisfies f (0, 0) = (∗, 0) and f (1, 1) = (∗, 1).

Introduction Cartesian model Model of circuit families Circuit description language

What is the difference between bool and bit?

On the other hand, there exists no morphism g : bit→ bool
mapping false to false and true to true: the diagram

2 id //

u
��

2
id
��

1 ? // 2

(4)

cannot be made to commute!
I Therefore, a boolean can be used to initialize a bit, but not

the other way round.
I This precisely captures our basic intuition about parameters

and states!

Introduction Cartesian model Model of circuit families Circuit description language

Parameter and state objects

Generalizing the example of bool and bit, we say that:
I an object A is a parameter object if it is of the form (A, A, id);
I an object A is called a state object or simple if A0 is a

singleton.
Note:

I bool is a parameter object and bit is a state object.

Introduction Cartesian model Model of circuit families Circuit description language

So, what can we interpret in Set2op ?

I Since the category Set2op is cartesian closed, we can interpret
the simply-typed lambda calculus in it.

I Also, we can add base types such as bool and bit, and basic
operations such as init : bool→ bit, all of which have
obvious interpretations in the model.

I Moreover, Set2op is co-complete which allows us to interpret
sum types as well as inductive data types such as list (A)
using initial algebra semantics.

So, we obtain a very simple and semantically sound lambda
calculus for the description of boolean circuits.

Introduction Cartesian model Model of circuit families Circuit description language

The model Set2op is good, but not good enough!

I The model Set2op is useful for formalizing some basic
intuitions about parameters and state.

I However, it is not yet an adequate model for describing
families of quantum circuits. The main issue is that the model
is cartesian!

I There exist morphisms ∆A : A→ A× A for all objects A,
including state objects.

I This is not appropriate if we want to describe quantum
circuits, where the no-cloning property prevents us from
duplicating quantum states.

Introduction Cartesian model Model of circuit families Circuit description language

How do we generalize Set2op to a monoidal setting?

Observe:
I Obj(Set2op) : A = (A0, (Ax)x∈A0), where A0 is a set and

(Ax)x∈A0 is a family of sets.
I Mor(Set2op) : f : A→ B can be equivalently described as a

pair (f0, (fx)x∈A0), where f0 : A0 → B0, and for each x ∈ A0,
fx : Ax → Bf0(x).

We generalize this by considering each Ax to be an object of a
monoidal category instead of a set and each fx : Ax → Bf0(x) to be
a morphism instead of a function of such category!

Introduction Cartesian model Model of circuit families Circuit description language

How do we generalize Set2op to a monoidal setting?

Observe:
I Obj(Set2op) : A = (A0, (Ax)x∈A0), where A0 is a set and

(Ax)x∈A0 is a family of sets.
I Mor(Set2op) : f : A→ B can be equivalently described as a

pair (f0, (fx)x∈A0), where f0 : A0 → B0, and for each x ∈ A0,
fx : Ax → Bf0(x).

We generalize this by considering each Ax to be an object of a
monoidal category instead of a set and each fx : Ax → Bf0(x) to be
a morphism instead of a function of such category!

Introduction Cartesian model Model of circuit families Circuit description language

The category M: generalized circuits

Before designing a circuit description language, we should be more
precise about what we mean by a “circuit”!
We take a more general and abstract point of view:

I for us, a circuit is simply a morphism in a (fixed but arbitrary)
symmetric monoidal category.

I We assume that a symmetric monoidal category M is given
call its morphisms generalized circuits.

I From this point of view, Proto-Quipper-M is simply a
language for describing families of morphisms of M.

We will regard the morphisms of M as concrete data.

Introduction Cartesian model Model of circuit families Circuit description language

The category M: generalized circuits

Before designing a circuit description language, we should be more
precise about what we mean by a “circuit”!
We take a more general and abstract point of view:

I for us, a circuit is simply a morphism in a (fixed but arbitrary)
symmetric monoidal category.

I We assume that a symmetric monoidal category M is given
call its morphisms generalized circuits.

I From this point of view, Proto-Quipper-M is simply a
language for describing families of morphisms of M.

We will regard the morphisms of M as concrete data.

Introduction Cartesian model Model of circuit families Circuit description language

The category M: states

We let M be some symmetric monoidal closed, product-complete
category in which M can be fully embedded.

