A new characterisation of higher central extensions in semi-abelian categories

Cyrille Sandry Simeu

Université Catholique de Louvain Joint work with T. Everaert and T. Van der Linden

July 11, 2018

Outline

- Introduction
- 2 Categorical Galois theory
 - Semi-abelian categories
 - Higher central extensions
 - ▶ The Smith is Hug condition
- The higher-order Higgins commutator
 - Definitions and examples
 - Some properties of the *n*-fold Higgins commutator
- 4 A new characterisation of higher central extensions
 - The known results
 - The main results
- Some perspectives

Introduction

The concept of higher centrality is useful and unavoidable in the recent approach to homology and cohomology of non-abelian structures based on categorical Galois theory. In our work, higher central extensions are the covering morphisms with respect to certain Galois structures induced by a refletion

$$\mathbb{X} \xrightarrow{\overset{\mathsf{Ap}}{\longleftarrow}} \mathsf{Ap}(\mathbb{X})$$

and can also be defined more generally, for any semi-abelian category X and any Birkhoff subcategory \mathscr{B} of \mathbb{X} . The descriptions of higher central extensions in terms of algebraic conditions using "generalised commutators" is in general a non-trivial problem.

Today, I am going to:

- give a new characterisation of higher central extensions in terms of higher-order Higgins commutators in semi-abelian categories which do not satisfy the Smith is Hug condition.
 - give some perspectives for future work.

Semi-abelian categories

Throughout this presentation, X is a semi-abelian category.

Definition [G. Janelidze, L. Márki, and W. Tholen]

A category X is semi-abelian when it

- is pointed;
- 2 has binary coproducts:
- is Barr-exact:
- is Bourn-protomodular: the Split Short Five Lemma holds.

Examples: Grp, Lie_K, Alg_K, XMod, varieties of Ω -groups, Loops, Near-Rings.

- **Examples:** Any subvariety \mathcal{B} of a variety of universal algebras \mathcal{V} .
 - The subcategory Ab(X) of abelian objects in X.

Semi-abelian categories

Throughout this presentation, X is a semi-abelian category.

Definition [G. Janelidze, L. Márki, and W. Tholen]

A category X is semi-abelian when it

- is pointed;
- 2 has binary coproducts:
- is Barr-exact:
- is Bourn-protomodular: the Split Short Five Lemma holds.

Examples: Grp, Lie_K, Alg_K, XMod, varieties of Ω -groups, Loops, Near-Rings.

Definition [G. Janelidze, G.M. Kelly]

A subcategory \mathscr{B} of \mathbb{X} is a Birkhoff subcategory when it is closed under subobjects and regular quotients.

- **Examples:** Any subvariety \mathscr{B} of a variety of universal algebras \mathscr{V} .
 - The subcategory Ab(X) of abelian objects in X.

Higher extensions

An *n*-fold arrow in \mathbb{X} is a functor $F:(2^n)^{op}\longrightarrow \mathbb{X}$.

$$\operatorname{\mathsf{Arr}}^n(\mathbb{X}) = \operatorname{\mathsf{Fun}}((2^n)^{\mathit{op}}, \mathbb{X})$$

- An *n*-fold arrow F is an *n*-fold extension when for all $\emptyset \neq I \subseteq n$ the arrow $F_I \rightarrow \lim_{J \subseteq I} F_J$ is a regular epimorphism. Extⁿ(\mathbb{X}) is the category of n-fold extensions

$$\mathbb{X} \xrightarrow{\frac{\mathsf{ab}}{\longleftarrow}} \mathsf{Ab}(\mathbb{X})$$

$$\Gamma_0 = (\mathbb{X}, \mathsf{Ab}(\mathbb{X}), \mathsf{ab}, \subset, \mathscr{E}, \mathscr{F})$$

$$\begin{array}{c|c}
 & & \xrightarrow{\pi_1} & & B \\
 & & & & \downarrow \\
 & \eta_{\operatorname{Eq}(f)}^0 & & & & \downarrow \\
 & \mathsf{ab}_0(\operatorname{Eq}(f)) & & & & \mathsf{ab}_0(B)
\end{array}$$

Higher extensions

▶ An *n*-fold arrow in \mathbb{X} is a functor $F:(2^n)^{op} \longrightarrow \mathbb{X}$.

$$\mathsf{Arr}^n(\mathbb{X}) = \mathsf{Fun}((2^n)^{op}, \mathbb{X})$$

- An *n*-fold arrow F is an *n*-fold extension when for all $\emptyset \neq I \subseteq n$ the arrow $F_I \rightarrow \lim_{J \subseteq I} F_J$ is a regular epimorphism. Extⁿ(\mathbb{X}) is the category of n-fold extensions
- The adjunction

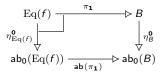
$$\mathbb{X} \xrightarrow{\frac{\mathsf{a}\mathsf{b}}{\bot}} \mathsf{A}\mathsf{b}(\mathbb{X})$$

induces a Galois structure

$$\Gamma_0 = (\mathbb{X}, \mathsf{Ab}(\mathbb{X}), \mathsf{ab}, \subset, \mathscr{E}, \mathscr{F})$$

in the sense of G. Janelidze.

