Stability properties for n-permutable categories

Pierre-Alain Jacqmin
Diana Rodelo

CMUC, Centre for Mathematics of the University of Coimbra University of Algarve, Portugal

 \cdot 1st. Characterise n-permutable categories through stability properties

for regular epis

Aim

property

n-permutability
Embedding Theorem I
Embedding Theorem II
Stability property n=3Stability property $n\geqslant 3$ Avoiding coproducts
Unconditional exactness properties
The finite issue
The algorithm
Another stability

2- and 3-permutability

 \cdot 1st. Characterise n-permutable categories through stability properties

for regular epis ([GR] Goursat/3-permutable categories \checkmark)

Aim

n-permutability
Embedding Theorem I
Embedding Theorem II
Stability property n=3Stability property $n\geqslant 3$ Avoiding coproducts
Unconditional exactness properties
The finite issue
The algorithm
Another stability
property

2- and 3-permutability

 \cdot 1st. Characterise n-permutable categories through stability properties

for regular epis ([GR] Goursat/3-permutable categories \checkmark)

· diagram w/ regular epis winduced regular epi

Aim

n-permutability
Embedding Theorem I
Embedding Theorem II
Stability property n=3Stability property $n\geqslant 3$ Avoiding coproducts
Unconditional exactness properties
The finite issue
The algorithm
Another stability
property

2- and 3-permutability

 \cdot 1st. Characterise n-permutable categories through stability properties

for regular epis ([GR] Goursat/3-permutable categories ✓)

- · diagram w/ regular epis \rightsquigarrow induced regular epi
- \cdot ternary/ $(m{n}+m{1})$ -ary terms for $m{n}$ -permutable varieties

Aim

2- and 3-permutability n-permutability n-permutability Embedding Theorem I Embedding Theorem II Stability property n=3 Stability property $n\geqslant 3$ Avoiding coproducts Unconditional exactness properties The finite issue The algorithm

Another stability

 \cdot 1st. Characterise n-permutable categories through stability properties

for regular epis ([GR] Goursat/3-permutable categories ✓)

- · diagram w/ regular epis \rightsquigarrow induced regular epi
- \cdot ternary/(n+1)-ary terms for n-permutable varieties

· 2nd. Concrete example of two special proof techniques [JJ]

Aim

 \cdot 1st. Characterise n-permutable categories through stability properties

for regular epis ([GR] Goursat/3-permutable categories ✓)

- · diagram w/ regular epis \rightsquigarrow induced regular epi
- \cdot ternary/(n+1)-ary terms for n-permutable varieties

- · 2nd. Concrete example of two special proof techniques [JJ]
 - \cdot embedding theorem for n-permutable categories

Aim

 \cdot 1st. Characterise n-permutable categories through stability properties

for regular epis ([GR] Goursat/3-permutable categories ✓)

- · diagram w/ regular epis \rightsquigarrow induced regular epi
- \cdot ternary/(n+1)-ary terms for n-permutable varieties

- · 2nd. Concrete example of two special proof techniques [JJ]
 - embedding theorem for n-permutable categories ([ZJ] matrix)

Aim

 \cdot 1st. Characterise n-permutable categories through stability properties

for regular epis ([GR] Goursat/3-permutable categories ✓)

- · diagram w/ regular epis w induced regular epi
- · ternary/ $(m{n}+m{1})$ -ary terms for $m{n}$ -permutable varieties

- · 2nd. Concrete example of two special proof techniques [JJ]
 - \cdot embedding theorem for n-permutable categories ([ZJ] matrix)
 - results w/ finite lims + regular epis: copy (easier) varietal proof

Aim

 \cdot 1st. Characterise n-permutable categories through stability properties

for regular epis ([GR] Goursat/3-permutable categories ✓)

- · diagram w/ regular epis w induced regular epi
- · ternary/ $(m{n}+m{1})$ -ary terms for $m{n}$ -permutable varieties

- · 2nd. Concrete example of two special proof techniques [JJ]
 - \cdot embedding theorem for n-permutable categories ([ZJ] matrix)
 - results w/ finite lims + regular epis: copy (easier) varietal proof

Aim

 \cdot 1st. Characterise n-permutable categories through stability properties

for regular epis ([GR] Goursat/3-permutable categories ✓)

- · diagram w/ regular epis w induced regular epi
- \cdot ternary/ $(m{n}+m{1})$ -ary terms for $m{n}$ -permutable varieties

- · 2nd. Concrete example of two special proof techniques [JJ]
 - \cdot embedding theorem for n-permutable categories ([ZJ] matrix)
 - results w/ finite lims + regular epis: copy (easier) varietal proof
 - unconditional exactness properties

Aim

 \cdot 1st. Characterise n-permutable categories through stability properties

for regular epis ([GR] Goursat/3-permutable categories ✓)

- · diagram w/ regular epis w induced regular epi
- \cdot ternary/ $(m{n}+m{1})$ -ary terms for $m{n}$ -permutable varieties

- · 2nd. Concrete example of two special proof techniques [JJ]
 - \cdot embedding theorem for n-permutable categories ([ZJ] matrix)
 - results w/ finite lims + regular epis: copy (easier) varietal proof
 - unconditional exactness properties (issue about coproducts)

Aim

 \cdot 1st. Characterise n-permutable categories through stability properties

for regular epis ([GR] Goursat/3-permutable categories ✓)

- · diagram w/ regular epis w induced regular epi
- · ternary/ $(m{n}+m{1})$ -ary terms for $m{n}$ -permutable varieties

- · 2nd. Concrete example of two special proof techniques [JJ]
 - \cdot embedding theorem for n-permutable categories ([ZJ] matrix)
 - results w/ finite lims + regular epis: copy (easier) varietal proof
 - unconditional exactness properties (issue about coproducts)
 - coproducts + stability property \Rightarrow n-permutability

Aim

 \cdot 1st. Characterise n-permutable categories through stability properties

for regular epis ([GR] Goursat/3-permutable categories ✓)

- · diagram w/ regular epis w induced regular epi
- · ternary/ $(m{n}+m{1})$ -ary terms for $m{n}$ -permutable varieties

- · 2nd. Concrete example of two special proof techniques [JJ]
 - \cdot embedding theorem for n-permutable categories ([ZJ] matrix)
 - results w/ finite lims + regular epis: copy (easier) varietal proof
 - unconditional exactness properties (issue about coproducts)
 - cop ducts + stability property \Rightarrow n-permutability

Aim

 \cdot 1st. Characterise n-permutable categories through stability properties

for regular epis ([GR] Goursat/3-permutable categories ✓)

- · diagram w/ regular epis w induced regular epi
- · ternary/ $(m{n}+m{1})$ -ary terms for $m{n}$ -permutable varieties

- · 2nd. Concrete example of two special proof techniques [JJ]
 - \cdot embedding theorem for n-permutable categories ([ZJ] matrix)
 - results w/ finite lims + regular epis: copy (easier) varietal proof
 - unconditional exactness properties (issue about coproducts)
 - cop ducts + stability property \Rightarrow n-permutability

Aim

· **2**-permutable variety: RS = SR

Aim

2- and **3**-permutability

n-permutability
Embedding Theorem I
Embedding Theorem II
Stability property n=3Stability property $n\geqslant 3$ Avoiding coproducts

Unconditional exactness properties

The finite issue

The algorithm

Another stability

· **2**-permutable variety: RS = SR

(Mal'tsev)

Aim

2- and **3**-permutability

n-permutability
Embedding Theorem I
Embedding Theorem II
Stability property n=3Stability property $n\geqslant 3$ Avoiding coproducts

Avoiding coproducts
Unconditional exactness
properties
The finite issue
The algorithm
Another stability

· 2-permutable variety: $oldsymbol{RS} = oldsymbol{SR}$

 $\left\{egin{array}{l} oldsymbol{p}(oldsymbol{x},oldsymbol{y},oldsymbol{y})=oldsymbol{x} \ oldsymbol{p}(oldsymbol{x},oldsymbol{x},oldsymbol{y})=oldsymbol{y} \end{array}
ight.$

(Mal'tsev)

Aim

2- and **3**-permutability

n-permutability
Embedding Theorem I
Embedding Theorem II
Stability property n=3Stability property $n\geqslant 3$ Avoiding coproducts
Unconditional exactness
properties

The finite issue
The algorithm
Another stability

· 2-permutable variety: RS = SR

$$\left\{egin{array}{l} oldsymbol{p}(oldsymbol{x},oldsymbol{y},oldsymbol{y})=oldsymbol{x} \ oldsymbol{p}(oldsymbol{x},oldsymbol{x},oldsymbol{y})=oldsymbol{y} \end{array}
ight.$$

· 3-permutable variety: RSR = SRS

Aim

2- and **3**-permutability

n-permutability
Embedding Theorem I
Embedding Theorem II
Stability property n=3Stability property $n\geqslant 3$ Avoiding coproducts
Unconditional exactness

· 2-permutable variety: RS = SR

(Mal'tsev)

$$\left\{egin{array}{l} oldsymbol{p}(oldsymbol{x},oldsymbol{y},oldsymbol{y})=oldsymbol{x} \ oldsymbol{p}(oldsymbol{x},oldsymbol{x},oldsymbol{y})=oldsymbol{y} \end{array}
ight.$$

 \cdot 3-permutable variety: RSR = SRS

(Goursat)

Aim

2- and **3**-permutability

n-permutability
Embedding Theorem I
Embedding Theorem II
Stability property n=3Stability property $n\geqslant 3$ Avoiding coproducts
Unconditional exactness

· 2-permutable variety: RS = SR

(Mal'tsev)

 $\left\{egin{array}{l} oldsymbol{p}(oldsymbol{x},oldsymbol{y},oldsymbol{y})=oldsymbol{x} \ oldsymbol{p}(oldsymbol{x},oldsymbol{x},oldsymbol{y})=oldsymbol{y} \end{array}
ight.$

· 3-permutable variety: RSR = SRS

(Goursat)

$$\left\{egin{array}{l} oldsymbol{r}(oldsymbol{x},oldsymbol{y},oldsymbol{y})=oldsymbol{x}\ oldsymbol{r}(oldsymbol{x},oldsymbol{x},oldsymbol{y})=oldsymbol{s}(oldsymbol{x},oldsymbol{y},oldsymbol{y})\ oldsymbol{s}(oldsymbol{x},oldsymbol{x},oldsymbol{y})=oldsymbol{y} \end{array}
ight.$$

