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Orbifolds

An orbifold is:
• a generalization of a manifold
• a space that is locally modelled by quotients of Rn by

actions of finite groups
• allows controlled singularities



Example 0: A Manifold (with boundary)



Example 1: A Cone Point



Example 2: Silvered Interval



Example 3: Mirrored Boundary Disk



Example 4: The Teardrop



Example 5: The Billiard Table



Example 6: Ineffective Z/3 Action

 

Z/3 Isotropy



Orbifolds via Atlases (Effective Edition)

We can represent an orbifold using charts making up an atlas:
• Ũ is a connected open subset of Rn;
• G is a finite group acting effectively on Ũ;
• π : Ũ → U is a continuous and surjective map that induces

a homeomorphism between U and Ũ/G



Orbifolds via Atlases (Effective Edition)

Charts creating an atlas:
• A collection of charts U such that the quotients cover the

underlying space, and all chart embeddings between them.
• The charts are required to be locally compatible: for any

two charts for subsets U,V ⊆ X and any point x ∈ U ∩ V ,
there is a neighbourhood W ⊆ U ∩ V containing x with a
chart (W̃ ,GW , πW ) in U, and chart embeddings into
(Ũ ,GU , πU) and (Ṽ ,GV , πV ).



Orbifolds via Atlases (Effective Edition)

For any µji in O(U), the set Emb(µji) forms an atlas bimodule

Emb(µji) : Gi X−→ Gj .

with actions given by composition. If i = j the atlas bimodule
Emb(µii) is isomorphic to the trivial bimodule Gi associated to
the group Gi . Furthermore, these define a pseudofunctor

Emb : O(U) −→ GroupMod,

with Emb(Ui) := Gi on objects, and Emb(µji) : Gi X−→ Gj on
morphisms.



Orbifolds via Atlases (General Edition)

Let U be a non-empty connected topological space; an orbifold
chart (also known as a uniformizing system) of dimension n for
U is a quadruple (Ũ ,G, ρ, π) where:

• Ũ is a connected and simply connected open subset of Rn;
• G is a finite group;
• ρ : G → Aut(Ũ) is a (not necessarily faithful) representation

of G as a group of smooth automorphisms of Ũ; we set
G red := ρ(G) ⊆ Aut(Ũ) and Ker(G) := Ker(ρ) ⊆ G;

• π : Ũ → U is a continuous and surjective map that induces
a homeomorphism between U and Ũ/G red.



Orbifolds via Atlases (General Edition)

An orbifold atlas of dimension n for X is:

1. a collection U = {(Ũi ,Gi , ρi , πi)}i∈I of orbifold charts, of
dimension n, connected and simply connected, such that
the reduced charts {(Ũi ,G red

i , πi)}i∈I form a Satake atlas for
X ; let (Con, γ) : O(U)→ GroupMod be the induced
pseudofunctor

2. a pseudofunctor

Abst : O(U) −→ GroupMod

such that for each i ∈ I, Abst(Ui) = Gi and for each µji in
O(U), Abst(µji) is an atlas bimodule Gi X−→ Gj , (i.e., the left
action of Gj is free and transitive and the right action of Gi
is free).



Orbifolds via Atlases (General Edition)

(3) an oplax transformation
ρρρ = ({ρρρi }i∈I , {ρji }i ,j∈I,Ui⊆Uj ) : Abst⇒ Con: each ρi is a group
homomorphism from Gi to G red

i , hence it induces a
bimodule ρρρi : Gi X−→ G red

i forming the components of the
transformation. We further require that:

• the ρji are surjective maps of bimodules;
• (transitivity on the kernel) whenever
ρji (e red

j ⊗ λ) = ρji (e red
j ⊗ λ′) for λ, λ′ ∈ Abst(µji ), there is an

element g ∈ Gi such that λ · g = λ′ (here e red
j is the identity

element of G red
j ).



Orbifolds via G-spaces

We can represent some (most?) orbifolds via group actions
• the orbifold is the quotient space of a (compact Lie) group

acting on a manifold
• if the group is finite, the orbifold is a global quotient
• unknown whether all orbifolds are representable this way



Orbifolds via Topological Groupoids

• A topological groupoid has a space of object G0 and a
space of arrows G1, where all structure maps are
continuous

• G is étale when s (and hence t) is a local homeomorphism
• G is proper when the diagonal,

(s, t) : G1 → G0 × G0,

is a proper map (i.e., closed with compact fibers).



Orbigroupoids

Definition

• A topological groupoid is an orbigroupoid if it is both étale
and proper.

• All isotropy groups are finite.
• The quotient space,

G1
s //

t
// G0 // // XG

is also called the underlying space of the orbigroupoid.
• This space is an orbifold.