A 1-fold extension $f: B \rightarrow A \in \mathscr{E}$ is **central** w.r.t Γ_0 if and only if the square



is a pullback.

Higher central extensions

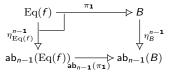
- The category CExt(X) of 1-fold central extensions in X is a strongly \mathscr{E}^1 -Birkhoff subcategory of Ext(X)
- Inductively, for any $n \ge 1$, this gives an adjunction

$$\operatorname{Ext}^n(\mathbb{X}) \xrightarrow{\operatorname{ab}_n} \operatorname{CExt}^n(\mathbb{X})$$

which induce a Galois structure

$$\Gamma_n = (\mathsf{Ext}^n(\mathbb{X}), \mathsf{CExt}^n(\mathbb{X}), \mathsf{ab}_n, \subset, \mathscr{E}^n, \mathscr{F}^n)$$

- The category $\mathsf{CExt}^n(\mathbb{X})$ of *n*-fold central extensions in \mathbb{X} w.r.t Γ_{n-1} is a strongly \mathscr{E}^n -Birkhoff subcategory of $\operatorname{Ext}^n(\mathbb{X})$
- An *n*-fold extension $f: B \to A$ is central w.r.t Γ_{n-1} if and only if the square

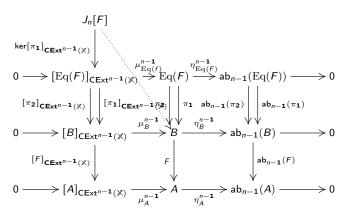


is a pullback.

The reflection

The reflection $ab_n : Ext^n(\mathbb{X}) \to CExt^n(\mathbb{X})$ is built as follows:

[T. Everaert, M. Gran, and T. Van der Linden, 2008]



The object $L_n[F]$

This yields a morphism of short exact sequences in $Arr^{n-1}(X)$

$$0 \longrightarrow J_n[F] \longrightarrow B \xrightarrow{\rho_F^n} ab_n[F] \longrightarrow 0$$

$$J_nF \downarrow \qquad \qquad \downarrow ab_nF$$

$$0 \longrightarrow A \longrightarrow A \longrightarrow 0$$

▶ $L_n[F]$ is the inital object of the *n*-fold extension J_nF denoted by

$$L_n[F] = (J_nF)_n$$

▶ $J_n F$ is zero everywhere, except on its initial object $L_n [F]$.

Remark [T. Everaert, M. Gran, and T. Van der Linden, 2008]

An *n*-fold extension F is central w.r.t Γ_{n-1} if and only if $L_n[F] = 0$

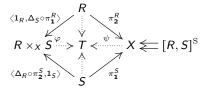
What is $L_n[F]$? Our goal is to give an explicite description of this object in terms of "generalised commutators".

The Smith is Huq condition

For equivalence relations R, S on X

$$R \xrightarrow[\pi_2^R]{\pi_1^S} X \xleftarrow[\pi_2^S]{\pi_2^S} S$$

The Smith-Pedicchio commutator $[R,S]^{\mathrm{S}}$, is the kernel pair of ψ



For subojects K, L of X, the **Huq-Bourn** commutator $[K, L]_Q$ is the kernel of the morphism q,

• R and S Smith commute iff

$$[R,S]^{\mathrm{S}} = \Delta_X$$

• K and L Huq commute iff $[K, L]_Q = 0$

The Smith is Huq condition

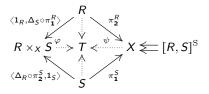
A semi-abelian category X satisfies the **Smith is Huq condition (SH)**, when two equivalence relations on the same object Smith-commute if and only if their normalisations Huq commute.

The Smith is Huq condition

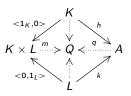
For equivalence relations R, S on X

$$R \xrightarrow[\pi_2^R]{\pi_1^R} X \xleftarrow[\pi_2^S]{\pi_2^S} S$$

The Smith-Pedicchio commutator $[R,S]^{\mathrm{S}}$, is the kernel pair of ψ



For subojects K, L of X, the **Huq-Bourn** commutator $[K, L]_Q$ is the kernel of the morphism q,



• R and S Smith commute iff

$$[R,S]^{\mathrm{S}}=\Delta_X$$

• K and L Huq commute iff $[K, L]_Q = 0$

The Smith is Huq condition

A semi-abelian category $\mathbb X$ satisfies the **Smith is Huq condition (SH)**, when two equivalence relations on the same object Smith-commute if and only if their normalisations Huq commute.