Aim

2- and **3**-permutability

n-permutability

Embedding Theorem I
Embedding Theorem II
Stability property n = 3Stability property $n \geqslant 3$ Avoiding coproducts
Unconditional exactness
properties
The finite issue

The algorithm

Another stability

· 2-permutable variety: RS = SR

(Mal'tsev)

 $\left\{egin{array}{l} oldsymbol{p}(oldsymbol{x},oldsymbol{y},oldsymbol{y})=oldsymbol{x}\ oldsymbol{p}(oldsymbol{x},oldsymbol{x},oldsymbol{y})=oldsymbol{y} \end{array}
ight.$

· 3-permutable variety: RSR = SRS

(Goursat)

$$\left\{egin{array}{l} oldsymbol{r}(oldsymbol{x},oldsymbol{y},oldsymbol{y})=oldsymbol{x}\ oldsymbol{r}(oldsymbol{x},oldsymbol{x},oldsymbol{y})=oldsymbol{s}(oldsymbol{x},oldsymbol{y},oldsymbol{y})\ oldsymbol{s}(oldsymbol{x},oldsymbol{x},oldsymbol{y})=oldsymbol{y} \end{array}
ight.$$

$$\left\{egin{array}{l} oldsymbol{p}(oldsymbol{x},oldsymbol{y},oldsymbol{y},oldsymbol{z})=oldsymbol{x}\ oldsymbol{p}(oldsymbol{x},oldsymbol{x},oldsymbol{y},oldsymbol{y})=oldsymbol{q}(oldsymbol{x},oldsymbol{x},oldsymbol{y},oldsymbol{y})=oldsymbol{q}(oldsymbol{x},oldsymbol{y},oldsymbol{y},oldsymbol{y})\\ oldsymbol{q}(oldsymbol{x},oldsymbol{y},oldsymbol{y},oldsymbol{z})=oldsymbol{z} \end{array}
ight.$$

Aim

2- and **3**-permutability

n-permutability
Embedding Theorem I
Embedding Theorem II
Stability property n=3Stability property $n\geqslant 3$ Avoiding coproducts
Unconditional exactness
properties

The finite issue

The algorithm

Another stability

 \cdot $\ \ \, m{n}$ -permutable variety: $(m{R}, m{S})_{m{n}} = (m{S}, m{R})_{m{n}}$

orall R, S congruences on same algebra

Aim

2- and 3-permutability

$oldsymbol{n}$ -permutability

Embedding Theorem I Embedding Theorem II Stability property

n = 3

Stability property

 $n \geqslant 3$

Avoiding coproducts
Unconditional exactness

properties

The finite issue

The algorithm

Another stability property

· \mathbb{V} *n*-permutable variety: $(R,S)_n=(S,R)_n$ $(RSRS\cdots=SRSR\cdots)$

orall R, S congruences on same algebra

Aim

2- and 3-permutability

$oldsymbol{n}$ -permutability

Embedding Theorem I Embedding Theorem II Stability property n=3 Stability property $n\geqslant 3$ Avoiding coproducts Unconditional exactness properties

The finite issue

The algorithm

Another stability property

· \mathbb{V} *n*-permutable variety: $(R,S)_n=(S,R)_n$ $(RSRS\cdots=SRSR\cdots)$

orall R, S congruences on same algebra

 $\cdot \ \mathbb{C} \ n$ -permutable category: $(R,S)_n = (S,R)_n + \text{regular}$

 $orall oldsymbol{R}, oldsymbol{S}$ equivalence relations on same object

Aim

2- and 3-permutability

$oldsymbol{n}$ -permutability

Embedding Theorem I Embedding Theorem II Stability property n=3 Stability property

 $n \geqslant 3$

Avoiding coproducts Unconditional exactness properties

· \mathbb{V} *n*-permutable variety: $(R,S)_n=(S,R)_n$ $(RSRS\cdots=SRSR\cdots)$

orall R, S congruences on same algebra

 $\cdot \ \mathbb{C} \ n$ -permutable category: $(R,S)_n = (S,R)_n + \text{regular}$

 $orall oldsymbol{R}, oldsymbol{S}$ equivalence relations on same object

Aim

2- and 3-permutability

$oldsymbol{n}$ -permutability

Embedding Theorem I Embedding Theorem II Stability property n=3 Stability property

 $n \geqslant 3$

Avoiding coproducts Unconditional exactness properties

· \mathbb{V} *n*-permutable variety: $(R,S)_n=(S,R)_n$ $(RSRS\cdots=SRSR\cdots)$

orall R, S congruences on same algebra

 \cdot \mathbb{C} n-permutable category: $(R,S)_{m{n}}=(S,R)_{m{n}}$ + regular

orall R, S equivalence relations on same object

- · Thm $\mathbb C$ regular, $n\geqslant 2$. TFAE:
 - (i) \mathbb{C} *n*-permutable

Aim

2- and 3-permutability

n-permutability

Embedding Theorem I

Embedding Theorem II

Stability property n = 3Stability property

 $n \geqslant 3$

Avoiding coproducts Unconditional exactness properties

 \cdot \mathbb{V} *n*-permutable variety: $(R,S)_n = (S,R)_n$ $(RSRS \cdots = SRSR \cdots)$

orall R, S congruences on same algebra

 $\cdot \ \mathbb{C} \ n$ -permutable category: $(R,S)_n = (S,R)_n + \text{regular}$

 $\forall R, S$ equivalence relations on same object

- · Thm $\mathbb C$ regular, $n\geqslant 2$. TFAE:
 - (i) \mathbb{C} *n*-permutable
 - (ii) $(P,P^\circ)_{n+1}\leqslant (P,P^\circ)_{n-1}$, \forall relation P

Aim

2- and 3-permutability

n-permutability

Embedding Theorem I Embedding Theorem II Stability property n = 3Stability property

 $n \geqslant 3$

Avoiding coproducts Unconditional exactness properties

 \cdot \mathbb{V} *n*-permutable variety: $(R,S)_n = (S,R)_n$ $(RSRS \cdots = SRSR \cdots)$

orall R, S congruences on same algebra

 $\cdot \ \mathbb{C} \ n$ -permutable category: $(R,S)_n = (S,R)_n + \text{regular}$

 $\forall R, S$ equivalence relations on same object

- · Thm $\mathbb C$ regular, $n\geqslant 2$. TFAE:
 - (i) \mathbb{C} *n*-permutable
 - (ii) $(P, P^{\circ})_{n+1} \leqslant (P, P^{\circ})_{n-1}$, \forall relation P [CKP]

Aim

2- and 3-permutability

n-permutability

Embedding Theorem I Embedding Theorem II Stability property n = 3Stability property

 $n \geqslant 3$

Avoiding coproducts Unconditional exactness properties

 \cdot \mathbb{V} *n*-permutable variety: $(R,S)_n = (S,R)_n$ $(RSRS\cdots = SRSR\cdots)$

orall R, S congruences on same algebra

 \cdot \mathbb{C} *n*-permutable category: $(R,S)_n=(S,R)_n+$ regular

 $\forall R, S$ equivalence relations on same object

- · Thm $\mathbb C$ regular, $n\geqslant 2$. TFAE:
 - (i) \mathbb{C} *n*-permutable
 - (ii) $(P, P^{\circ})_{n+1} \leqslant (P, P^{\circ})_{n-1}$, \forall relation P [CKP] (difunctionality)

Aim

2- and 3-permutability

n-permutability

Embedding Theorem I Embedding Theorem II Stability property n = 3Stability property

 $n \geqslant 3$

Avoiding coproducts Unconditional exactness properties

· \mathbb{V} *n*-permutable variety: $(R,S)_n = (S,R)_n$ $(RSRS \cdots = SRSR \cdots)$

orall R, S congruences on same algebra

 \cdot \mathbb{C} n-permutable category: $(R,S)_{m{n}}=(S,R)_{m{n}}$ + regular

 $orall oldsymbol{R}, oldsymbol{S}$ equivalence relations on same object

- · Thm $\mathbb C$ regular, $n\geqslant 2$. TFAE:
 - (i) \mathbb{C} *n*-permutable
 - (ii) $(P, P^{\circ})_{n+1} \leqslant (P, P^{\circ})_{n-1}$, \forall relation P [CKP] (difunctionality)
 - (iii) $R^{\circ} \leqslant R^{n-1}$, \forall reflexive relation R
 - (iv) $R^n \leqslant R^{n-1}$, \forall reflexive relation R

Aim

2- and 3-permutability

$oldsymbol{n}$ -permutability

Embedding Theorem I Embedding Theorem II Stability property n=3 Stability property $n\geqslant 3$

Avoiding coproducts
Unconditional exactness
properties

· \mathbb{V} *n*-permutable variety: $(R,S)_n = (S,R)_n$ $(RSRS \cdots = SRSR \cdots)$

 $orall oldsymbol{R}, oldsymbol{S}$ congruences on same algebra

 \cdot \mathbb{C} n-permutable category: $(R,S)_{m{n}}=(S,R)_{m{n}}$ + regular

 $orall oldsymbol{R}, oldsymbol{S}$ equivalence relations on same object

JRVdL

- · Thm \mathbb{C} regular, $n \geqslant 2$. TFAE:
 - (i) \mathbb{C} *n*-permutable
 - (ii) $(P,P^\circ)_{n+1}\leqslant (P,P^\circ)_{n-1}$, \forall relation P [CKP] (difunctionality)
 - (iii) $R^{\circ} \leqslant R^{n-1}$, orall reflexive relation R
 - (iv) $R^n \leqslant R^{n-1}$, \forall reflexive relation R

Aim

2- and 3-permutability

$oldsymbol{n}$ -permutability

Embedding Theorem II
Embedding Theorem II
Stability property n=3Stability property

n ≥ 3Avoiding coproductsUnconditional exactness

· \mathbb{V} *n*-permutable variety: $(R,S)_n = (S,R)_n$ $(RSRS \cdots = SRSR \cdots)$

 $orall oldsymbol{R}, oldsymbol{S}$ congruences on same algebra

 \cdot \mathbb{C} *n*-permutable category: $(R,S)_{m{n}}=(S,R)_{m{n}}$ + regular

 $orall oldsymbol{R}, oldsymbol{S}$ equivalence relations on same object

- · Thm \mathbb{C} regular, $n \geqslant 2$. TFAE:
 - (i) \mathbb{C} *n*-permutable

