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£ is obtained by taking connected components of each fiber of S.
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it as a fibered functor

xX— 7 oM

N

whose restrictions P4: X4 — M4 for each A in A are opfibrations
(fiberwise opfibration).

In fact, any regular span is an instance of this:
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This is nothing but the internal comprehensive factorization of P in Fib(A).
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Lemma

The identee of a morphism p: (A, f) — (C,g) in Fib(B) can be computed
as in K.



Suppose that K has coinverters and coidentifiers and satisfies the
hypothesis
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hypothesis

(t) For each B in K, the monad R: K/B — K/B preserves coinverters and
coidentifiers.
Proposition

Let p: (A, f) — (C,g) be a morphism in Fib(B) and w its identee in K.
Then the coinverter (resp. coidentifier) q of w in K induces a factorization

p
/\
AT ~Q—=cC

h

f g

B

of p in Fib(B), where q: (4, f) = (Q, h) is the coinverter (resp.
cotdentifier) of w in Fib(B).
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This follows from two facts:

» an isofibration is conservative if and only if its identee is an iso (holds
internally);

» split fibrations admit a reflection into split fibrations in groupoids.

Proposition

Let f: A — B be a fibration in Cat. The comprehensive factorization of f
is given by the coidentifier of the identee of f followed by the unique
comparison functor to f, and this factorization coincides with the one given
by (iterated coidentifier, discrete functor).
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From Cat to Fib(B)

The two factorization systems above lift to Fib(B) for each B in Cat.
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Proposition

Every fiberwise opfibration p: (A, f) — (C, g) in Fib(B) admits a
comprehensive factorization
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where q is the coidentifier of the identee of p and s is a discrete opfibration
in Fib(B).



Proposition

Every fiberwise opfibration p: (A, f) — (C, g) in Fib(B) admits a
comprehensive factorization
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where q is the coidentifier of the identee of p and s is a discrete opfibration
in Fib(B).

A similar result holds with ¢’ the coinverter of the identee of p and s’ a
fiberwise opfibration in groupoids. These two factorizations admit a unique
comparison
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