When the condition (SH) holds, the object $L_n[F]$ has a characterisation in terms of binary Higgins or binary Hug commutators.

Examples of categories with (SH)

- Grp;
- Lie_K ;
- Action accessible categories;
- Categories of interest in the sense of Orzech.

The known results

Definition [D.Rodelo and T. Van der Linden 2012]

A semi-abelian category $\mathbb X$ satisfies the **Commutators Condition** (*CC*) when: for all $n \ge 1$, an *n*-fold extension F is central if and only if

$$\bigvee_{I\subseteq n} [\bigwedge_{i\in I} K_i, \bigwedge_{i\in n\setminus I} K_i]_H = 0$$

Remark [D.Rodelo and T. Van der Linden 2012]

For semi-abelian categories : $(SH) \Rightarrow (CC)$

Theorem [D.Rodelo and T. Van der Linden 2012]

In any semi-abelian category $\mathbb X$ which satisfy the condition (SH), an n-fold extension F is central in the Galois theory sense if and only if

$$\bigvee_{I\subseteq n} [\bigwedge_{i\in I} K_i, \bigwedge_{i\in n\setminus I} K_i]_H = 0$$

The known results

Definition [D.Rodelo and T. Van der Linden 2012]

A semi-abelian category \mathbb{X} satisfies the **Commutators Condition** (CC) when: for all $n \ge 1$, an *n*-fold extension F is central if and only if

$$\bigvee_{I\subseteq n} [\bigwedge_{i\in I} K_i, \bigwedge_{i\in n\setminus I} K_i]_H = 0$$

Remark [D.Rodelo and T. Van der Linden 2012]

For semi-abelian categories : $(SH) \Rightarrow (CC)$

Theorem [D.Rodelo and T. Van der Linden 2012]

In any semi-abelian category \mathbb{X} which satisfy the condition (SH), an *n*-fold extension Fis central in the Galois theory sense if and only if

$$\bigvee_{I\subseteq n} [\bigwedge_{i\in I} K_i, \bigwedge_{i\in n\setminus I} K_i]_H = 0$$

For any *n*-fold extension F in a semi-abelian category which satisfy the condition (SH), we have

$$L_n[F] = \bigvee_{I \subseteq n} [\bigwedge_{i \in I} K_i, \bigwedge_{i \in n \setminus I} K_i]_H$$

• Our aim is to give a characterisation of $L_n[F]$ when the condition (SH) does not holds.

Examples of categories without (SH)

- Loops:
- Digroups;
- Near-Rings.
- To acheive our goal, we will need the concept of higher-order Higgins commutator.

Given objects $X_1, \dots, X_n, n \ge 2$, in any finitely cocomplete homological category, their co-smash product [A.Carboni, G. Janelidze] $X_1 \diamond \cdots \diamond X_n$ is the kernel

$$X_1 \diamond \cdots \diamond X_n \triangleright \xrightarrow{\tau_{X_1,\cdots,X_n}} \coprod_{j=1}^n X_j \xrightarrow{r_{X_1,\cdots,X_n}} \prod_{j=1}^n \left(\prod_{l=1,l\neq j}^n X_l \right)$$

where r_{X_1,\dots,X_n} is the morphism determined by

$$\pi_{\coprod_{l=1,l\neq j}^{n}X_{l}}\circ r_{X_{1},\cdots,X_{n}}=\left\{\begin{array}{ll}\iota_{X_{l}}\text{ if }&l\neq j\\\\0\text{ if }&l=j\end{array}\right.$$

$$X \diamond Y \diamond Z \triangleright \xrightarrow{\tau_{X,Y,Z}} X + Y + Z \xrightarrow{\begin{pmatrix} \iota_X & \iota_X & 0 \\ \iota_Y & 0 & \iota_Y \\ 0 & \iota_Z & \iota_Z \end{pmatrix}} (X + Y) \times (X + Z) \times (Y + Z)$$

▶ Given objects X_1, \dots, X_n , $n \ge 2$, in any finitely cocomplete homological category, their co-smash product [A.Carboni, G. Janelidze] $X_1 \diamond \dots \diamond X_n$ is the kernel

$$X_1 \diamond \cdots \diamond X_n \triangleright \xrightarrow{\tau_{X_1,\cdots,X_n}} \coprod_{j=1}^n X_j \xrightarrow{r_{X_1,\cdots,X_n}} \prod_{j=1}^n (\prod_{l=1,l\neq j}^n X_l)$$

where r_{X_1,\dots,X_n} is the morphism determined by

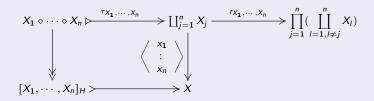
$$\pi_{\coprod_{l=1,l\neq j}^{n}X_{l}}\circ r_{X_{1},\cdots,X_{n}}=\left\{\begin{array}{ll}\iota_{X_{l}}\text{ if }&l\neq j\\\\0\text{ if }&l=j\end{array}\right.$$