(ii)
$$(P,P^\circ)_{n+1}\leqslant (P,P^\circ)_{n-1}$$
, \forall relation P [CKP] (difunctionality)

(iii)
$$R^{\circ} \leqslant R^{n-1}$$
, $orall$ reflexive relation R [JRVdL]

(iv)
$$R^n \leqslant R^{n-1}$$
, \forall reflexive relation R (transitivity)

Aim

2- and 3-permutability

$oldsymbol{n}$ -permutability

Embedding Theorem II
Embedding Theorem II
Stability property n = 3Stability property $n \geqslant 3$

n ≥ 3

Avoiding coproducts

Unconditional exactness

Embedding Theorem I

· Thm [HM] $\, \mathbb{V} \,$ is an $m{n}$ -permutable variety iff $\, \exists \,$ ternary operations

$$\left\{egin{array}{l} oldsymbol{w_1}(oldsymbol{x},oldsymbol{y},oldsymbol{y} = oldsymbol{x} \ oldsymbol{w_i}(oldsymbol{x},oldsymbol{x},oldsymbol{y}) = oldsymbol{w_{i+1}}(oldsymbol{x},oldsymbol{y},oldsymbol{y}), & oldsymbol{2} \leqslant oldsymbol{i} \leqslant oldsymbol{n} - oldsymbol{2} \ oldsymbol{w_{n-1}}(oldsymbol{x},oldsymbol{x},oldsymbol{y}) = oldsymbol{y} \ \end{array}
ight.$$

Aim

2- and 3-permutabilityn-permutability

Embedding Theorem I Embedding Theorem II

Stability property n=3Stability property $n\geqslant 3$ Avoiding coproducts
Unconditional exactness properties

The finite issue
The algorithm

Another stability property

Embedding Theorem I

· Thm [HM] $\, \mathbb{V} \,$ is an $m{n}$ -permutable variety iff $\, \exists \,$ ternary operations

$$\left\{egin{array}{l} oldsymbol{w_1}(oldsymbol{x},oldsymbol{y},oldsymbol{y})=oldsymbol{x} \ oldsymbol{w_i}(oldsymbol{x},oldsymbol{x},oldsymbol{y})=oldsymbol{w_{i+1}}(oldsymbol{x},oldsymbol{y},oldsymbol{y}), & oldsymbol{2}\leqslantoldsymbol{i}\leqslantoldsymbol{n}-oldsymbol{2} \ oldsymbol{w_{n-1}}(oldsymbol{x},oldsymbol{x},oldsymbol{y})=oldsymbol{y} \ oldsymbol{w_{i+1}}(oldsymbol{x},oldsymbol{y},oldsymbol{y}), & oldsymbol{2}\leqslantoldsymbol{i}\leqslantoldsymbol{n}-oldsymbol{2} \ oldsymbol{w_{n-1}}(oldsymbol{x},oldsymbol{x},oldsymbol{y}) = oldsymbol{y} \ oldsymbol{w_{i+1}}(oldsymbol{x},oldsymbol{y},oldsymbol{y}), & oldsymbol{2}\leqslantoldsymbol{i}oldsymbol{i}\otimesoldsymbol{n}-oldsymbol{2} \ oldsymbol{w_{n-1}}(oldsymbol{x},oldsymbol{x},oldsymbol{y}) = oldsymbol{y} \ oldsymbol{x}$$

 \cdot Embedding Thm [JJ] $\operatorname{Mod}(\Gamma_n)$ - essentially algebraic n-permutable cat

Aim

2- and **3**-permutability **n**-permutability

Embedding Theorem I

Embedding Theorem II Stability property n=3 Stability property $n\geqslant 3$ Avoiding coproducts

Unconditional exactness properties

The finite issue The algorithm

Another stability property

Embedding Theorem I

· Thm [HM] $\, \mathbb{V} \,$ is an $m{n}$ -permutable variety iff $\, \exists \,$ ternary operations

$$\left\{egin{array}{l} oldsymbol{w_1}(oldsymbol{x},oldsymbol{y},oldsymbol{y} = oldsymbol{x} \ oldsymbol{w_i}(oldsymbol{x},oldsymbol{x},oldsymbol{y}) = oldsymbol{w_{i+1}}(oldsymbol{x},oldsymbol{y},oldsymbol{y}), & oldsymbol{2} \leqslant oldsymbol{i} \leqslant oldsymbol{n} - oldsymbol{2} \ oldsymbol{w_{n-1}}(oldsymbol{x},oldsymbol{x},oldsymbol{y}) = oldsymbol{y} \ oldsymbol{w_{n-1}}(oldsymbol{x},oldsymbol{x},oldsymbol{y}) = oldsymbol{y} \end{array}
ight.$$

 \cdot Embedding Thm [JJ] $\operatorname{Mod}(\Gamma_n)$ - essentially algebraic n-permutable cat

 S_n -sorted sets $(A_s)_{s \in S_n}$ equipped with, for each sort $s \in S_n$:

Aim

2- and **3**-permutability *n*-permutability

Embedding Theorem I Embedding Theorem II

Stability property n=3Stability property $n\geqslant 3$ Avoiding coproducts
Unconditional exactness

properties
The finite issue

The algorithm
Another stability
property

· Thm [HM] $\, \mathbb{V} \,$ is an n-permutable variety iff $\, \exists \,$ ternary operations

$$\left\{egin{array}{l} oldsymbol{w_1}(x,y,y) = x \ oldsymbol{w_i}(x,x,y) = oldsymbol{w_{i+1}}(x,y,y), & \mathbf{2} \leqslant i \leqslant n-\mathbf{2} \ oldsymbol{w_{n-1}}(x,x,y) = oldsymbol{y} \end{array}
ight.$$

 \cdot Embedding Thm [JJ] $\operatorname{\mathbf{Mod}}(\Gamma_n)$ - essentially algebraic n-permutable cat

 S_n -sorted sets $(A_s)_{s \in S_n}$ equipped with, for each sort $s \in S_n$:

- an injective operation $\alpha^s \colon s \to \bar{s}$
- ternary operations $w_1^s,\cdots,w_{n-1}^s\colon s^3 o ar s$
- a partial operation $\pi^s \colon \bar{s} \to s$ defined on the image of α^s

Aim

2- and 3-permutabilityn-permutability

Embedding Theorem I

Embedding Theorem II Stability property n=3 Stability property $n\geqslant 3$

Avoiding coproducts
Unconditional exactness
properties

The finite issue

The algorithm
Another stability

property

$$\left\{egin{array}{l} oldsymbol{w_1}(oldsymbol{x},oldsymbol{y},oldsymbol{y} = oldsymbol{x} \ oldsymbol{w_i}(oldsymbol{x},oldsymbol{x},oldsymbol{y}) = oldsymbol{w_{i+1}}(oldsymbol{x},oldsymbol{y},oldsymbol{y}), & oldsymbol{2} \leqslant oldsymbol{i} \leqslant oldsymbol{n} - oldsymbol{2} \ oldsymbol{w_{n-1}}(oldsymbol{x},oldsymbol{x},oldsymbol{y}) = oldsymbol{y} \end{array}
ight.$$

 \cdot Embedding Thm [JJ] $\operatorname{Mod}(\Gamma_n)$ - essentially algebraic n-permutable cat

 S_n -sorted sets $(A_s)_{s \in S_n}$ equipped with, for each sort $s \in S_n$:

- an injective operation $\alpha^s\colon s o \bar s$
- ternary operations $w_1^s,\cdots,w_{n-1}^s\colon s^3 o ar s$
- a partial operation $\pi^s \colon \bar{s} \to s$ defined on the image of α^s

Aim

2- and **3**-permutability **n**-permutability

Embedding Theorem I

Embedding Theorem II Stability property n=3 Stability property $n\geqslant 3$

Avoiding coproducts
Unconditional exactness
properties

The finite issue

The algorithm
Another stability
property

$$\left\{egin{aligned} oldsymbol{w_1^s}(x,y,y) &= oldsymbol{lpha^s}(x) \ oldsymbol{w_i^s}(x,x,y) &= oldsymbol{w_{i+1}^s}(x,y,y), & \mathbf{2} \leqslant i \leqslant n-\mathbf{2} \ oldsymbol{w_{n-1}^s}(x,x,y) &= oldsymbol{lpha^s}(y) \ oldsymbol{\pi^s}(oldsymbol{lpha^s}(x)) &= oldsymbol{x} \end{aligned}
ight.$$

 \cdot Embedding Thm [JJ] $\operatorname{\mathbf{Mod}}(\Gamma_n)$ - essentially algebraic n-permutable cat

 S_n -sorted sets $(A_s)_{s \in S_n}$ equipped with, for each sort $s \in S_n$:

- an injective operation $\alpha^s\colon s o \bar s$
- ternary operations $w_1^s,\cdots,w_{n-1}^s\colon s^3 o ar s$
- a partial operation $\pi^s \colon \bar{s} \to s$ defined on the image of α^s

Aim

2- and **3**-permutability **n**-permutability

Embedding Theorem I

Embedding Theorem II Stability property n=3 Stability property $n\geqslant 3$

Avoiding coproducts
Unconditional exactness
properties

The finite issue The algorithm

 \cdot Thm [HM] $\, \mathbb{V} \,$ is an n-permutable variety iff $\, \exists \,$ (n+1)-ary operations

$$\left\{egin{array}{l} m{v_0}(x_0,\cdots,x_n) = x_0 \ m{v_{i-1}}(x_0,x_0,x_2,x_2,\cdots) = m{v_i}(x_0,x_0,x_2,x_2,\cdots), & i ext{ even} \ m{v_{i-1}}(x_0,x_1,x_1,\cdots) = m{v_i}(x_0,x_1,x_1,\cdots), & i ext{ odd} \ m{v_n}(x_0,\cdots,x_n) = m{x_n} \end{array}
ight.$$

Aim

2- and 3-permutabilityn-permutabilityEmbedding Theorem I

Embedding Theorem II

Stability property $m{n} = m{3}$ Stability property $m{n} \geqslant m{3}$ Avoiding coproducts

Unconditional exactness

The finite issue
The algorithm
Another stability
property

· Thm [HM] $\, \mathbb{V} \,$ is an $m{n}$ -permutable variety iff $\, \exists \,$ $(m{n}+m{1})$ -ary operations

$$\left\{egin{array}{l} m{v_0}(x_0,\cdots,x_n) = x_0 \ m{v_{i-1}}(x_0,x_0,x_2,x_2,\cdots) = m{v_i}(x_0,x_0,x_2,x_2,\cdots), & i ext{ even} \ m{v_{i-1}}(x_0,x_1,x_1,\cdots) = m{v_i}(x_0,x_1,x_1,\cdots), & i ext{ odd} \ m{v_n}(x_0,\cdots,x_n) = m{x_n} \end{array}
ight.$$

