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What is this talk about?

It is about a categorical model of a small, but useful fragment of
Quipper called Proto-Quipper-M.
Quipper is a functional programming language for quantum
computing.
The fragment Proto-Quipper-M is

I a stand-alone programming language (i.e., not embedded in a
host language),

I it has its own custom type system and semantics, and
I it is also more general than Quipper: it can describe families

of morphisms in any symmetric monoidal category, of which
quantum circuits are but one example.
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What it Quipper?

It is a circuit description language. This means two things:
I the language can be used to construct quantum circuits in a

structured way, essentially by applying one gate at a time.
I the completed circuits themselves become data, which can be

stored in variables, and on which meta-operations (such as
circuit transformations, gate counts, inversion, error
correction, etc) can be performed.

Quipper is practical: it has been used to implement several
large-scale quantum algorithms, generating circuits containing
trillions of gates.
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Quipper’s limitations

However, there are some drawbacks:
I Quipper is not type-safe (there are some well-typed programs

that lead to run-time errors)
I Quipper has no formal semantics; its behavior is only defined

by its implementation.
Proto-Quipper-M deals some of these issues!
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Parameters and states

A fundamental concept that arises in Quipper is the distinction
between parameters and states.
A Quipper program has two distinct run times:

I circuit generation time: when the circuits are built, and
I circuit execution time: when circuits are run.

A parameter is a value that is known at circuit generation time.
A state is a value that is known at circuit execution time.
Example: given a list of qubits [q1, . . . , qn], the length n of the list
is typically known at circuit construction time, and is therefore a
parameter, whereas the actual qubits are state.
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Key observation

A state can depend on a parameter, but since states are not known
at circuit generation time, parameters cannot be a function of
states!

Enforcing this condition soundly is one of the guiding principles in
the design of Proto-Quipper-M.
We devise Proto-Quipper-M from the ground up by

I first giving a categorical model of parameters and states, and
I then defining the language to fit the model.

Some advantages of this approach:
I Our programming language is almost “correct by design.”
I It can describe families of morphisms of an arbitrary symmetric

monoidal category, rather than just quantum circuits.
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A cartesian model of parameters and states

Set2op model is a simplified categorical model of parameters and
states!

I This model is cartesian, and therefore could be used to model
a language for describing classical, rather than quantum
circuits.

Nevertheless, several important notions will already be visible in
this model.
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The model Set2op

Let us take a more concrete look at the model Set2op .
I Obj(Set2op ): A = (A0, A1, a), where A0, A1 are sets and

a : A1 → A0 is a function.
I Mor(Set2op ): f : A→ B is a commutative diagram

A1

a
��

f1 // B1

b
��

A0
f0 // B0.

(1)

I For each x ∈ A0, we define the fiber of A over x:

Ax = {s ∈ A1 | a(s) = x}. (2)

I We call the elements of A0 parameters and the elements of Ax
states.
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Some observations on Set2op

I An object A = (A0, A1, a) describes a family of sets: up to
isomorphism, A is uniquely determined by the family (Ax )x∈A0 .

I The elements of A1 can be identified with pairs (x , s), where
x ∈ A0 and s ∈ Ax , the generalized elements of A.

I Key point: The requirement that the diagram (1) commutes
is exactly equivalent to the statement “states may depend on
parameters, but parameters may not depend on states”!
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States may depend on parameters, but not viceversa!

To see this, just consider the effect of a morphism f : A→ B on a
parameter-state pair (x , s):

I Let y = f0(x) and t = f1(s). Then y ∈ B0 and t ∈ B1.
I By the commutativity of (1),

y = f0(x) = f0(a(s)) = b(f1(s)) = b(t). So, y = b(t), i.e.,
t ∈ By = Bf0(x). Thus, for each x ∈ A0, f1 : A1 → B1 restricts
to a function fx : Ax → Bf0(x).

I Note that t is a function of both x and s, because t = fx (s).
I Therefore, states may depend on parameters and states.
I Now, y is only a function of x , because y = f0(x).
I Therefore, parameters may not depend on states.
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An example in Set2op

Let bool = (2, 2, id), where 2 = {0, 1} is a 2-element set and id is
the identity function. Let bit = (1, 2, u), where 1 = {∗} is a
1-element set and u : 2→ 1 is the unique function. In diagrams:

bool =
2

id
��

2

bit =
2

u
��

1

Note:
I The two generalized elements of bool are (0, 0) and (1, 1),

which we identify with “false” and “true”, respectively.
I The two generalized elements of bit are (∗, 0) and (∗, 1),

which we again identify with “false” and “true”.
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What is the difference between bool and bit?