▶ For example: when n = 3 and X, Y, Z are objects of X, the co-smash product $X \diamond Y \diamond Z$ is defined as the kernel

$$X \diamond Y \diamond Z \triangleright \xrightarrow{\tau_{X,Y,Z}} X + Y + Z \xrightarrow{\iota_{X} \quad \iota_{X} \quad \iota_{X} \quad 0} X + Y + Z \xrightarrow{\tau_{X,Y,Z}} (X + Y) \times (X + Z) \times (Y + Z)$$

Definition [M.Hartl]

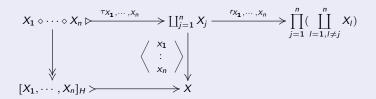
Let X be an object of a finitely cocomplete homological category \mathbb{X} , and X_i be subobjects of X with their associated morphisms $x_i: X_i \to X$ for $1 \le i \le n$. Their n-fold **Higgins commutator** is the sub-object $[X_1, \dots, X_n]_H$ given by:



$$[K, L, M]_H = [[K, L]_H, M]_H \vee [[M, K]_H, L]_H \vee [[L, M]_H, K]_H$$

Definition [M.Hartl]

Let X be an object of a finitely cocomplete homological category \mathbb{X} , and X_i be subobjects of X with their associated morphisms $x_i: X_i \to X$ for $1 \le i \le n$. Their n-fold **Higgins commutator** is the sub-object $[X_1, \dots, X_n]_H$ given by:



- When n=2, it coincides with the binary Higgins commutator introduced in any finitely cocomplete ideal determined category by G. Metere and S. Mantovani.
- When n=3 and \mathbb{X} is any algebraically coherent semi-abelian category, given normal subobjects K, L, M of an object G, their ternary Higgins commutator is given by :

$$[K, L, M]_H = [[K, L]_H, M]_H \vee [[M, K]_H, L]_H \vee [[L, M]_H, K]_H$$

Motivation for our work

When we drop the Smith is Huq condition, we obtain the following characterisation of the Smith centrality of equivalence relations:

Proposition [M. Hartl and T. Van der Linden, 2013]

In a finitely cocomplete homological category, consider effective equivalence relations R and S on X with normalisations $K, L \triangleleft X$, respectively. Then

$$[R,S]^{S} = \Delta_X \Leftrightarrow [K,L]_H \vee [K,L,X]_H = 0$$

Proposition [M. Hartl and T. Van der Linden, 2013]

Given a double extension F in any semi abelian category X,

$$\begin{array}{ccc}
X & \xrightarrow{f_1} & C \\
\downarrow^{f_0} & & \downarrow^{g} \\
D & \xrightarrow{f} & Z
\end{array}$$

write $K_0 = \ker(f_f)$ and $K_1 = \ker(f_1)$. Then F is central if and only if

$$[K_0, K_1]_H \vee [K_0 \wedge K_1, X]_H \vee [K_0, K_1, X]_H = 0$$

Motivation for our work

When we drop the Smith is Hug condition, we obtain the following characterisation of the Smith centrality of equivalence relations:

Proposition [M. Hartl and T. Van der Linden, 2013]

In a finitely cocomplete homological category, consider effective equivalence relations R and S on X with normalisations $K, L \triangleleft X$, respectively. Then

$$[R,S]^{S} = \Delta_X \Leftrightarrow [K,L]_H \vee [K,L,X]_H = 0$$

Proposition [M. Hartl and T. Van der Linden, 2013]

Given a double extension F in any semi abelian category \mathbb{X} ,

write $K_0 = \ker(f_f)$ and $K_1 = \ker(f_1)$. Then F is central if and only if

$$[K_0, K_1]_H \vee [K_0 \wedge K_1, X]_H \vee [K_0, K_1, X]_H = 0$$

$$\bigwedge_{\varnothing} K_i = X$$

Remark

The following conditions are equivalent where $(I_I)_I$ are arbitrary subsets of $2 := \{0, 1\}$;

(i)
$$[K_0, K_1]_H \vee [K_0 \wedge K_1, X]_H \vee [K_0, K_1, X]_H = 0;$$

(ii)
$$\bigvee_{I_0 \cup \dots \cup I_k = 2, k \in \mathbb{N}^*} \left[\bigwedge_{i \in I_0} K_i, \dots, \bigwedge_{i \in I_k} K_i \right]_H = 0$$