 \cdot Embedding Thm $\operatorname{Mod}(\Gamma'_n)$ - essentially algebraic n-permutable category

Aim

2- and 3-permutabilityn-permutabilityEmbedding Theorem I

Embedding Theorem II

Stability property n=3Stability property $n\geqslant 3$ Avoiding coproducts
Unconditional exactness properties

The finite issue
The algorithm
Another stability
property

· Thm [HM] $\,\mathbb{V}\,$ is an n-permutable variety iff $\,\exists\,$ (n+1)-ary operations

$$\left\{egin{array}{l} v_0(x_0,\cdots,x_n)=x_0\ v_{i-1}(x_0,x_0,x_2,x_2,\cdots)=v_i(x_0,x_0,x_2,x_2,\cdots),\ i \ ext{even}\ v_{i-1}(x_0,x_1,x_1,\cdots)=v_i(x_0,x_1,x_1,\cdots),\ i \ ext{odd}\ v_n(x_0,\cdots,x_n)=x_n \end{array}
ight.$$

 \cdot Embedding Thm $\mathrm{Mod}(\Gamma'_n)$ - essentially algebraic n-permutable category (definition like $\mathrm{Mod}(\Gamma_n)$)

Aim

2- and 3-permutability*n*-permutabilityEmbedding Theorem I

Embedding Theorem II

Stability property n=3Stability property $n\geqslant 3$ Avoiding coproducts

Unconditional exactness properties
The finite issue
The algorithm
Another stability
property

$$\left\{egin{array}{l} m{v_0}(m{x_0},\cdots,m{x_n}) = m{x_0} \ m{v_{i-1}}(m{x_0},m{x_0},m{x_2},m{x_2},\cdots) = m{v_i}(m{x_0},m{x_0},m{x_2},m{x_2},\cdots), & i ext{ even} \ m{v_{i-1}}(m{x_0},m{x_1},m{x_1},\cdots) = m{v_i}(m{x_0},m{x_1},m{x_1},\cdots), & i ext{ odd} \ m{v_n}(m{x_0},\cdots,m{x_n}) = m{x_n} \end{array}
ight.$$

· Embedding Thm $\mathrm{Mod}(\Gamma'_n)$ - essentially algebraic n-permutable category (definition like $\mathrm{Mod}(\Gamma_n)$)

Aim

2- and 3-permutabilityn-permutabilityEmbedding Theorem I

Embedding Theorem II

Stability property $m{n}=m{3}$ Stability property $m{n}\geqslant m{3}$ Avoiding coproducts Unconditional exactness

The finite issue
The algorithm
Another stability

properties

property

$$\begin{cases} v_0^s(x_0,\cdots,x_n) = \alpha^s(x_0) \\ v_{i-1}(x_0,x_0,x_2,x_2,\cdots) = v_i^s(x_0,x_0,x_2,x_2,\cdots), & i \text{ even} \\ v_{i-1}^s(x_0,x_1,x_1,\cdots) = v_i^s(x_0,x_1,x_1,\cdots), & i \text{ odd} \\ v_n^s(x_0,\cdots,x_n) = \alpha^s(x_n) \\ \pi^s(\alpha^s(x)) = x \end{cases}$$

· Embedding Thm $\mathrm{Mod}(\Gamma'_n)$ - essentially algebraic n-permutable category (definition like $\mathrm{Mod}(\Gamma_n)$)

Aim

2- and 3-permutabilityn-permutabilityEmbedding Theorem I

Embedding Theorem II

Stability property $m{n}=m{3}$ Stability property $m{n}\geqslant m{3}$ Avoiding coproducts Unconditional exactness

The finite issue
The algorithm
Another stability

properties

property

$$\begin{cases} v_0^s(x_0,\cdots,x_n) = \alpha^s(x_0) \\ v_{i-1}^s(x_0,x_0,x_2,x_2,\cdots) = v_i^s(x_0,x_0,x_2,x_2,\cdots), & i \text{ even} \\ v_{i-1}^s(x_0,x_1,x_1,\cdots) = v_i^s(x_0,x_1,x_1,\cdots), & i \text{ odd} \\ v_n^s(x_0,\cdots,x_n) = \alpha^s(x_n) \\ \pi^s(\alpha^s(x)) = x \end{cases}$$

· Embedding Thm $\mathbf{Mod}(\Gamma_n')$ - essentially algebraic n-permutable category (definition like $\mathbf{Mod}(\Gamma_n)$)

· To prove a pp about finite lims and regular epis in an n-permutable context, it suffices to prove in $\operatorname{Mod}(\Gamma_n)$ or $\operatorname{Mod}(\Gamma_n')$

Aim

2- and 3-permutabilityn-permutabilityEmbedding Theorem I

Embedding Theorem II

Stability property n=3Stability property $n\geqslant 3$ Avoiding coproducts
Unconditional exactness properties

The finite issue
The algorithm
Another stability
property

$$\begin{cases} v_0^s(x_0,\cdots,x_n) = \alpha^s(x_0) \\ v_{i-1}^s(x_0,x_0,x_2,x_2,\cdots) = v_i^s(x_0,x_0,x_2,x_2,\cdots), & i \text{ even} \\ v_{i-1}^s(x_0,x_1,x_1,\cdots) = v_i^s(x_0,x_1,x_1,\cdots), & i \text{ odd} \\ v_n^s(x_0,\cdots,x_n) = \alpha^s(x_n) \\ \pi^s(\alpha^s(x)) = x \end{cases}$$

· Embedding Thm $\mathrm{Mod}(\Gamma'_n)$ - essentially algebraic n-permutable category (definition like $\mathrm{Mod}(\Gamma_n)$)

· To prove a pp about finite lims and regular epis in an n-permutable context, it suffices to prove in $\mathbf{Mod}(\Gamma_n)$ or $\mathbf{Mod}(\Gamma'_n)$ (follows "simple" varietal proof)

Aim

2- and 3-permutabilityn-permutabilityEmbedding Theorem I

Embedding Theorem II

Stability property n=3 Stability property $n\geqslant 3$ Avoiding coproducts Unconditional exactness properties The finite issue The algorithm

Another stability

property

$$\begin{cases} v_0^s(x_0,\cdots,x_n) = \alpha^s(x_0) \\ v_{i-1}^s(x_0,x_0,x_2,x_2,\cdots) = v_i^s(x_0,x_0,x_2,x_2,\cdots), & i \text{ even} \\ v_{i-1}^s(x_0,x_1,x_1,\cdots) = v_i^s(x_0,x_1,x_1,\cdots), & i \text{ odd} \\ v_n^s(x_0,\cdots,x_n) = \alpha^s(x_n) \\ \pi^s(\alpha^s(x)) = x \end{cases}$$

· Embedding Thm $\mathrm{Mod}(\Gamma'_n)$ - essentially algebraic n-permutable category (definition like $\mathrm{Mod}(\Gamma_n)$)

· To prove a pp about finite lims and regular epis in an n-permutable context, it suffices to prove in $\mathbf{Mod}(\Gamma_n)$ or $\mathbf{Mod}(\Gamma'_n)$ (follows "simple" varietal proof)

Aim

2- and 3-permutabilityn-permutabilityEmbedding Theorem I

Embedding Theorem II

Stability property n=3 Stability property $n\geqslant 3$ Avoiding coproducts Unconditional exactness properties The finite issue The algorithm

Another stability

property

Aim

2- and 3-permutabilityn-permutabilityEmbedding Theorem IEmbedding Theorem II

Stability property $oldsymbol{n} = oldsymbol{3}$

Stability property

 $n\geqslant 3$ Avoiding coproducts
Unconditional exactness
properties
The finite issue

The algorithm Another stability property

 \cdot Prop [GR] $\mathbb C$ is a (regular) Goursat cat iff for any

Aim

2- and 3-permutability
n-permutability
Embedding Theorem I
Embedding Theorem II

Stability property

n = 3Stability property

properties

 $n\geqslant 3$ Avoiding coproducts
Unconditional exactness

The finite issue

The algorithm

 \cdot Prop [GR] $\mathbb C$ is a (regular) Goursat cat iff for any

 γ, β, δ regular epis $\Rightarrow \lambda$ regular epi

Aim

2- and 3-permutabilityn-permutabilityEmbedding Theorem IEmbedding Theorem II

Stability property

n = 3

Stability property $n \geqslant 3$

Avoiding coproducts Unconditional exactness properties

The finite issue
The algorithm

 \cdot Prop [GR] $\mathbb C$ is a (regular) Goursat cat iff for any

 γ, β, δ regular epis $\Rightarrow \lambda$ regular epi

· 3-permutable varieties:

Aim

2- and 3-permutabilityn-permutabilityEmbedding Theorem IEmbedding Theorem II

Stability property

n = 3

Stability property $n\geqslant 3$

Avoiding coproducts Unconditional exactness properties

The finite issue The algorithm

 \cdot Prop [GR] $\mathbb C$ is a (regular) Goursat cat iff for any

 γ, β, δ regular epis $\Rightarrow \lambda$ regular epi

 \cdot 3-permutable varieties: $oldsymbol{F}$ - free algebra on one element

$$abla = (1_F \ 1_F) \colon 2F \to F$$

Aim

2- and 3-permutability*n*-permutabilityEmbedding Theorem IEmbedding Theorem II

Stability property

n = 3

Stability property $n \geqslant 3$

Avoiding coproducts
Unconditional exactness
properties

The finite issue

The algorithm
Another stability

property

Aim

2- and 3-permutabilityn-permutabilityEmbedding Theorem IEmbedding Theorem II

Stability property

n = 3

Stability property $n \geqslant 3$

Avoiding coproducts Unconditional exactness properties

The finite issue

The algorithm

Another stability property

$$abla = (1_F \ 1_F) \colon 2F \to F$$

Aim

2- and 3-permutability
n-permutability
Embedding Theorem I
Embedding Theorem II

Stability property

n = 3

Stability property $n \geqslant 3$

Avoiding coproducts Unconditional exactness properties

The finite issue

The algorithm

Another stability property

$$abla = (1_F \ 1_F) \colon 2F \to F$$

Aim

2- and 3-permutability
n-permutability
Embedding Theorem I
Embedding Theorem II

Stability property

n = 3

Stability property $n \geqslant 3$

Avoiding coproducts Unconditional exactness properties

The finite issue

The algorithm

Another stability property

$$abla = (1_F \ 1_F) \colon 2F \to F$$

Aim

2- and 3-permutabilityn-permutabilityEmbedding Theorem IEmbedding Theorem II

Stability property

n = 3

Stability property $n \geqslant 3$

Avoiding coproducts Unconditional exactness properties

The finite issue

The algorithm

Another stability property

$$abla = (1_F \ 1_F) \colon 2F \to F$$

Aim

2- and 3-permutability
n-permutability
Embedding Theorem I
Embedding Theorem II

Stability property

n = 3

Stability property $n \geqslant 3$

Avoiding coproducts Unconditional exactness properties

The finite issue

The algorithm

Another stability property

$$abla = (1_F \ 1_F) \colon 2F \to F$$

r(x, x, y) = s(x, y, y)

