Stone Representation Theorem represents Boolean algebras as subalgebras of power-set Boolean algebras. Banaschewski and Bhutani ([1]) and Borceux et al. ([2]) have introduced Stone representations for Boolean algebras in a topos of sheaves on a locale. It is desirable to have such a construction in other topoi.

The presentation considers Stone representation for Boolean algebras in the topos \(\text{MSet} \) of \(M \)-sets for a monoid \(M \), and its subtopoi \(\text{Sh}_{j} \text{MSet} \), of \(j \)-sheaves determined by right ideals of \(M \). In order to obtain a suitable definition of a Stone map in these topoi, we need to know the counterpart of the Boolean algebra \(2 \) (the initial Boolean algebra object) in them. Moreover, in order to internalize the power-set Boolean algebra \((2^X, \text{for } X = \text{Hom}_{\text{Boo}}(A,2) \text{ in } \text{Set}) \) in our topos, we take the exponential object, and apply the notion of internal homomorphism introduced by Ebrahimi (in [3]) for algebras in any Grothendieck topos. Unlike the case for Boolean algebras in \(\text{Set} \), the Stone representation we introduce in \(\text{MSet} \) and in \(\text{Sh}_{j} \text{MSet} \) is not always a monomorphism; to be so we will find necessary and/or sufficient conditions on \(M \). For instance, we will see that for a finite monoid \(M \), the Stone representation is a monomorphism if and only if \(M \) is a group.

References:

*Joint work with Mojgan Mahmoudi.