 $[K_0, K_1, K_1]_H \subseteq [K_0, K_1]_H$ " remove duplication enlarges the object " $[K_0 \wedge K_1, K_1]_H \subseteq [K_0, K_1]_H$ "commutators are monotone" $[K_0 \wedge K_1, X, K_0, X, K_1, X]_H \subseteq [K_0, K_1, X]_H$

Some important results

- ▶ Higgins commutators are **reduced**: if $X_i = 0$ for some i, then $[X_1, \dots, X_n]_H = 0$;
- ▶ Higgins commutators are **symmetric**: for any permutation $\sigma \in \Sigma_n$;

$$[X_1,\cdots,X_n]_H\cong [X_{\sigma(1)},\cdots,X_{\sigma(n)}]_H$$

▶ Higgins commutators are **preserved by direct images:** for $f: X \rightarrow Y$ regular epimorphism,

$$f[X_1,\cdots,X_n]_H=[f(X_1),\cdots,f(X_n)]_H$$

Proposition

Let $\mathbb X$ be a semi-abelian category, X and Y two objects of $\mathbb X$. For any subojects A, C of X and any subobjects B, D of Y, the square

$$(A \times B) + (C \times D) \xrightarrow{r_{A \times B, C \times D}} (A \times B) \times (C \times D)$$

$$\left\langle \begin{array}{c} \iota_{A} \times \iota_{B} \\ \iota_{C} \times \iota_{D} \end{array} \right\rangle \psi \qquad \qquad \psi \langle \pi_{A} \times \pi_{C}, \pi_{B} \times \pi_{D} \rangle$$

$$(A + C) \times (B + D) \xrightarrow{r_{A,C} \times r_{B,D}} (A \times C) \times (B \times D)$$

is a regular pushout.

Proof: Let us consider the following diagram:

 $\,\blacktriangleright\,$ We only need to prove that the morphism \bar{b} is a regular epimorphism. Let us consider the pair of morphisms

$$\langle 1, 0 \rangle \diamond \langle 1, 0 \rangle : A \diamond C \to (A \times B) \diamond (C \times D)$$
$$\langle 0, 1 \rangle \diamond \langle 0, 1 \rangle : B \diamond D \to (A \times B) \diamond (C \times D)$$

b By composition with \bar{b} we obtain the following

$$\begin{array}{c|c} A \diamond C & \xrightarrow{\tau_{A,C}} & A + C & \xrightarrow{r_{A,C}} & A \times C \\ \langle 1,0 \rangle \diamond \langle 1,0 \rangle & & & & & & & & & & & & \\ \langle 1,0 \rangle \diamond \langle 1,0 \rangle & & & & & & & & & & & \\ \langle 1,0 \rangle \diamond \langle 1,0 \rangle & & & & & & & & & & \\ \langle 1,0 \rangle \diamond \langle 1,0 \rangle & & & & & & & & \\ \langle 1,0 \rangle \times \langle 1,0 \rangle & & & & & & & \\ \langle 1,0 \rangle \times \langle 1,0 \rangle & & & & & & & \\ \langle 1,0 \rangle \times \langle 1,0 \rangle & & & & & & \\ \langle 1,0 \rangle \times \langle 1,0 \rangle & & & & & & \\ \langle 1,0 \rangle \times \langle 1,0 \rangle & & & & & \\ \langle 1,0 \rangle \times \langle 1,0 \rangle & & & & & \\ \langle 1,0 \rangle \times \langle 1,0 \rangle & & & & & \\ \langle 1,0 \rangle \times \langle 1,0 \rangle & & & & & \\ \langle 1,0 \rangle \times \langle 1,0 \rangle & & & & & \\ \langle 1,0 \rangle \times \langle 1,0 \rangle & & & & & \\ \langle 1,0 \rangle \times \langle 1,0 \rangle & & & & & \\ \langle 1,0 \rangle \times \langle 1,0 \rangle & & & & & \\ \langle 1,0 \rangle \times \langle 1,0 \rangle & & & & & \\ \langle 1,0 \rangle \times \langle 1,0 \rangle & & & & \\ \langle 1,0 \rangle \times \langle 1,0 \rangle & & & & \\ \langle 1,0 \rangle \times \langle 1,0 \rangle & & & & \\ \langle 1,0 \rangle \times \langle 1,0 \rangle & & & & \\ \langle 1,0 \rangle \times \langle 1,0 \rangle & & & & \\ \langle 1,0 \rangle \times \langle 1,0 \rangle & & & & \\ \langle 1,0 \rangle \times \langle 1,0 \rangle & & & & \\ \langle 1,0 \rangle \times \langle 1,0 \rangle & & \\ \langle 1,0 \rangle \times \langle 1,0 \rangle & & & \\ \langle 1,0 \rangle \times \langle 1,0 \rangle & & \\ \langle 1,0 \rangle \times \langle 1,0 \rangle & & \\ \langle 1,0 \rangle \times \langle 1,0 \rangle & & \\ \langle 1,0 \rangle \times \langle 1,0 \rangle & & \\ \langle 1,0 \rangle \times \langle 1,0 \rangle & & \\ \langle 1,0 \rangle \times \langle 1,0 \rangle & & \\ \langle 1,0 \rangle \times \langle 1,0 \rangle & & \\ \langle 1,0 \rangle \times \langle 1,0 \rangle & & \\ \langle 1,0 \rangle \times \langle 1,0 \rangle & & \\ \langle 1,0 \rangle \times \langle 1,0 \rangle & & \\ \langle 1,0 \rangle \times \langle 1,0 \rangle & & \\ \langle 1,0 \rangle \times \langle 1,0 \rangle & & \\ \langle 1,0$$