 \cdot 3-permutable varieties: $oldsymbol{F}$ - free algebra on one element

$$abla = (1_F \ 1_F) \colon 2F \to F$$

Aim

2- and 3-permutability
n-permutability
Embedding Theorem I
Embedding Theorem II

Stability property

n = 3

Stability property $n \geqslant 3$

Avoiding coproducts Unconditional exactness properties

The finite issue

The algorithm

 $m{r}(m{x},m{x},m{y})=m{s}(m{x},m{y},m{y})$, $m{r}(m{x},m{y},m{y})=m{x}$ and $m{s}(m{x},m{x},m{y})=m{y}$

 \cdot 3-permutable varieties: $m{F}$ - free algebra on one element

$$abla = (1_F \ 1_F) \colon 2F \to F$$

Aim

2- and 3-permutability
n-permutability
Embedding Theorem I
Embedding Theorem II

Stability property

n = 3

Stability property $n \geqslant 3$

Avoiding coproducts
Unconditional exactness
properties

The finite issue

The algorithm

· Thm $\mathbb C$ regular + binary sums. $\mathbb C$ is an n-permutable cat iff for any

Aim

2- and 3-permutability
n-permutability
Embedding Theorem I
Embedding Theorem II
Stability property

n=3Stability property $n\geqslant 3$

· Thm $\mathbb C$ regular + binary sums. $\mathbb C$ is an n-permutable cat iff for any

Aim

2- and 3-permutability
n-permutability
Embedding Theorem I
Embedding Theorem II
Stability property

n=3Stability property $n\geqslant 3$

· Thm $\mathbb C$ regular + binary sums. $\mathbb C$ is an n-permutable cat iff for any

Aim

2- and 3-permutability
n-permutability
Embedding Theorem I
Embedding Theorem II
Stability property

n=3Stability property $n\geqslant 3$

Avoiding coproducts
Unconditional exactness
properties
The finite issue
The algorithm
Another stability
property

 γ, δ regular epis \Rightarrow λ regular epi

· Thm $\mathbb C$ regular + binary sums. $\mathbb C$ is an n-permutable cat iff for any

Aim

2- and 3-permutability
n-permutability
Embedding Theorem I
Embedding Theorem II
Stability property

n=3Stability property $n\geqslant 3$

Avoiding coproducts
Unconditional exactness
properties
The finite issue
The algorithm
Another stability
property

 γ, δ regular epis \Rightarrow λ regular epi

· Thm $\mathbb C$ regular + binary sums. $\mathbb C$ is an n-permutable cat iff for any

⇒ Embedding Theorem (follows varietal proof)

Aim

2- and 3-permutability
n-permutability
Embedding Theorem I
Embedding Theorem II
Stability property

n=3Stability property $n\geqslant 3$

· Thm $\mathbb C$ regular + binary sums. $\mathbb C$ is an n-permutable cat iff for any

⇒ Embedding Theorem (follows varietal proof) - doesn't use sums

Aim

2- and 3-permutability
n-permutability
Embedding Theorem I
Embedding Theorem II
Stability property

n=3Stability property $n\geqslant 3$

· Thm $\mathbb C$ regular + binary sums. $\mathbb C$ is an n-permutable cat iff for any

- ⇒ Embedding Theorem (follows varietal proof) doesn't use sums
- Uses approximate Hagemann-Mitschke co-operations [RVdL]

Aim

2- and 3-permutability
n-permutability
Embedding Theorem I
Embedding Theorem II
Stability property

n=3Stability property $n\geqslant 3$

· Thm $\mathbb C$ regular + binary sums. $\mathbb C$ is an n-permutable cat iff for any

Embedding Theorem II Stability property n = 3

n-permutabilityEmbedding Theorem I

2- and 3-permutability

Aim

Stability property $n\geqslant 3$

- ⇒ Embedding Theorem (follows varietal proof) doesn't use sums
- ← Uses approximate Hagemann-Mitschke co-operations [RVdL]

Aim

2- and 3-permutability
n-permutability
Embedding Theorem I
Embedding Theorem II
Stability property

n=3Stability property $n\geqslant 3$

Aim

2- and 3-permutability
n-permutability
Embedding Theorem I
Embedding Theorem II
Stability property

n=3Stability property $n\geqslant 3$

Avoiding coproducts
Unconditional exactness
properties
The finite issue
The algorithm
Another stability
property

$$abla = (1_F \ 1_F) \colon 2F \to F$$

Aim

2- and 3-permutability
n-permutability
Embedding Theorem I
Embedding Theorem II
Stability property

n=3Stability property $n\geqslant 3$

Avoiding coproducts
Unconditional exactness
properties
The finite issue
The algorithm
Another stability
property

$$abla = (1_F \ 1_F) \colon 2F \to F$$

Aim

2- and 3-permutability
n-permutability
Embedding Theorem I
Embedding Theorem II
Stability property

n=3Stability property $n\geqslant 3$

Avoiding coproducts
Unconditional exactness
properties
The finite issue
The algorithm
Another stability
property

$$abla = (1_F \ 1_F) \colon 2F \to F$$

Aim

2- and 3-permutability
n-permutability
Embedding Theorem I
Embedding Theorem II
Stability property

n=3Stability property $n\geqslant 3$

Avoiding coproducts
Unconditional exactness
properties
The finite issue
The algorithm
Another stability
property

$$abla = (1_F \ 1_F) \colon 2F \to F$$

Stability property $n\geqslant 3$

Aim

2- and 3-permutability
n-permutability
Embedding Theorem I
Embedding Theorem II
Stability property

n=3Stability property $n\geqslant 3$

Avoiding coproducts
Unconditional exactness
properties
The finite issue
The algorithm
Another stability
property

 \cdot n-permutable varieties: $m{F}$ - free algebra on one element

$$abla = (1_F \ 1_F) \colon 2F \to F$$

 $\cdot \ \mathbb{C} \ \ \mathsf{regular} + (\mathsf{SP}) \ \Rightarrow \ \mathbb{C} \ \mathsf{is} \ \mathsf{an} \ extit{n-permutable category}$

Aim

 $m{2}$ - and $m{3}$ -permutability $m{n}$ -permutability Embedding Theorem I Embedding Theorem II Stability property $m{n}=m{3}$ Stability property $m{n}\geqslant m{3}$

Avoiding coproducts

Theory of unconditional exactness pps [JJ]

$$\cdot$$
 \mathbb{C} regular $+$ (SP) $\stackrel{\downarrow}{\Rightarrow}$ \mathbb{C} is an n -permutable category

Aim

2- and 3-permutability n-permutability n-permutability Embedding Theorem I Embedding Theorem II Stability property n=3 Stability property $n\geqslant 3$

Avoiding coproducts

Theory of unconditional exactness pps [JJ]

- $\cdot \ \mathbb{C} \ \ \mathsf{regular} + (\mathsf{SP}) \ \stackrel{\downarrow}{\Rightarrow} \ \mathbb{C} \ \mathsf{is} \ \mathsf{an} \ \emph{n}\mathsf{-}\mathsf{permutable} \ \mathsf{category}$
- · Thm $\mathbb C$ small + lex, (P) unconditional exactness pp
 - \mathbb{C} satisfies (P) \Rightarrow Lex(\mathbb{C} , Set)^{op} satisfies (P)

Aim

 $m{2}$ - and $m{3}$ -permutability $m{n}$ -permutability Embedding Theorem I Embedding Theorem II Stability property $m{n}=m{3}$ Stability property $m{n}\geqslant m{3}$

Avoiding coproducts

Theory of unconditional exactness pps [JJ]

- $\cdot \ \mathbb{C} \ \ \mathsf{regular} + (\mathsf{SP}) \ \stackrel{\downarrow}{\Rightarrow} \ \mathbb{C} \ \mathsf{is} \ \mathsf{an} \ \emph{n}\mathsf{-}\mathsf{permutable} \ \mathsf{category}$
- · Thm \mathbb{C} small + lex, (P) unconditional exactness pp \mathbb{C} satisfies (P) \Rightarrow Lex(\mathbb{C} , Set) op satisfies (P)
- \cdot Regularity and (regularity + (SP)) are unconditional exactness pps next

Aim

 $m{2}$ - and $m{3}$ -permutability $m{n}$ -permutability Embedding Theorem I Embedding Theorem II Stability property $m{n} = m{3}$ Stability property $m{n} \geqslant m{3}$

Avoiding coproducts

property

Theory of unconditional exactness pps [JJ]

- $\cdot \ \mathbb{C} \ \ \mathsf{regular} + (\mathsf{SP}) \stackrel{\downarrow}{\Rightarrow} \ \mathbb{C} \ \mathsf{is} \ \mathsf{an} \ extit{n-permutable category}$
- · Thm \mathbb{C} small + lex, (P) unconditional exactness pp \mathbb{C} satisfies (P) \Rightarrow Lex(\mathbb{C} , Set) op satisfies (P)
- \cdot Regularity and (regularity + (SP)) are unconditional exactness pps next
- How does it work?

