
Algebraic Structure From Non-Algebraic Proofs

Andrew W Swan

ILLC, University of Amsterdam

July 10, 2018



Definition (Grandis, Tholen)

An algebraic weak factorisation system (awfs) (a.k.a natural weak
factorisation system) on a category C consists of a comonad
L: C2 → C2 and monad R: C2 → C2 where the underlying
copointed and pointed endofunctors arise from a functorial
factorisation, satisfying a “distributive law.”

We can used awfs’s to get a structured notion of (trivial)
cofibrations and fibrations. What about weak equivalences?



Definition
Suppose we are given a morphism of awfs’s ξ : (Ct ,F)→ (C,Ft).

We say a structured weak equivalence is a map f : X → Y
together with an Ft-algebra structure on Ff .

A morphism of structured weak equivalences is a commutative
square

X

f
��

// X ′

f ′

��
Y // Y ′

such that the induced map Ff → Ff ′ is a morphism of Ft-algebras.

Write the resulting category as W-Map



Consider diagrams of the following form:

X

f ��

h // Y

Z

g

??

A functorial 3-for-2 operator takes such a diagram together with
weak equivalence structures on two of the maps, and returns a
weak equivalence structure on the third map, preserving morphisms
of structured weak equivalences.
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Definition
An algebraic model structure with structured weak equivalences
consists of

1. A morphism of algebraic weak factorisation systems
ξ : (Ct ,F)→ (C,Ft).

2. A functorial 3-for-2 operator.

Functors of the form below, that commute with forgetful functors.

1. C-coalg ×C2 W-Map→ Ct-coalg

2. Ct-coalg→W-Map

3. F-Alg ×C2 W-Map→ Ft-Alg

4. Ft-Alg→W-Map



I This is based on the notion of algebraic model structure due
to Riehl.

I The original motivation for this definition was the
construction of identity types in cubical sets.

I Unpublished results by Sattler suggest a wide range of
categories (including CCHM cubical sets) can be made in
algebraic model structures with structured weak equivalences.

Theorem (S)

Suppose that C is a category with an ams with structured weak
equivalences and a “stable functorial choice of path objects.” Then
C also has a “stable functorial choice of very good path objects”
(which can be used for identity types, giving explicit definitions for
J-terms).
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Theorem (Sattler)

Suppose (C,⊗) is a finitely complete and finitely cocomplete
symmetric affine monoidal closed category and we are given

1. an interval object δ0, δ1 : 1→ I
2. wfs’s (C,F t) and (Ct ,F)

3. Ct ⊆ C
4. C is closed under pullbacks

5. f is a fibration if and only if δ0�̂f and δ1�̂f are trivial
fibrations.

6. [δ0, δ1]�̂− preserves trivial fibrations.

7. Trivial cofibrations are stable under pullback along fibrations

8. (Trivial) Fibrations extend along trivial cofibrations

Define W to be maps of the form f ◦m where m ∈ Ct and f ∈ F t .
Then (C,F ,W) is a model structure.
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Usually, the most natural way to prove 5 is to show C is generated
by a set I and (Ct ,F) is cofibrantly generated by maps δi ⊗̂m
where m ∈ I and i = 0, 1.
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Then (C,F ,W) is a model structure.

Usually, the most natural way to prove 6 is show that
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Intuitively, it should be easy to find a functorial 3-for-2 operator,
and the rest of the structure by applying the non-functorial result
“uniformly the same everywhere ensuring the obvious maps
preserve all the structure.”

We will make this idea precise using Grothendieck fibrations.

1. Making it easy to formalise (without missing out too many
details, or leaving them as exercises for the reader).

2. (Hopefully) The same ideas apply to variants based on
realizabilty, allowing us to extract computational information
telling us how to compute the operators.
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Definition
Let C be a category. We define the Grothendieck fibration of
category indexed families p : Fam(C)→ CAT as follows. An
object of Fam(C) consists of A ∈ CAT together with a functor
A→ C. p is defined to be the projection functor.

For the proof to work, we need CAT to contain categories the
same cardinality as C (so in particular C ∈ CAT).

By a well known result due to Freyd, C cannot have colimits of
shape A for all A ∈ CAT unless it is a poset. Hence in this case p
is not a bifibration.
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Then we define an ams with structured weak equivalences on C.
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(Ct ,F) and (C,Ft) uniquely extend to fibred awfs’s over
Fam(C)→ CAT. We just define them pointwise.

(Note that each fibre category Fam(C)A is the functor category
[A,C] and the restrictions of (C,Ft) and (Ct ,F) are the pointwise
awfs’s.)

We then translate all of definitions to properties of the fibration.

Proposition

Suppose G is a vertical map over the category A. Then

1. We can view G as a functor A→ C2

2. F-algebra structures on G correspond to a choice of F-algebra
structure on G (A) for each A ∈ A such that G (σ) is a
morphism of F-algebras for each morphism σ of A.

3. Similarly for Ft-algebra, C-coalgebra, Ct-coalgebra, and weak
equivalence structures.
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For the cofibrantly generated parts we use the following definition.

Definition
Suppose p : E→ B is a Grothendieck fibration, and (L,R) is a
fibred awfs over p.
Suppose M is a vertical map in the fibre of J and G is a vertical
map in the fibre of I .

A family of lifting problems from M to G is a map σ : K → J in B
together with a lifting problem from σ∗(M) to G .

We say (L,R) is cofibrantly generated by a vertical map M if for all
vertical maps G , R-algebra structures on G correspond naturally to
coherent choices of fillers for all families of lifting problems from M
to G .
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We obtain the following structure over p : Fam(C)→ CAT.

1. an interval object δ0, δ1 : 1→ I over 1

2. Fibred awfs’s (C t ,F) and (C ,Ft)

3. (C ,Ft) is stable under pullback

4. (C ,Ft) is cofibrantly generated by a vertical map M

5. (C t ,F) is cofibrantly generated by δ0⊗̂M + δ1⊗̂M

6. There is a levelwise cartesian square [δ0, δ1]⊗̂M → M

7. Trivial cofibrations are stable under pullback along fibrations

8. (Trivial) Fibrations extend along trivial cofibrations
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For every A, the fibre category Fam(C)A satisfies the conditions to
apply Sattler’s non-algebraic result. We deduce.

Lemma
For every category A ∈ CAT, Fam(C)A is a model structure.



Suppose we want an operator composing weak equivalences.

We define A to be the category with objects pairs of structured

weak equivalences X
g→ Y

h→ Z in C.
A morphism of A is a diagram of the form below, where both
squares preserve the weak equivalence structures.

X
g //

��

Y
h //

��

Z

��
X ′

g ′
// Y ′

h′
// Z ′

This defines two vertical maps G and H in Fam(C)A, and
moreover they are weak equivalences in Fam(C)A. Since Fam(C)A
is a model structure H ◦ G must also be a weak equivalence in
Fam(C)A. We deduce that we can assign h ◦ g the structure of a
weak equivalence for each object (g , h) in A, and moreover this
assignment is functorial.
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I This result can be used to show BCH cubical sets form an
ams with structured weak equivalences.

I It may lead to a more efficient proof of Sattler’s result that
CCHM cubical sets (and many other categories) form an ams
with structured weak equivalences.

I (Work in progress) Instead of category indexed family
fibrations we can work over variants based on assemblies. This
could lead to new examples of ams’s based on realizability.

Thank you for your attention!
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