$$A \diamond C \xrightarrow{\langle 1,0 \rangle \diamond \langle 1,0 \rangle} (A \times B) \diamond (C \times D) \xrightarrow{\bar{b}} (A \diamond C) \times (B \diamond D) \text{ We then have:}$$

$$\begin{array}{lll} (\tau_{A,C} \times \tau_{B,D}) \circ \bar{b} \circ \langle 1,0 \rangle \diamond \langle 1,0 \rangle & = & \left\langle \begin{array}{c} \iota_{A} \times \iota_{B} \\ \iota_{C} \times \iota_{D} \end{array} \right\rangle \circ \tau_{A \times B,C \times D} \circ \langle 1,0 \rangle \diamond \langle 1,0 \rangle \\ \\ & = & \left\langle \begin{array}{c} \iota_{A} \times \iota_{B} \\ \iota_{C} \times \iota_{D} \end{array} \right\rangle \circ (\langle 1,0 \rangle + \langle 1,0 \rangle) \circ \tau_{A,C} \\ \\ & = & \left\langle 1_{A+C},0 \right\rangle \circ \tau_{A,C} \\ \\ & = & \left\langle \tau_{A,C} \times \tau_{B,D} \right) \circ \langle 1,0 \rangle \end{aligned}$$

Therefore, since $(\tau_{A,C} \times \tau_{B,D})$ is a monomorphism, it follows that $\bar{b} \circ \langle 1,0 \rangle \diamond \langle 1,0 \rangle = \langle 1,0 \rangle$. Similarly, one can prove that

$$\bar{b} \circ \langle 0, 1 \rangle \diamond \langle 0, 1 \rangle = \langle 0, 1 \rangle$$

$$(A \times B) \diamond (C \times D)$$

$$\downarrow_{\bar{b}}$$

$$(A \diamond C) \xrightarrow{\langle 1,0 \rangle} (A \diamond C) \times (B \diamond D) \leftarrow (B \diamond D)$$

Therefore, \bar{b} is a strong epimorphism.

(ロ) (部) (注) (注) 注 り(()

Some properties

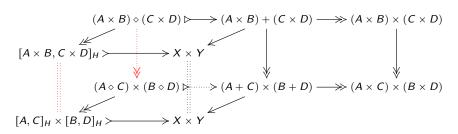
Proposition (The lower-dimensional case)

Let \mathbb{X} be a semi-abelian category, X and Y two objects of \mathbb{X} . For any subojects A, C of X and any subobjects B, D of Y, we have:

$$[A, C]_H \times [B, D]_H = [A \times B, C \times D]_H$$

as subobjects of $X \times Y$.

Proof:



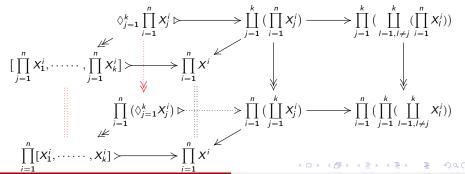
Some properties

Proposition (The higher-dimensional case)

Let $\mathbb X$ be a semi-abelian category, X^i , $i=1,\cdots,n$ be objects of $\mathbb X$ and $x^i_j:X^i_j\to X_i$ be subobjects of X^i for $j=1,\cdots,k$ and $i=1,\cdots,n$. Then

$$\prod_{i=1}^n [X_1^i, \cdots, X_k^i]_H = \big[\prod_{i=1}^n X_1^i, \cdots, \prod_{i=1}^n X_k^i\big]_H \text{ as subobjects of } \prod_{i=1}^n X^i$$

Proof:



Some properties

We denote by Δ_A the diagonal relation $A \longrightarrow A \times A$, viewed as a subobject of $A \times A$.