I This can always be done.
I We do not specify any particular way of constructing M.

We will regard the category M as abstract:
I It is monoidal closed, so we will be able to form higher-order

objects such as (A (B ⊗ C) (D.
I We do not imagine morphisms between such higher-order

objects as being concrete things that can be printed,
measured, etc.

I Instead, the higher-order structure only exists as a kind of
“scaffolding” to support lower-order concrete operations.

Introduction Cartesian model Model of circuit families Circuit description language

The category M: parameters

We now define the category M: a model for parameters and states.

I M will be the carrier of the categorical semantics of our
circuit description language.

Definition

The category M has the following objects and morphisms:
I An object is a pair A = (X , (Ax)x∈X), where X is a set and

(Ax)x∈X is an X -indexed family of objects of M.
I A morphism f : (X , (Ax)x∈X)→ (Y , (By)y∈Y) is a pair

(f0, (fx)x∈X), where f0 : X → Y is a function and each
fx : Ax → Bf0(x) is a morphism of M.

This category is rich in structure. To begin, M is the free
coproduct completion of M.

Introduction Cartesian model Model of circuit families Circuit description language

Properties of M

What is perhaps more surprising is that it is also monoidal closed.

Proposition

The category M is symmetric monoidal closed with the following
structure:

I = (1, (I))
A⊗ B = (A0 × B0, (Ax ⊗ By)(x ,y)∈A0×B0)
A (B = (A0 → B0, (Cf)f),

where
Cf =

∏
x∈A0

(Ax (Bf (x)).

Here, of course, A0 → B0 denotes the set of all functions from A0
to B0, and Ax (By denotes the exponential object in the
monoidal closed category M.

Introduction Cartesian model Model of circuit families Circuit description language

Parameter and state objects in M

Now parameter and state objects can be defined analogously to
those of Set2op :

I An object A ∈M is a parameter object if each fiber is the
tensor unit I, i.e., if A = (X , (I)x∈X).

I An object A ∈M is a state object or simple if A0 ∼= 1.
I An object A ∈M is an M-object if every fiber belongs to the

category M

Introduction Cartesian model Model of circuit families Circuit description language

Some canonical functors and basic types

Note that we have the following functors:

Set p−→M, M i
↪→M

j
↪→M,

where p(X) = (X , (I)x), i is the canonical inclusion, and
j(A) = (1, (A)).
The properties of M guarantee the existence of useful objects and
morphisms:

I a parameter object bool = I + I,
I morphisms true, false : I → bool,
I an object nat = (N, (I)n), indeed there is a parameter object

p(X) corresponding to every set X , arising from the functor
p : Set→M,

I an object list (A), for each A ∈M, the type of lists of A.

Introduction Cartesian model Model of circuit families Circuit description language

A relevant adjunction

Proposition

The functor p : Set→M has a right adjoint [: M→ Set given by

[(X , (Ax)x∈X) =
∑
x∈X

M(I, Ax).

Note that for simple M-objects T and U, we have

[(T (U) ∼= M(I, T (U) ∼= M(T , U) ∼= M(T , U). (5)

So [(T (U) is just a set of generalized circuits.
Also, we would like to be able to use completed circuits as
parameters in the construction of other circuits, i.e., we would like
there to be a parameter object whose elements are circuits. Such
an object is

p(M(T , U)) ∼= p([(T (U)).

Introduction Cartesian model Model of circuit families Circuit description language

The boxing comonad

This motivates the following definition:

Definition

The functor ! : M→M is defined by

! = p ◦ [.

Since p and [are adjoints, the functor ! is a comonad on the
category M. We call it the boxing comonad. It is equipped with a
natural transformation force : !A→ A

Some useful morphisms:
I From (5), we have an isomorphism

box : !(T (U)→ p(M(T , U)) for simple M-objects T and
U. We denote its inverse by unbox.

Introduction Cartesian model Model of circuit families Circuit description language

Towards a circuit description language

Here we just give a brief overview of some of the most
relevant features of the language:

I Since the category M is symmetric monoidal closed with
coproducts, a standard linear lambda calculus with sum types
can be interpreted in it.