Example 1: A Cone Point



Example 1: A Cone Point as an atlas (with one chart)

Z/3



Example 1: A Cone Point as a G-space

Z/3



Example 1: A Cone Point as a groupoid

objects

arrowse

1/3

2/3



Example 2: Silvered Interval



Example 2: Silvered Interval as an atlas

Z/2 Z/2e



Example 2: Silvered Interval as a G-space

Z/2



Example 2: Silvered Interval as a groupoid

objects

arrowse

flip 



Example 3: Mirrored Boundary Disk



Example 3: Mirrored Boundary Disk as a G-space

Z/2



Example 3: Mirrored Boundary Disk as a groupoid

objects

arrows e

flip



Example 4: The Teardrop



Example 4: The Teardrop as an atlas

Z/3 e



Example 4: The Teardrop as a groupoid

e

1/3

2/3

wrap 3X



Example 5: The Billiard Table



Example 5: The Billiard Table

D2

D2 D

D

Z/2

Z/2

Z/2 Z/2

2

2



Example 6: Ineffective Z/3 Action



Example 6: Ineffective Z/3 Action

U1

U2

U3 U4

GUi = Z/3 and G red
Ui

= {e}. Forr each inclusion µji : Ui ↪→ Uj , we
need a module Mji and a map of bimodules ρji as follows:

Z/3 = {e, ωi , ω
2
i }

Z/3 = {e, ωj , ω
2
j }

{e} {e}

⇓ ρjiρρρi /

Con(µji )={λji }
/

ρρρj/

Abst(µji )=Mji
/

(1)



Example 6: Ineffective Z/3 Action

left multiply by ωj aji bji cji

right multiply by ωi aji bji cji



Example 6: Ineffective Z/3 Action

M13,M14 and M23 as before, M24 with action given by

left multiply by ωj aji bji cji

right multiply by ωi aji bji cji



(Borel) Fundamental Group

If G is a groupoid representing an orbifold, we can define a
fundamental group by:

• π1(BG)

• Haefliger paths
• deck transformation of universal cover
• homotopy classes of maps I → G



Haefliger paths

Let G be a Lie groupoid. A path from x to y in G0 is:
• a subdivision 0 = t0 < t1 < t2 . . . tn = 1
• a sequence (g0, α1,g1, . . . , αn,gn)

• gi ∈ G1 such that s(g0) = x , t(gn) = y
• αi : [ti−1, ti ]→ G0 is a path from t(gi−1) to s(gi)

x y
g g g g ga a a a1 2 2 3 3 n-1 n n1



Haefliger Paths
Two paths are equivalent if:

• we add a new point to the subdivision with an identitiy gi :

g
a ai i

g = idi

• we have homotopy h : [ti−1, ti ]→ G1 with s ◦ hi = αi and
t ◦ hi = α′i and we replace (. . . gi−1, αi ,gi , . . . ) by
(. . . h(ti−1)gi−1, α

′,gih(ti)−1, . . . )

g gai-1 i i g gai-1 i i

a'i



Haefliger Paths

Two paths are homotopic if:
• we have homotopies h : [ti−1, ti ] × I → G0 with h(t ,0) = αi

and h(t ,1) = α′i
• we have compatible homotopies K : I → G1 with K (0) = gi

and K (1) = g′i
g gai-1 i i

g' g'a'i-1 i i

H K

We define the orbifold fundamental groupoid as the
homotopy classes of these paths.



Order 3 Cone

e

1/3

2/3

e

1/3

2/3

e

1/3

2/3



Order 3 Cone

e

1/3

2/3



Order 3 Cone

e

1/3

2/3

e

1/3

2/3

e

1/3

2/3



Order 3 Cone

e

1/3

2/3

e

1/3

2/3



Order 3 Cone

e

1/3

2/3

e

1/3

2/3



Order 3 Cone

e

1/3

2/3

e

1/3

2/3

e

1/3

2/3



Order 3 Cone

π1(G) = Z/3



Silvered Interval

e

flip 

e

flip 

e

flip 



Silvered Interval

π1(G) = D∞



Teardrop

e

1/3

2/3

wrap 3X



Teardrop

e

1/3

2/3

wrap 3X



Teardrop

π1(G) = e



(Borel) Fundamental Group

Recall we can define π1(G) by:
• π1(BG)

• Haefliger paths
• deck transformation of universal cover
• homotopy classes of maps I → G



(Borel) Fundamental Group

BG defined by the geometric realization of the nerve of G:

• ∆0 for every x ∈ G0

• ∆1 for every g ∈ G1 attached to s(g) and t(g)

x y

g

• ∆2 for every composible (g1,g2) attached by g1,g2,g2g1

g1

g2g  g12

• higher simplices attached but do not affect π1



(Borel) Fundamental Group

π1(BG) is the Haefliger group

• a path in π1(BG) can follow a line in BG corresponding to
g ∈ G1, giving a hop

• paths can be homotopic over triangles corresponding to
equivalence of Haefliger paths



(Borel) Fundamental Group

Defined via deck transformations (topos)

Defined via homotopy classes of maps I → G:



Morita Equivalence

• The following two groupoids both represent the unit interval
as orbispace

morphisms

objects

morphisms

objects

• They are not isomorphic in the category of orbigroupoids
and groupoid homomorphisms.