I Informally, a boolean is only a parameter and has no state,
whereas a bit is only state and has no parameters.

I Note that there is an “identity” function f : bool→ bit,
mapping false to false and true to true. This function is given
by the commutative diagram

2 id //

id
��

2
u
��

2 u // 1,

(3)

and it satisfies f (0, 0) = (∗, 0) and f (1, 1) = (∗, 1).
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What is the difference between bool and bit?

On the other hand, there exists no morphism g : bit→ bool
mapping false to false and true to true: the diagram

2 id //

u
��

2
id
��

1 ? // 2

(4)

cannot be made to commute!
I Therefore, a boolean can be used to initialize a bit, but not

the other way round.
I This precisely captures our basic intuition about parameters

and states!
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Parameter and state objects

Generalizing the example of bool and bit, we say that:
I an object A is a parameter object if it is of the form (A, A, id);
I an object A is called a state object or simple if A0 is a

singleton.
Note:

I bool is a parameter object and bit is a state object.
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So, what can we interpret in Set2op ?

I Since the category Set2op is cartesian closed, we can interpret
the simply-typed lambda calculus in it.

I Also, we can add base types such as bool and bit, and basic
operations such as init : bool→ bit, all of which have
obvious interpretations in the model.

I Moreover, Set2op is co-complete which allows us to interpret
sum types as well as inductive data types such as list (A)
using initial algebra semantics.

So, we obtain a very simple and semantically sound lambda
calculus for the description of boolean circuits.
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The model Set2op is good, but not good enough!

I The model Set2op is useful for formalizing some basic
intuitions about parameters and state.

I However, it is not yet an adequate model for describing
families of quantum circuits. The main issue is that the model
is cartesian!

I There exist morphisms ∆A : A→ A× A for all objects A,
including state objects.

I This is not appropriate if we want to describe quantum
circuits, where the no-cloning property prevents us from
duplicating quantum states.
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How do we generalize Set2op to a monoidal setting?

Observe:
I Obj(Set2op ) : A = (A0, (Ax )x∈A0), where A0 is a set and

(Ax )x∈A0 is a family of sets.
I Mor(Set2op ) : f : A→ B can be equivalently described as a

pair (f0, (fx )x∈A0), where f0 : A0 → B0, and for each x ∈ A0,
fx : Ax → Bf0(x).

We generalize this by considering each Ax to be an object of a
monoidal category instead of a set and each fx : Ax → Bf0(x) to be
a morphism instead of a function of such category!
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The category M: generalized circuits

Before designing a circuit description language, we should be more
precise about what we mean by a “circuit”!
We take a more general and abstract point of view:

I for us, a circuit is simply a morphism in a (fixed but arbitrary)
symmetric monoidal category.

I We assume that a symmetric monoidal category M is given
call its morphisms generalized circuits.

I From this point of view, Proto-Quipper-M is simply a
language for describing families of morphisms of M.

We will regard the morphisms of M as concrete data.
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The category M: states

We let M be some symmetric monoidal closed, product-complete
category in which M can be fully embedded.

I This can always be done.
I We do not specify any particular way of constructing M.

We will regard the category M as abstract:
I It is monoidal closed, so we will be able to form higher-order

objects such as (A ( B ⊗ C) ( D.
I We do not imagine morphisms between such higher-order

objects as being concrete things that can be printed,
measured, etc.

I Instead, the higher-order structure only exists as a kind of
“scaffolding” to support lower-order concrete operations.
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The category M: parameters

We now define the category M: a model for parameters and states.

I M will be the carrier of the categorical semantics of our
circuit description language.

Definition

The category M has the following objects and morphisms:
I An object is a pair A = (X , (Ax )x∈X ), where X is a set and

(Ax )x∈X is an X -indexed family of objects of M.
I A morphism f : (X , (Ax )x∈X )→ (Y , (By )y∈Y ) is a pair

(f0, (fx )x∈X ), where f0 : X → Y is a function and each
fx : Ax → Bf0(x) is a morphism of M.

