David I. Spivak * Massachusetts Institute of Technology

Temporal Type Theory: A topos-theoretic approach to systems and behavior

A well-functioning logic of behavior is indispensable for studying interactions among real-world systems and processes, for which typical mathematical modeling frameworks range from that of dynamical systems to that of Turing machines. It appears that any behavior—e.g. a trajectory of an ordinary differential equation or an execution of a computer program—takes place over a duration of "time". Thus in [1] we propose the theory of real durations, i.e. translation-invariant intervals, as a formal system for studying behavior.

In this talk, I will recall the topological space \mathbb{IR} , called the *interval domain* [2], and discuss how its sheaves—objects in $\mathsf{Shv}(\mathbb{IR})$ —can be conceptualized as types of behavior in the context of time. There is a quotient topos $\mathsf{Shv}(\mathbb{IR}) \to \mathsf{Shv}(\mathbb{IR}_{/\triangleright})$, defined in terms of the translation action \triangleright on \mathbb{IR} by the group \mathbb{R} of real numbers, and we refer to $\mathcal{B} := \mathsf{Shv}(\mathbb{IR}_{/\triangleright})$ as the topos of *behavior types*. Using a special behavior type, which we denote $\mathsf{Time} \in \mathcal{B}$, one may recover $\mathsf{Shv}(\mathbb{IR}) \cong \mathcal{B}/\mathsf{Time}$ as a slice topos of \mathcal{B} .

I will explain the relationship between \mathcal{B} and the topos studied by Lawvere in [4] and others (e.g. [5]), also in the context of abstract dynamical systems. I will also briefly discuss how to use the internal language of the topos \mathcal{B} to describe the behaviors of both ODEs and state machines, in order to indicate how these two typical—but very different—behavior-modeling frameworks can interact within a single logical formalism, which we call *higher order temporal logic*.

References:

- [1] Schultz, P. and Spivak, D.I., 2017. Temporal Type Theory: A topos-theoretic approach to systems and behavior. Birkaüser Mathematics (to appear).
- [2] Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M. and Scott, D.S., 2003. Continuous lattices and domains (Vol. 93). Cambridge University Press.
- [3] Johnstone, P. and Joyal, A., 1982. Continuous categories and exponentiable toposes. *Journal of Pure and Applied Algebra*, 25(3), pp. 255–296.
- [4] Lawvere, F.W., 1986. State categories and response functors. preprint.
- [5] Spivak, D.I., Vasilakopoulou, C. and Schultz, P., 2016. Dynamical systems and sheaves. preprint arXiv:1609.08086.

 $^{^* \}operatorname{Joint}$ work with Patrick Schultz.