Corollary

Given an object X in any semi-abelian category \mathbb{X} , the following properties hold:

(i) For all sub-objects $X_i \rightarrow X$ of X with $i = 1, \dots, k$, we have:

$$[\Delta_{X_1}, \cdots, \Delta_{X_k}]_H = \Delta_{[X_1, \cdots, X_k]_H}$$

(ii) For all subobjects $X_i \mapsto X$ of X, $i = 1, \dots, k$, and any integer $1 \le m \le k$ we have:

$$[0 \times X_1, \cdots, 0 \times X_m, \Delta_{X_{m+1}}, \cdots, \Delta_{X_k}]_H = 0 \times [X_1, \cdots, X_k]_H$$

The main result

Theorem

Given an n-fold extension f in a semi-abelian category, write K_i for the kernel of the initial arrows $f_i: F_n \longrightarrow F_{n\setminus\{i\}}$. Then F is central if and only if the join of Higgins commutators

$$\bigvee_{I_{\boldsymbol{0}} \cup \cdots \cup I_{k} = n, k \in \mathbb{N}^{*}} \left[\bigwedge_{i \in I_{\boldsymbol{0}}} K_{i}, \cdots, \bigwedge_{i \in I_{k}} K_{i} \right]$$

vanishes.

In order to prove this theorem, it is enough to prove the following proposition:

$$L_n[f] = \bigvee_{l_0 \cup \dots \cup l_k = n, k \in \mathbb{N}^*} \left[\bigwedge_{i \in l_0} K_i, \dots, \bigwedge_{i \in l_k} K_i \right]_H$$

$$L_n[f] = 0 \Leftrightarrow \pi_1(L_{n-1}[\mathrm{Eq}(f)]) = \pi_2(L_{n-1}[\mathrm{Eq}(f)])$$

The main result

Theorem

Given an n-fold extension f in a semi-abelian category, write K_i for the kernel of the initial arrows $f_i: F_n \longrightarrow F_{n\setminus\{i\}}$. Then F is central if and only if the join of Higgins commutators

$$\bigvee_{I_{\boldsymbol{0}} \cup \cdots \cup I_{k} = n, k \in \mathbb{N}^{*}} \left[\bigwedge_{i \in I_{\boldsymbol{0}}} K_{i}, \cdots, \bigwedge_{i \in I_{k}} K_{i} \right]$$

vanishes.

In order to prove this theorem, it is enough to prove the following proposition:

Proposition

$$L_n[f] = \bigvee_{I_0 \cup \dots \cup I_k = n, k \in \mathbb{N}^*} \left[\bigwedge_{i \in I_0} K_i, \dots, \bigwedge_{i \in I_k} K_i \right]_H$$

For that, we are going to use the following lemmas:

Lemma [T. Everaert, M. Gran, and T. Van der Linden, 2008]

Given any n-fold extension f in a semi-abelian category \mathbb{X} , we have:

$$L_n[f] = 0 \Leftrightarrow \pi_1(L_{n-1}[\mathrm{Eq}(f)] = \pi_2(L_{n-1}[\mathrm{Eq}(f)])$$

Lemma

The following conditions are equivalent in any semi abelian category:

(i) For every *n*-fold extension $f: B \longrightarrow A$.

$$L_n[f] = 0 \Leftrightarrow \bigvee_{I_0 \cup \dots \cup I_k = n, k \in \mathbb{N}^*} \left[\bigwedge_{i \in I_0} K_i, \dots, \bigwedge_{i \in I_k} K_i \right]_H = 0$$
 (A)

(ii) For every *n*-fold extension $f: B \longrightarrow A$,

$$L_n[f] = \bigvee_{I_0 \cup \dots \cup I_k = n, k \in \mathbb{N}^*} \left[\bigwedge_{i \in I_0} K_i, \dots, \bigwedge_{i \in I_k} K_i \right]_H$$
 (B)

Proof of the proposition by induction on n

- For n = 0, f = A and $L_0[f] = [A, A]_H$
- Now let us assume that the result holds for (n-1)-fold extensions. Let $f: B \to A$ be an n-fold extension.

• Eq(f) is an (n-1)-fold extension so that

$$L_{n-1}[\mathrm{Eq}(f)] \ = \ \bigvee_{I_0 \cup \cdots \cup I_k = n-1, k \in \mathbb{N}^*} \big[\bigcap_{i \in I_0} K[\mathrm{Eq}(f)_i], \cdots, \bigcap_{i \in I_k} K[\mathrm{Eq}(f)_i] \big]_H$$

Proposition [M. Hartl and T. Van der Linden, 2013]

Commutators satisfy a distribution rule with respect to joins:

$$\begin{bmatrix} X_1, \cdots, X_n, A_1 \vee \cdots \vee A_n \end{bmatrix}_H = \bigvee_{1 \leqslant k \leqslant m, 1 \leqslant i_1 < \cdots < i_k \leqslant m} \begin{bmatrix} X_1, \cdots, X_n, A_{i_1}, \cdots, A_{i_m} \end{bmatrix}_H$$