I Basic types such as bool, bit and qubit (the latter two if
present in the category M of generalized circuits) can also be
added to the language, along with the associated terms (such
as true, false, and any basic gates that are present in the
category M).

Introduction Cartesian model Model of circuit families Circuit description language

Towards a circuit description language

Here we just give a brief overview of some of the most
relevant features of the language:

I Since the category M is symmetric monoidal closed with
coproducts, a standard linear lambda calculus with sum types
can be interpreted in it.

I Basic types such as bool, bit and qubit (the latter two if
present in the category M of generalized circuits) can also be
added to the language, along with the associated terms (such
as true, false, and any basic gates that are present in the
category M).

Introduction Cartesian model Model of circuit families Circuit description language

Towards a circuit description language

I Moreover, since certain inductive types such as list(A) and
nat exist in the model, we can add them to the language.

I Also the language can be equipped with a type operation “!”
and terms “force ”, “box”, and “unbox”, arising from their
categorical counterparts introduced earlier.

I The language has parameter types, simple types, and M-types,
and their interpretation in the model will of course be
parameter objects, simple objects, and M-objects, respectively.

Introduction Cartesian model Model of circuit families Circuit description language

Key point!

Our claim that the resulting programming language is a language
for describing families of circuits is justified by the following
observation:

I Suppose Φ ` N : T (U is a valid typing judgment, where Φ
is a parameter context, and T and U are simple M-types.

I Then the interpretation of this judgement will be a morphism
[[N]] : p(X)→ [[T]] ([[U]] of M, where p(X) = [[Φ]] is a
parameter object and [[T]] and [[U]] are simple M-objects.

I And thus we have:
M(p(X), [[T]]([[U]]) ∼= Set(X , [([[T]]([[U]])) ∼= Set(X , M([[T]], [[U]])),

where the first isomorphism uses the fact that [is the right
adjoint of p, and the second isomorphism arises from (5).

I Therefore, the interpretation of N literally yields a function
from X to M([[T]], [[U]]), i.e., a parameterized family of
generalized circuits!

Introduction Cartesian model Model of circuit families Circuit description language

Key point!

Our claim that the resulting programming language is a language
for describing families of circuits is justified by the following
observation:

I Suppose Φ ` N : T (U is a valid typing judgment, where Φ
is a parameter context, and T and U are simple M-types.

I Then the interpretation of this judgement will be a morphism
[[N]] : p(X)→ [[T]] ([[U]] of M, where p(X) = [[Φ]] is a
parameter object and [[T]] and [[U]] are simple M-objects.

I And thus we have:
M(p(X), [[T]]([[U]]) ∼= Set(X , [([[T]]([[U]])) ∼= Set(X , M([[T]], [[U]])),

where the first isomorphism uses the fact that [is the right
adjoint of p, and the second isomorphism arises from (5).

I Therefore, the interpretation of N literally yields a function
from X to M([[T]], [[U]]), i.e., a parameterized family of
generalized circuits!

Introduction Cartesian model Model of circuit families Circuit description language

Key point!

Our claim that the resulting programming language is a language
for describing families of circuits is justified by the following
observation:

I Suppose Φ ` N : T (U is a valid typing judgment, where Φ
is a parameter context, and T and U are simple M-types.

I Then the interpretation of this judgement will be a morphism
[[N]] : p(X)→ [[T]] ([[U]] of M, where p(X) = [[Φ]] is a
parameter object and [[T]] and [[U]] are simple M-objects.

I And thus we have:
M(p(X), [[T]]([[U]]) ∼= Set(X , [([[T]]([[U]])) ∼= Set(X , M([[T]], [[U]])),

where the first isomorphism uses the fact that [is the right
adjoint of p, and the second isomorphism arises from (5).

I Therefore, the interpretation of N literally yields a function
from X to M([[T]], [[U]]), i.e., a parameterized family of
generalized circuits!

Introduction Cartesian model Model of circuit families Circuit description language

Thank you for your attention!

	Introduction
	What is this talk about?
	What is Quipper?
	Key observation

	Cartesian model
	The model Set2op
	A lambda calculus for parameters and state

	Model of circuit families
	The category M: generalized circuits
	The category Mbar: states
	The category Mdoublebar: parameters
	Properties of objects
	Boxing

	Circuit description language
	Overview