Aim

 $m{2}$ - and $m{3}$ -permutability $m{n}$ -permutability Embedding Theorem I Embedding Theorem II Stability property $m{n}=m{3}$ Stability property $m{n}\geqslant m{3}$

Avoiding coproducts

properties
The finite issue
The algorithm
Another stability

property

Unconditional exactness

Theory of unconditional exactness pps [JJ]

- $\cdot \ \mathbb{C} \ \ \mathsf{regular} + (\mathsf{SP}) \stackrel{\downarrow}{\Rightarrow} \ \mathbb{C} \ \mathsf{is} \ \mathsf{an} \ extit{n-permutable category}$
- · Thm \mathbb{C} small + lex, (P) unconditional exactness pp \mathbb{C} satisfies (P) \Rightarrow Lex(\mathbb{C} , Set) op satisfies (P)
- Regularity and (regularity + (SP)) are unconditional exactness pps next
- How does it work?
 - the Yoneda embedding $\mathbb{C} \hookrightarrow \mathbf{Lex}(\mathbb{C}, \mathbf{Set})^{\mathbf{op}}$ is: full, faithful, preserves colimits and finite limits

Aim

 $m{2}$ - and $m{3}$ -permutability $m{n}$ -permutability Embedding Theorem I Embedding Theorem II Stability property $m{n}=m{3}$ Stability property $m{n}\geqslant m{3}$

Avoiding coproducts

The finite issue
The algorithm
Another stability
property

Unconditional exactness

Theory of unconditional exactness pps [JJ]

- $\cdot \ \mathbb{C} \ \ \mathsf{regular} + (\mathsf{SP}) \ \stackrel{\downarrow}{\Rightarrow} \ \mathbb{C} \ \mathsf{is} \ \mathsf{an} \ \emph{n}\mathsf{-}\mathsf{permutable} \ \mathsf{category}$
- · Thm \mathbb{C} small + lex, (P) unconditional exactness pp \mathbb{C} satisfies (P) \Rightarrow Lex(\mathbb{C} , Set) op satisfies (P)
- \cdot Regularity and (regularity + (SP)) are unconditional exactness pps next
- How does it work?
 - the Yoneda embedding $\mathbb{C} \hookrightarrow \mathbf{Lex}(\mathbb{C}, \mathbf{Set})^{\mathbf{op}}$ is: full, faithful, preserves colimits and finite limits
 - \mathbb{C} regular + (SP) \Rightarrow $\mathbf{Lex}(\mathbb{C}, \mathbf{Set})^{op}$ regular + (SP)

Aim

 $m{2}$ - and $m{3}$ -permutability $m{n}$ -permutability Embedding Theorem I Embedding Theorem II Stability property $m{n}=m{3}$ Stability property $m{n}\geqslant m{3}$

Avoiding coproducts

The finite issue
The algorithm
Another stability
property

Unconditional exactness

Theory of unconditional exactness pps [JJ]

- $\cdot \ \mathbb{C} \ \ \operatorname{regular} + (\mathsf{SP}) \stackrel{\downarrow}{\Rightarrow} \ \mathbb{C} \ \operatorname{is an} \ \emph{n} ext{-permutable category}$
- · Thm \mathbb{C} small + lex, (P) unconditional exactness pp \mathbb{C} satisfies (P) \Rightarrow Lex(\mathbb{C} , Set) op satisfies (P)
- \cdot Regularity and (regularity + (SP)) are unconditional exactness pps next
- How does it work?
 - the Yoneda embedding $\mathbb{C} \hookrightarrow \mathbf{Lex}(\mathbb{C}, \mathbf{Set})^{\mathbf{op}}$ is: full, faithful, preserves colimits and finite limits
 - \mathbb{C} regular + (SP) \Rightarrow $\mathbf{Lex}(\mathbb{C},\mathbf{Set})^{\mathbf{op}}$ regular + (SP) \Downarrow $\mathbf{Lex}(\mathbb{C},\mathbf{Set})^{\mathbf{op}}$ is n-permutable

Aim

2- and 3-permutability n-permutability Embedding Theorem I Embedding Theorem II Stability property n=3 Stability property $n\geqslant 3$

Avoiding coproducts

Theory of unconditional exactness pps [JJ]

- $\cdot \ \mathbb{C} \ \ \operatorname{regular} + (\mathsf{SP}) \stackrel{\downarrow}{\Rightarrow} \ \mathbb{C} \ \operatorname{is an} \ \emph{n} ext{-permutable category}$
- · Thm \mathbb{C} small + lex, (P) unconditional exactness pp \mathbb{C} satisfies (P) \Rightarrow Lex(\mathbb{C} , Set)^{op} satisfies (P)
- \cdot Regularity and (regularity + (SP)) are unconditional exactness pps next
- How does it work?
 - the Yoneda embedding $\mathbb{C} \hookrightarrow \mathbf{Lex}(\mathbb{C}, \mathbf{Set})^{\mathbf{op}}$ is: full, faithful, preserves colimits and finite limits
 - \mathbb{C} regular + (SP) \Rightarrow $\mathbf{Lex}(\mathbb{C}, \mathbf{Set})^{\mathbf{op}}$ regular + (SP)
 - \mathbb{C} is n-permutable \leftarrow $\mathbf{Lex}(\mathbb{C},\mathbf{Set})^{\mathbf{op}}$ is n-permutable

Aim

 $m{2}$ - and $m{3}$ -permutability $m{n}$ -permutability Embedding Theorem I Embedding Theorem II Stability property $m{n}=m{3}$ Stability property $m{n}\geqslant m{3}$

Avoiding coproducts

· finite diagram + finite (co)limits \simples some map is an isomorphism

Aim

2- and 3-permutability n-permutability Embedding Theorem I Embedding Theorem II Stability property n=3 Stability property

 $n\geqslant 3$ Avoiding coproducts

Unconditional exactness properties

The finite issue
The algorithm
Another stability
property

· finite diagram + finite (co)limits \simples some map is an isomorphism

· (SP)

Aim

2- and 3-permutability n-permutability Embedding Theorem I Embedding Theorem II Stability property n=3 Stability property $n\geqslant 3$

Avoiding coproducts
Unconditional exactness
properties

The finite issue
The algorithm
Another stability
property

· finite diagram + finite (co)limits \rightsquigarrow some map is an isomorphism

· (SP)

Aim

2- and 3-permutability n-permutability Embedding Theorem I Embedding Theorem II Stability property n=3 Stability property $n\geqslant 3$

Avoiding coproducts
Unconditional exactness
properties

The finite issue
The algorithm
Another stability
property

 γ, δ regular epis \Rightarrow λ regular epi

· finite diagram + finite (co)limits \simples some map is an isomorphism

· (SP)

Aim

 $m{2}$ - and $m{3}$ -permutability $m{n}$ -permutability Embedding Theorem I Embedding Theorem II Stability property $m{n}=m{3}$ Stability property $m{n}\geqslant m{3}$

Avoiding coproducts
Unconditional exactness
properties

The finite issue
The algorithm
Another stability
property

 γ, δ regular epis $\Rightarrow \lambda$ regular epi not "unconditional"

· finite diagram + finite (co)limits \rightsquigarrow some map is an isomorphism

$$\cdot$$
 (SP) + regular \Leftrightarrow

Aim

 $m{2}$ - and $m{3}$ -permutability $m{n}$ -permutability Embedding Theorem I Embedding Theorem II Stability property $m{n}=m{3}$ Stability property $m{n}\geqslant m{3}$

Avoiding coproducts
Unconditional exactness
properties

The finite issue
The algorithm
Another stability
property

 γ, δ regular epis \Rightarrow λ regular epi

not "unconditional"

• finite diagram + finite (co)limits \rightsquigarrow some map is an isomorphism

$$\cdot$$
 (SP) + regular \Leftrightarrow

Aim

2- and 3-permutability n-permutability Embedding Theorem I Embedding Theorem II Stability property n=3 Stability property $n\geqslant 3$

Avoiding coproducts
Unconditional exactness
properties

The finite issue
The algorithm
Another stability
property

· finite diagram + finite (co)limits \rightsquigarrow some map is an isomorphism

· (SP')

Aim

2- and 3-permutability n-permutability Embedding Theorem I Embedding Theorem II Stability property n=3 Stability property $n\geqslant 3$

Avoiding coproducts
Unconditional exactness
properties

The finite issue
The algorithm
Another stability
property

· finite diagram + finite (co)limits \simples some map is an isomorphism

Aim

2- and 3-permutability n-permutability Embedding Theorem I Embedding Theorem II Stability property n=3 Stability property $n\geqslant 3$

Avoiding coproducts
Unconditional exactness

The finite issue The algorithm Another stability property

properties

· finite diagram + finite (co)limits \simples some map is an isomorphism

Aim

2- and 3-permutability n-permutability Embedding Theorem I Embedding Theorem II Stability property n=3 Stability property $n\geqslant 3$

Avoiding coproducts
Unconditional exactness
properties

The finite issue The algorithm Another stability property

· finite diagram + finite (co)limits \simples some map is an isomorphism

Aim

2- and 3-permutability n-permutability m-permutability Embedding Theorem II Embedding Theorem II Stability property n=3 Stability property $n\geqslant 3$

Avoiding coproducts
Unconditional exactness
properties

The finite issue
The algorithm
Another stability
property

· finite diagram + finite (co)limits \simple some map is an isomorphism

Aim

2- and 3-permutability n-permutability n-permutability Embedding Theorem I Embedding Theorem II Stability property n=3 Stability property $n\geqslant 3$

Avoiding coproducts
Unconditional exactness

The finite issue
The algorithm
Another stability
property

properties

· finite diagram + finite (co)limits www some map is an isomorphism $im(\lambda)$ · (SP') - UEP ✓ mono π_{n-1}

Aim

2- and 3-permutability n-permutability Embedding Theorem I Embedding Theorem II Stability property n=3 Stability property $n\geqslant 3$

Avoiding coproducts
Unconditional exactness
properties

The finite issue
The algorithm
Another stability
property

· finite: the category generated by a finite conditional graph is finite

Aim

2- and 3-permutability n-permutability Embedding Theorem I Embedding Theorem II Stability property n=3 Stability property $n\geqslant 3$ Avoiding coproducts Unconditional exactness properties

The finite issue

- · finite: the category generated by a finite conditional graph is finite
 - \mathscr{G} finite conditional graph \Rightarrow $\operatorname{Path}(\mathscr{G})$ finite category

Aim

2- and 3-permutability n-permutability Embedding Theorem I Embedding Theorem II Stability property n=3 Stability property $n\geqslant 3$ Avoiding coproducts Unconditional exactness properties

The finite issue

- · finite: the category generated by a finite conditional graph is finite
 - \mathscr{G} finite conditional graph \Rightarrow **Path**(\mathscr{G}) finite category

f $X \xrightarrow{g} Y$ $\delta \qquad t \qquad \beta \qquad \downarrow i \qquad \downarrow$