This category is rich in structure. To begin, M is the free
coproduct completion of M.
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Properties of M

What is perhaps more surprising is that it is also monoidal closed.

Proposition

The category M is symmetric monoidal closed with the following
structure:

I = (1, (I))
A⊗ B = (A0 × B0, (Ax ⊗ By )(x ,y)∈A0×B0)
A ( B = (A0 → B0, (Cf )f ),

where
Cf =

∏
x∈A0

(Ax ( Bf (x)).

Here, of course, A0 → B0 denotes the set of all functions from A0
to B0, and Ax ( By denotes the exponential object in the
monoidal closed category M.
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Parameter and state objects in M

Now parameter and state objects can be defined analogously to
those of Set2op :

I An object A ∈M is a parameter object if each fiber is the
tensor unit I, i.e., if A = (X , (I)x∈X ).

I An object A ∈M is a state object or simple if A0 ∼= 1.
I An object A ∈M is an M-object if every fiber belongs to the

category M
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Some canonical functors and basic types

Note that we have the following functors:

Set p−→M, M i
↪→M

j
↪→M,

where p(X ) = (X , (I)x ), i is the canonical inclusion, and
j(A) = (1, (A)).
The properties of M guarantee the existence of useful objects and
morphisms:

I a parameter object bool = I + I,
I morphisms true, false : I → bool,
I an object nat = (N, (I)n), indeed there is a parameter object

p(X ) corresponding to every set X , arising from the functor
p : Set→M,

I an object list (A), for each A ∈M, the type of lists of A.
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A relevant adjunction

Proposition

The functor p : Set→M has a right adjoint [ : M→ Set given by

[(X , (Ax )x∈X ) =
∑
x∈X

M(I, Ax ).

Note that for simple M-objects T and U, we have

[(T ( U) ∼= M(I, T ( U) ∼= M(T , U) ∼= M(T , U). (5)

So [(T ( U) is just a set of generalized circuits.
Also, we would like to be able to use completed circuits as
parameters in the construction of other circuits, i.e., we would like
there to be a parameter object whose elements are circuits. Such
an object is

p(M(T , U)) ∼= p([(T ( U)).
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The boxing comonad

This motivates the following definition:

Definition

The functor ! : M→M is defined by

! = p ◦ [.

Since p and [ are adjoints, the functor ! is a comonad on the
category M. We call it the boxing comonad. It is equipped with a
natural transformation force : !A→ A

Some useful morphisms:
I From (5), we have an isomorphism

box : !(T ( U)→ p(M(T , U)) for simple M-objects T and
U. We denote its inverse by unbox.
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Towards a circuit description language

Here we just give a brief overview of some of the most
relevant features of the language:

I Since the category M is symmetric monoidal closed with
coproducts, a standard linear lambda calculus with sum types
can be interpreted in it.

I Basic types such as bool, bit and qubit (the latter two if
present in the category M of generalized circuits) can also be
added to the language, along with the associated terms (such
as true, false, and any basic gates that are present in the
category M).
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Towards a circuit description language

I Moreover, since certain inductive types such as list(A) and
nat exist in the model, we can add them to the language.

I Also the language can be equipped with a type operation “!”
and terms “force ”, “box”, and “unbox”, arising from their
categorical counterparts introduced earlier.

I The language has parameter types, simple types, and M-types,
and their interpretation in the model will of course be
parameter objects, simple objects, and M-objects, respectively.
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Key point!

Our claim that the resulting programming language is a language
for describing families of circuits is justified by the following
observation:

I Suppose Φ ` N : T ( U is a valid typing judgment, where Φ
is a parameter context, and T and U are simple M-types.

I Then the interpretation of this judgement will be a morphism
[[N]] : p(X )→ [[T ]] ( [[U]] of M, where p(X ) = [[Φ]] is a
parameter object and [[T ]] and [[U]] are simple M-objects.

I And thus we have:
M(p(X ), [[T ]]([[U]]) ∼= Set(X , [([[T ]]([[U]])) ∼= Set(X , M([[T ]], [[U]])),

where the first isomorphism uses the fact that [ is the right
adjoint of p, and the second isomorphism arises from (5).

I Therefore, the interpretation of N literally yields a function
from X to M([[T ]], [[U]]), i.e., a parameterized family of
generalized circuits!
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Thank you for your attention!
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