• However, the groupoid homomorphism from the second to
the first is an essential equivalence.



Essential Equivalences
• A morphism f : G → H is an essential equivalence when

it is essentially surjective and fully faithful.
• It is essentially surjective when G0 ×H0 H1 −→ H0 in

G0 ×H0 H1

��

// H1

s
��

t // H0

G0 f0
// H0

is an open surjection.

obj
������
������
������
������
������
������

������
������
������
������
������
������

�������
�������
�������
�������

�������
�������
�������
������� HGobj

f may not be onto the objects of H , but every object in H0
is isomorphic to an object in the image of G0.



Essential Equivalences

The morphism f : G → H is fully faithful when

G1
φ //

(s,t)
��

H1

(s,t)
��

G0 ×G0
φ×φ // H0 × H0

is a pullback,

HG

The local isotropy structure is preserved.



Morita Equivalence

• The equivalence relation generated by the essential
equivalences is called Morita Equivalence

• Orbigroupoids represent the same orbispace if and only if
they are Morita equivalent

• To define a category of orbispaces, we use a bicategory
of fractions to invert the essential equivalences



Generalized Maps

• Maps are generalized maps defined by spans

G
υ
←− K

ϕ
−→ H

where υ is an essential equivalence
• A 2-cell between two generalized maps is an (equivalence

class of) diagrams

K
υ

xx

ϕ

&&
G α1⇓ L

ν1

OO

ν2��

α2⇓ H

K ′
υ′

ff

ϕ′

88

where υν1 is an essential equivalence.



Example



Equivariant Homotopy Perspective

• Fix a group G, let X be a G-space.
• A ’point’ x ∈ X comes with a whole orbit {gx |g ∈ G}
• Define the fixed set X H = {x ∈ X | hx = x ∀ h ∈ H}
• A G-map x : G/H → X is equivalent to a point in X H :

x ←→ x(eH).
• we think of G-spaces as diagrams of fixed sets
• organized by OG: category with

• objects G/H
• morphisms G-maps



Example: Z/2

• Example: G = Z/2, OG has two objects, G/G and G/e two
non-identity maps:
projection G/e → G/G
a non-trivial self-map G/e → G/e.

G/e

ρ

��

τ

��
τ2 = id

G/G τρ = ρ



Silvered interval as Z/2-space

G/e

G/G



Mirrored disk as Z/2-space

G/e

G/G



tom Dieck Fundamental Category

The equivariant fundamental category
∏

G(X ):

• look at the functor OG → Gpds defined by Π(X H)

• define the Grothendieck colimit
∫
OG

Π(X−)

• objects are given by (G/H , x) where x ∈ X H

• arrows: (G/H , x) to (G/K , y) is given by (α, γ) where
α : G/H → G/K in OG and γ is a path with γ0 = x and
γ1 = yα



Silvered interval as Z/2-space

x

gx



Silvered interval as Z/2-space



Silvered interval as Z/2-space

D∞

~~   
e e



Mirrored disk as Z/2-space

e

��
Z



tom Dieck fundamental group for orbifolds

• The Borel fundamental groupoid gives the tom Dieck
∏

G
at G/e

• We want a category that has all of it
• Challenges

• Local structures can be for different groups - how to patch
together to get a global OG category?

• Morita invariance



Idea: Representable Orbifolds

• many (maybe all?) orbifolds can be represented as
quotients of compact Lie group actions

• we can define the tom Dieck
∏

G for these
• it will not be Morita invariant
• however, a discrete version is



Idea: van Kampen

• Use a van Kampen to define a pushout of the local
categories?

• Problem: we seem to be getting Cech information included



Example 5: The Billiard Table

D2

D

D

Z/2

Z/2

Z/2

2



Idea: van Kampen

D2

%%��zz
D2/τ

$$

D2/στ

��

D2/σ
2τ

yy

// Z/2/e

ρ

��

τ

��

D2/D3 Z/2/Z/2



Our category wraps around

D2

D2 D

D

Z/2

Z/2

Z/2 Z/2

2

2



Idea: Use generalized maps

• the Borel group is given by generalized maps [I,G]

• try defining [IK ,G]

• this seems to get the fixed point data, but not the
connections between the strata?



Example 5: The Billiard Table

e

r t

rt



Example 5: The Billiard Table

e

m

e

r t

rt



Example 5: The Billiard Table

e

m

e

r t

rt



Example 3: Mirrored Boundary Disk

Z/2



Example 3: Mirrored Boundary Disk

e

t



Example 3: Mirrored Boundary Disk

e

t



Example 3: Mirrored Boundary Disk

e

t

[IZ/2,G] = e
∐
Z



Sectors

• ΛG is the inertia groupoid ΛG = {g ∈ G1 | s(g) = t(g)}

• [IZ,G] = π1(ΛG)

• [IZ?Z?Z...,G] = π1(Λ̃G) where Λ̃G is the multisectors
• Λ̃G has all the fixed sets
• but both of these produce disjoint components
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