Aim

 $m{2}$ - and $m{3}$ -permutability $m{n}$ -permutability Embedding Theorem I Embedding Theorem II Stability property $m{n}=m{3}$ Stability property $m{n}\geqslant m{3}$ Avoiding coproducts

Unconditional exactness properties

The finite issue

- · finite: the category generated by a finite conditional graph is finite
 - \mathscr{G} finite conditional graph \Rightarrow Path(\mathscr{G}) finite category

· G:

$$egin{aligned} fs &= gt = 1_Y \ eta i &= eta i' = kw = hu = 1_V \ eta g &= eta f = h\gamma = k\delta \ \gamma s &= ueta, \; \delta t = weta \ ft &= ieta, \; gs = i'eta \end{aligned}$$

Aim

2- and 3-permutability n-permutability n-permutability Embedding Theorem I Embedding Theorem II Stability property n=3 Stability property $n\geqslant 3$ Avoiding coproducts Unconditional exactness

properties

The finite issue

· finite: the category generated by a finite conditional graph is finite

 \mathscr{G} finite conditional graph \Rightarrow **Path**(\mathscr{G}) finite category

$$egin{aligned} fs &= gt = 1_Y \ eta i &= eta i' = kw = hu = 1_V \ eta g &= eta f = h\gamma = k\delta \ \gamma s &= ueta, \; \delta t = weta \ ft &= ieta, \; gs = i'eta \end{aligned}$$

(SP'): $\mathbf{Path}(\mathscr{G}) + \text{finite (co)limits}$

Aim

 $m{2}$ - and $m{3}$ -permutability $m{n}$ -permutability Embedding Theorem I Embedding Theorem II Stability property $m{n}=m{3}$ Stability property $m{n}\geqslant m{3}$ Avoiding coproducts

Avoiding coproducts
Unconditional exactness
properties

The finite issue

- · finite: the category generated by a finite conditional graph is finite
 - \mathscr{G} finite conditional graph \Rightarrow Path(\mathscr{G}) finite category

 $X \xrightarrow{g} Y$ $Y \xrightarrow{g} Y$

$$egin{aligned} fs &= gt = 1_Y \ eta i &= eta i' = kw = hu = 1_V \ eta g &= eta f = h\gamma = k\delta \ \gamma s &= ueta, \; \delta t = weta \ ft &= ieta, \; gs = i'eta \end{aligned}$$

(SP'): $\mathbf{Path}(\mathscr{G}) + \mathbf{finite}(\mathbf{co})\mathbf{limits}$

· Algorithm: look at subgraphs of $\mathscr G$ by eliminating objects

Aim

 $m{2}$ - and $m{3}$ -permutability $m{n}$ -permutability Embedding Theorem I Embedding Theorem II Stability property $m{n}=m{3}$ Stability property $m{n}\geqslant m{3}$ Avoiding coproducts

Unconditional exactness

The finite issue

properties

$$egin{aligned} fs &= gt = 1_Y \ eta i &= eta i' = kw = hu = 1_V \ eta g &= eta f = h\gamma = k\delta \ \gamma s &= ueta, \; \delta t = weta \ ft &= ieta, \; gs = i'eta \end{aligned}$$

Aim

 $m{2}$ - and $m{3}$ -permutability $m{n}$ -permutability
Embedding Theorem I
Embedding Theorem II
Stability property $m{n}=m{3}$ Stability property $m{n}\geqslant m{3}$ Avoiding coproducts

Unconditional exactness

The finite issue

The algorithm

properties

Another stability property

$$egin{aligned} fs &= gt = 1_Y \ eta i &= eta i' = kw = hu = 1_V \ eta g &= eta f = h\gamma = k\delta \ \gamma s &= ueta, \; \delta t = weta \ ft &= ieta, \; gs = i'eta \end{aligned}$$

Aim

2- and 3-permutability n-permutability n-permutability Embedding Theorem I Embedding Theorem II Stability property n=3 Stability property $n\geqslant 3$ Avoiding coproducts

Unconditional exactness

The finite issue

properties

The algorithm

Another stability property

$$egin{aligned} fs &= gt = 1_Y \ eta i &= eta i' = kw = hu = 1_V \ eta g &= eta f = h\gamma = k\delta \ \gamma s &= ueta, \; \delta t = weta \ ft &= ieta, \; gs = i'eta \end{aligned}$$

Aim

2- and 3-permutability n-permutability n-permutability Embedding Theorem I Embedding Theorem II Stability property n=3 Stability property $n\geqslant 3$ Avoiding coproducts

Unconditional exactness

The finite issue

properties

The algorithm

Another stability property

$$h\gamma=eta f,\; hu=1_{V}$$

· G:

$$egin{aligned} fs &= gt = 1_Y \ eta i &= eta i' = kw = hu = 1_V \ eta g &= eta f = h\gamma = k\delta \ \gamma s &= ueta, \; \delta t = weta \ ft &= ieta, \; gs = i'eta \end{aligned}$$

Aim

 $m{2}$ - and $m{3}$ -permutability $m{n}$ -permutability Embedding Theorem I Embedding Theorem II Stability property $m{n}=m{3}$ Stability property $m{n}\geqslant m{3}$ Avoiding coproducts

Unconditional exactness

The finite issue

properties

The algorithm

Another stability property

· G:

$$egin{aligned} fs &= gt = 1_Y \ eta i &= eta i' = kw = hu = 1_V \ eta g &= eta f = h\gamma = k\delta \ \gamma s &= ueta, \; \delta t = weta \ ft &= ieta, \; gs = i'eta \end{aligned}$$

Aim

2- and 3-permutability n-permutability n-permutability Embedding Theorem I Embedding Theorem II Stability property n=3 Stability property $n\geqslant 3$ Avoiding coproducts

Unconditional exactness

The finite issue

The algorithm

properties

Another stability property

 \cdot $\mathbf{Path}(\mathscr{G})$ finite iff $\mathbf{Path}(\mathscr{G} \setminus \{ m{U} \})$ finite iff $\mathbf{Path}(\mathscr{G} \setminus \{ m{U}, m{W} \})$ finite

· G:

$$egin{aligned} fs &= gt = 1_Y \ eta i &= eta i' = kw = hu = 1_V \ eta g &= eta f = h\gamma = k\delta \ \gamma s &= ueta, \; \delta t = weta \ ft &= ieta, \; gs = i'eta \end{aligned}$$

Aim

2- and 3-permutability n-permutability n-permutability Embedding Theorem I Embedding Theorem II Stability property n=3 Stability property $n\geqslant 3$ Avoiding coproducts

Unconditional exactness

properties
The finite issue

The algorithm

Another stability property

 \cdot $\mathbf{Path}(\mathscr{G})$ finite iff $\mathbf{Path}(\mathscr{G} \setminus \{ m{U} \})$ finite iff $\mathbf{Path}(\mathscr{G} \setminus \{ m{U}, m{W} \})$ finite

· G:

$$egin{aligned} fs &= gt = 1_Y \ eta i &= eta i' = kw = hu = 1_V \ eta g &= eta f = h\gamma = k\delta \ \gamma s &= ueta, \; \delta t = weta \ ft &= ieta, \; gs = i'eta \end{aligned}$$

Aim

 $m{2}$ - and $m{3}$ -permutability $m{n}$ -permutability Embedding Theorem I Embedding Theorem II Stability property $m{n}=m{3}$ Stability property $m{n}\geqslant m{3}$ Avoiding coproducts

Unconditional exactness

The finite issue

The algorithm

properties

Another stability property

$$\cdot$$
 $\mathbf{Path}(\mathscr{G})$ finite iff $\mathbf{Path}(\mathscr{G} \setminus \{ m{U} \})$ finite iff $\mathbf{Path}(\mathscr{G} \setminus \{ m{U}, m{W} \})$ finite iff $\mathbf{Path}(\mathscr{G} \setminus \{ m{U}, m{W}, m{V} \})$ finite

· G:

$$fs = gt = 1_Y$$

$$ft=ieta,\;gs=i'eta$$

Aim

 $m{2}$ - and $m{3}$ -permutability $m{n}$ -permutability Embedding Theorem I Embedding Theorem II Stability property $m{n}=m{3}$ Stability property $m{n}\geqslant m{3}$

Avoiding coproducts
Unconditional exactness
properties

The finite issue

The algorithm

Another stability property

 $\cdot \ \mathbf{Path}(\mathscr{G}) \ \ \mathsf{finite} \ \ \mathbf{Path}(\mathscr{G} \backslash \{ oldsymbol{U} \}) \ \ \mathsf{finite}$

iff $\operatorname{Path}(\mathscr{G} \backslash \{ \pmb{U}, \pmb{W} \})$ finite

iff $\operatorname{Path}(\mathscr{G} \setminus \{U, W, V\})$ finite

· G:

$$fs = gt = 1_Y$$
 \checkmark

$$ft=ieta,\;gs=i'eta$$

Aim

 $m{2}$ - and $m{3}$ -permutability $m{n}$ -permutability Embedding Theorem I Embedding Theorem II Stability property $m{n}=m{3}$ Stability property $m{n}\geqslant m{3}$

Avoiding coproducts Unconditional exactness properties

The finite issue

The algorithm

Another stability property

 $\cdot \ \mathbf{Path}(\mathscr{G}) \ \ \mathsf{finite} \ \ \mathbf{Path}(\mathscr{G} \backslash \{ oldsymbol{U} \}) \ \ \mathsf{finite}$

iff $\operatorname{Path}(\mathscr{G} \backslash \{ \pmb{U}, \pmb{W} \})$ finite

iff $\operatorname{Path}(\mathscr{G} \setminus \{U, W, V\})$ finite

· G:

$$fs = gt = 1_Y$$
 \checkmark

$$y = ft = i\beta, gs = i'\beta = y'$$

Aim

 $m{2}$ - and $m{3}$ -permutability $m{n}$ -permutability Embedding Theorem I Embedding Theorem II Stability property $m{n}=m{3}$ Stability property $m{n}\geqslant m{3}$

Avoiding coproducts Unconditional exactness properties

The finite issue

The algorithm

Another stability property

 $\cdot \ \mathbf{Path}(\mathscr{G}) \ \ \mathsf{finite} \ \ \mathbf{Path}(\mathscr{G} \backslash \{ oldsymbol{U} \}) \ \ \mathsf{finite}$