With all the above results, we proved that the following conditions are equivalent

(i)
$$L_n[F] = 0$$
:

(ii)
$$\pi_1 L_{n-1}[\text{Eq}(f)] = \pi_2 L_{n-1}[\text{Eq}(f)];$$

(iii)
$$\bigvee_{l_0 \cup \cdots \cup l_m = n, m \in \mathbb{N}^*} \left[\bigwedge_{i \in l_0} K_i, \cdots, \bigwedge_{i \in l_m} K_i \right]_H = 0$$

F is central if and only if the join of Higgins commutators

$$\bigvee_{\textit{I}_{\boldsymbol{0}} \cup \cdots \cup \textit{I}_{k} = \textit{n}, k \in \mathbb{N}^{*}} \big[\bigwedge_{\textit{i} \in \textit{I}_{\boldsymbol{0}}} \textit{K}_{\textit{i}}, \cdots, \bigwedge_{\textit{i} \in \textit{I}_{k}} \textit{K}_{\textit{i}} \big]_{\textit{H}} = 0$$

Corollary

In any semi-abelian monadic category \mathbb{X} , for any *n*-presentation F of an object \mathbb{Z} ,

$$H_{n+1}(Z, \mathsf{Ab}(\mathbb{X})) \cong \frac{[F_n, F_n]_H \wedge \bigwedge_{i \in n} \mathsf{ker}(f_i)}{\bigvee_{I_0 \cup \dots \cup I_k = n, k \in \mathbb{N}^*} \left[\bigwedge_{i \in I_0} K_i, \dots, \bigwedge_{i \in I_k} K_i \right]}$$

Some perspectives

As mentioned by M.Hartl, the combinatorial computation of the generators of the Higgins commutator $[X_1, \dots, X_n]_H$ as a normal subobject of $X_1 \vee \dots \vee X_n$, for $n \ge 4$ in any semi-abelian category is still an open problem.

Generators of Higgins commutators in Grp [B. Loiseau]

 $[X_1, \dots, X_n]_H$ is generated as a subgroup by all nested commutators (with arbitrary bracketing) of elements $x_1 \in X_{k_1}, \dots, x_m \in X_{k_m}$ such that $\{k_1, \dots, k_m\} = \{1, \dots, n\}$

In the future, I would like to:

- 1. Describe all generators of $[X_1,\cdots,X_n]_H$, as a normal subobject of $X_1\vee\cdots\vee X_n$ in any semi-abelian variety.
- 2. Study the difference between the *n*-fold Higgins commutator $[X_1, \dots, X_n]_H$ of normal subobjects and the normalisation of the Bulatov commutator of their denormalisations.

References

- [1] T. Everaert, M. Gran, and T. Van der Linden, Higher Hopf formulae for homology via Galois Theory, Adv. Math. 217 (2008), no. 5, 2231-2267.
- [2] M. Hartl and T. Van der Linden, The ternary commutator obstruction for internal crossed modules, Adv. Math. 232 (2013), no. 1, 571-607.
- [3] S. A. Huq, Commutator, nilpotency and solvability in categories, Q. J. Math. 19 (1968), no. 2, 363-389.
- [4] G.Janelidze, L.Márki, and W.Tholen, Semi-abelian categories, J.Pure Appl. Algebra **168** (2002), no.2 3, 367-386.
- [5] G. Janelidze, L. Màrki and S. Veldsman, Commutators for near-rings, Algebra univers 76 (2016): 223-229
- [6] D. Rodelo and T. Van der Linden, Higher central extensions via commutators, Theory Appl. Categ. 27 (2012), no. 9, 189-209.

References

- [1] T. Everaert, M. Gran, and T. Van der Linden, Higher Hopf formulae for homology via Galois Theory, Adv. Math. 217 (2008), no. 5, 2231-2267.
- [2] M. Hartl and T. Van der Linden, The ternary commutator obstruction for internal crossed modules, Adv. Math. 232 (2013), no. 1, 571-607.
- [3] S. A. Huq, Commutator, nilpotency and solvability in categories, Q. J. Math. 19 (1968), no. 2, 363-389.
- [4] G.Janelidze, L.Márki, and W.Tholen, Semi-abelian categories, J.Pure Appl. Algebra **168** (2002), no.2 3, 367-386.
- [5] G. Janelidze, L. Màrki and S. Veldsman, Commutators for near-rings, Algebra univers 76 (2016): 223-229
- [6] D. Rodelo and T. Van der Linden, Higher central extensions via commutators, Theory Appl. Categ. 27 (2012), no. 9, 189-209.

Thank you!

