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Motivation

[Yoneda ’60]

A abelian category.

S : EXTn(A)→ A×A

( 0 // B // · · · // A // 0 ) 7→ (A,B)

Isolating the formal properties of this functor he was led to the notion of
regular span, and he proved that such a functor admits a canonical
factorization through a two-sided discrete fibration.

E S //

��

A× B

Ē
S̄

<<

Ē is obtained by taking connected components of each fiber of S.
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Ē
S̄

<<
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Moving to a non-abelian context, symmetry is broken.

Consider crossed extensions of groups.

P : XEXTn(Gp)→Mod

( 0 // B // · · · // A // 0 ) 7→ (A,B, φ)

[C., Mantovani, Metere, Vitale ’18]
In order to capture the properties of this functor, it is convenient to look at
it as a fibered functor

X

F   

P //M

G~~
A

whose restrictions PA : XA →MA for each A in A are opfibrations
(fiberwise opfibration).

In fact, any regular span is an instance of this:

X

S0 ��

S // A× B

Pr0||
A
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Theorem

Every fiberwise opfibration admits a universal factorization through a
discrete opfibration P̄ in Fib(A).

X
Q
//

F ��

P

((
X̄

F̄

��

P̄

//M

G~~
A

This is nothing but the internal comprehensive factorization of P in Fib(A).
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Internal fibrations

Let K be a finitely complete 2-category.

[Street ’74]
One can define internal fibrations over an object B in K as pseudo-algebras
for the KZ-monad R : K/B → K/B defined by

B/f
d1 //

Rf=d0

��

A

f

��
B

9A

B

Lemma

The identee of a morphism p : (A, f)→ (C, g) in Fib(B) can be computed
as in K.
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Suppose that K has coinverters and coidentifiers and satisfies the
hypothesis

(†) For each B in K, the monad R : K/B → K/B preserves coinverters and
coidentifiers.

Proposition

Let p : (A, f)→ (C, g) be a morphism in Fib(B) and ω its identee in K.
Then the coinverter (resp. coidentifier) q of ω in K induces a factorization

A

p

((

f

��

q
// Q

h

��

s
// C

g

��
B

of p in Fib(B), where q : (A, f)→ (Q,h) is the coinverter (resp.
coidentifier) of ω in Fib(B).



Suppose that K has coinverters and coidentifiers and satisfies the
hypothesis

(†) For each B in K, the monad R : K/B → K/B preserves coinverters and
coidentifiers.

Proposition

Let p : (A, f)→ (C, g) be a morphism in Fib(B) and ω its identee in K.
Then the coinverter (resp. coidentifier) q of ω in K induces a factorization

A

p

((

f

��

q
// Q

h

��

s
// C

g

��
B

of p in Fib(B), where q : (A, f)→ (Q,h) is the coinverter (resp.
coidentifier) of ω in Fib(B).



Case study: Cat

The property (†) follows from the fact that (op)fibrations are exponentiable.
Moreover

Proposition

Each fibration f : A→ B in Cat admits a factorization given by the
coinverter of the identee of f followed by a fibration in groupoids. This
factorization coincides with the one given by (iterated coinverter,
conservative functor).

This follows from two facts:

I an isofibration is conservative if and only if its identee is an iso (holds
internally);

I split fibrations admit a reflection into split fibrations in groupoids.

Proposition

Let f : A→ B be a fibration in Cat. The comprehensive factorization of f
is given by the coidentifier of the identee of f followed by the unique
comparison functor to f , and this factorization coincides with the one given
by (iterated coidentifier, discrete functor).
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From Cat to Fib(B)

The two factorization systems above lift to Fib(B) for each B in Cat.

To see how this works, it is convenient to view fibrations over B as
pseudo-functors [Bop,Cat]:

A

f

��

p // C

g

��

 Bop

ĝ

::

f̂

%%
p̂
��

Cat

B

Then, for each β : b′ → b in B

Wb 66
((

ωb��

β∗

��

Ab qb
//

pb

((

β∗

��

Qb sb
//

β∗

��

Cb

β∗

��
Wb′ 55

))
ωb′�� Ab′

qb′ //

pb′

55Qb′
sb′ // Cb′
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Proposition

Every fiberwise opfibration p : (A, f)→ (C, g) in Fib(B) admits a
comprehensive factorization
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where q is the coidentifier of the identee of p and s is a discrete opfibration
in Fib(B).

A similar result holds with q′ the coinverter of the identee of p and s′ a
fiberwise opfibration in groupoids. These two factorizations admit a unique
comparison
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