 $\mathsf{iff} \ \ \mathbf{Path}(\mathscr{G}\backslash\{\pmb{U},\pmb{W}\}) \ \ \mathsf{finite}$

iff $\operatorname{Path}(\mathscr{G} \setminus \{U, W, V\})$ finite

· G:

$$y \bigcap Y \bigcirc y'$$

$$fs = gt = 1_Y$$
 \checkmark

$$y = ft = i\beta, gs = i'\beta = y'$$

Aim

 $m{2}$ - and $m{3}$ -permutability $m{n}$ -permutability Embedding Theorem I Embedding Theorem II Stability property $m{n}=m{3}$ Stability property $m{n}\geqslant m{3}$ Avoiding coproducts

Unconditional exactness properties

The finite issue

The algorithm

Another stability property

 $\cdot \ \mathbf{Path}(\mathscr{G}) \ \ \mathsf{finite} \ \ \mathbf{Path}(\mathscr{G} \backslash \{oldsymbol{U}\}) \ \ \mathsf{finite}$

 $\operatorname{iff} \ \operatorname{\mathbf{Path}}(\mathscr{G} \backslash \{ {\color{black} {\color{bl$

iff $\operatorname{Path}(\mathscr{G} \setminus \{U, W, V\})$ finite

· G:

$$y \bigcap Y \bigcirc y'$$

$$fs = gt = 1_Y$$
 \checkmark

$$y = ft = i\beta, \ gs = i'\beta = y'$$

$$yy = ftft = i\beta i\beta = i\beta = ft = y$$

 \cdot $\mathbf{Path}(\mathscr{G})$ finite iff $\mathbf{Path}(\mathscr{G} \setminus \{ m{U} \})$ finite iff $\mathbf{Path}(\mathscr{G} \setminus \{ m{U}, m{W} \})$ finite

iff $\operatorname{Path}(\mathscr{G} \setminus \{U, W, V\})$ finite

Aim

 $m{2}$ - and $m{3}$ -permutability $m{n}$ -permutability Embedding Theorem I Embedding Theorem II Stability property $m{n}=m{3}$ Stability property $m{n}\geqslant m{3}$ Avoiding coproducts

Unconditional exactness properties

The finite issue

The algorithm

· G:

$$y \bigcirc Y \bigcirc y'$$

$$fs = gt = 1_Y$$
 \checkmark

$$y = ft = i\beta, gs = i'\beta = y'$$

$$egin{aligned} oldsymbol{y} oldsymbol{y} = oldsymbol{f} oldsymbol{t} oldsymbol{t} = oldsymbol{i} oldsymbol{i} oldsymbol{i} oldsymbol{j} = oldsymbol{j} oldsymbol{j} oldsymbol{j} oldsymbol{t} = oldsymbol{j} oldsymbol{j} oldsymbol{j} oldsymbol{j} = oldsymbol{j} oldsymbol{j} oldsymbol{j} oldsymbol{j} oldsymbol{j} = oldsymbol{j} oldsymbol{j} oldsymbol{j} oldsymbol{j} oldsymbol{j} oldsymbol{j} oldsymbol{j} oldsymbol{j} oldsymbol{j} = oldsymbol{j} oldsymbol{j}$$

 $\cdot \ \mathbf{Path}(\mathscr{G}) \ \ ext{finite iff} \ \ \mathbf{Path}(\mathscr{G} \backslash \{ oldsymbol{U} \}) \ \ ext{finite}$ iff $\ \mathbf{Path}(\mathscr{G} \backslash \{ oldsymbol{U}, oldsymbol{W} \}) \ \ ext{finite}$ iff $\ \mathbf{Path}(\mathscr{G} \backslash \{ oldsymbol{U}, oldsymbol{W}, oldsymbol{V} \}) \ \ ext{finite}$

Aim

2- and 3-permutability n-permutability n-permutability Embedding Theorem I Embedding Theorem II Stability property n=3 Stability property $n\geqslant 3$ Avoiding coproducts Unconditional exactness

The finite issue

The algorithm

properties

· G:

$$y \bigcap Y \bigcirc y'$$

$$fs = gt = 1_Y$$
 \checkmark

$$y = ft = i\beta, \ gs = i'\beta = y'$$

$$egin{aligned} oldsymbol{yy} = & oldsymbol{ftft} = oldsymbol{i}oldsymbol{i}oldsymbol{eta} = oldsymbol{i}oldsymbol{b} = oldsymbol{i}oldsymbol{b} = oldsymbol{b}oldsymbol{i} = oldsymbol{y} = oldsymbol{y}', \ oldsymbol{y}'oldsymbol{y} = oldsymbol{y}', \ oldsymbol{y}'oldsymbol{y}' = oldsymbol{y}', \ oldsymbol{y}'oldsymbol{y} = oldsymbol{y}', \ oldsymbol{y}'oldsymbol{y}' = oldsymbol{y}', \ oldsymbol{y}' = oldsymbol{y}' + olds$$

 \Rightarrow Path(\mathscr{G}) is finite

 $oldsymbol{\cdot}$ $\mathbf{Path}(\mathscr{G} \setminus \{oldsymbol{U}\})$ finite $\mathsf{iff} \ \ \mathbf{Path}(\mathscr{G} \setminus \{oldsymbol{U}, oldsymbol{W}\}) \ \ \mathsf{finite}$ $\mathsf{iff} \ \ \mathbf{Path}(\mathscr{G} \setminus \{oldsymbol{U}, oldsymbol{W}, oldsymbol{V}\}) \ \ \mathsf{finite}$

Aim

2- and 3-permutability n-permutability n-permutability Embedding Theorem I Embedding Theorem II Stability property n=3 Stability property $n\geqslant 3$ Avoiding coproducts Unconditional exactness

The finite issue

The algorithm

properties

Aim

 $m{2}$ - and $m{3}$ -permutability $m{n}$ -permutability Embedding Theorem I Embedding Theorem II Stability property $m{n}=m{3}$

Stability property $n\geqslant 3$

 $n \geqslant 3$

Avoiding coproducts Unconditional exactness properties

The finite issue

The algorithm

· Thm $\mathbb C$ regular, $n\geqslant 3$. $\mathbb C$ is an n-permutable cat iff for any

Aim

2- and 3-permutability n-permutability Embedding Theorem I Embedding Theorem II Stability property n=3 Stability property

Avoiding coproducts Unconditional exactness properties

The finite issue

The algorithm

 $n \geqslant 3$

· Thm $\mathbb C$ regular, $n\geqslant 3$. $\mathbb C$ is an n-permutable cat iff for any

 γ, δ regular epis $\Rightarrow \lambda$ regular epi

Aim

2- and 3-permutability n-permutability n-permutability Embedding Theorem I Embedding Theorem II Stability property n=3 Stability property $n\geqslant 3$

Avoiding coproducts
Unconditional exactness
properties

The finite issue

The algorithm

· Thm $\mathbb C$ regular, $n\geqslant 3$. $\mathbb C$ is an n-permutable cat iff for any

Aim

2- and 3-permutability n-permutability n-permutability Embedding Theorem I Embedding Theorem II Stability property n=3 Stability property $n\geqslant 3$

Avoiding coproducts
Unconditional exactness
properties

The finite issue

The algorithm

Another stability property

 γ, δ regular epis \Rightarrow λ regular epi

recover the ternary terms

· Thm $\mathbb C$ regular, $n\geqslant 3$. $\mathbb C$ is an n-permutable cat iff for any

 γ, δ regular epis \Rightarrow λ regular epi

recover the ternary terms

What about the (n + 1)-ary terms?

Aim

 $m{2}$ - and $m{3}$ -permutability $m{n}$ -permutability Embedding Theorem I Embedding Theorem II Stability property $m{n}=m{3}$

Stability property $n\geqslant 3$

Avoiding coproducts
Unconditional exactness
properties

The finite issue

The algorithm

· Thm $\mathbb C$ regular, $n\geqslant 3$. $\mathbb C$ is an n-permutable cat iff for any

 $m{n}$ odd

Aim

2- and 3-permutability n-permutability n-permutability Embedding Theorem I Embedding Theorem II Stability property n=3 Stability property $n\geqslant 3$ Avoiding coproducts Unconditional exactness properties The finite issue

Another stability property

The algorithm

 \cdot Thm $\mathbb C$ regular, $n\geqslant 3$. $\mathbb C$ is an n-permutable cat iff for any

Aim

2- and 3-permutability n-permutability n-permutability Embedding Theorem I Embedding Theorem II Stability property n=3 Stability property $n\geqslant 3$

Avoiding coproducts
Unconditional exactness
properties

The finite issue

The algorithm

· Thm $\mathbb C$ regular, $n\geqslant 3$. $\mathbb C$ is an n-permutable cat iff for any

 $m{h}/m{k}$ is split + extra commutativity conditions

Aim

2- and 3-permutability n-permutability Embedding Theorem I Embedding Theorem II Stability property n=3 Stability property $n\geqslant 3$ Avoiding coproducts

Avoiding coproducts
Unconditional exactness
properties

The finite issue

The algorithm

· Thm $\mathbb C$ regular, $n\geqslant 3$. $\mathbb C$ is an n-permutable cat iff for any

h/k is split + extra commutativity conditions $\Rightarrow \lambda$ regular epi

Aim

2- and 3-permutability n-permutability n-permutability Embedding Theorem I Embedding Theorem II Stability property n=3 Stability property $n\geqslant 3$

Avoiding coproducts Unconditional exactness properties

The finite issue

The algorithm

· Thm $\mathbb C$ regular, $n\geqslant 3$. $\mathbb C$ is an n-permutable cat iff for any

h/k is split + extra commutativity conditions $\Rightarrow \lambda$ regular epi

 \rightsquigarrow recover the (n+1)-ary terms

Aim

2- and 3-permutability n-permutability Embedding Theorem I Embedding Theorem II Stability property n=3 Stability property $n\geqslant 3$

Avoiding coproducts Unconditional exactness properties

The finite issue

The algorithm

· Thm $\mathbb C$ regular, $n\geqslant 3$. $\mathbb C$ is an n-permutable cat iff for any

h/k is split + extra commutativity conditions \Rightarrow λ regular epi

 \rightsquigarrow recover the (n+1)-ary terms

Aim

2- and 3-permutability n-permutability Embedding Theorem I Embedding Theorem II Stability property n=3 Stability property $n\geqslant 3$

Avoiding coproducts Unconditional exactness properties

The finite issue

The algorithm