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Motivation

Question
For “the” Vietoris functor V : Top→ Top, is the category CoAlg(V ) of
coalgebras for V complete (or has at least a terminal object)?

Recall

For a functor F : C→ C, a coalgebra

homomorphism:

X
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Think of V : Top→ Top as a “topological powerset functor”.

Theorem
The canonical forgetful functor CoAlg(F )→ C creates colimits.
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What about limits?

Theorem
CoAlg(F )→ C creates those limits which F : C→ C preserves.

Lemma (Lambek)
The terminal coalgebra c : T → FT is an isomorphism.

Example
The powerset functor P : Set→ Set does not admit a terminal
coalgebra.

Remark
Hence, one might expect that CoAlg(V ) is also not complete . . .

. . . however, V : Top→ Top does admit a terminal coalgebra; so
who knows . . . (we don’t).

What follows is what we (believe to) know . . . .
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A primer on limits in categories of coalgebras



Some well-known results

Theorem
If the C has and F : C→ C preserves the limit L of the diagram

1←− F1←− FF1←− . . . ,

then the canonical isomorphism L→ FL is a terminal F -coalgebra.

Definition
F : C→ C is a covarietor if CoAlg(F )→ C is left adjoint.

Theorem
If C is cocomplete with finite limits and C has and F : C→ C preserves
limits of countable chains, then F : C→ C is a covarietor.

Theorem
Let F be a covarietor over a complete category. If CoAlg(F ) has
equalisers then CoAlg(F ) is complete.
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Cocompleteness implies completeness

Theorem
Let F : C→ C be an endofunctor on a cocomplete category C and let I
be a small category. If C is (E ,M)-structured for cones for I,
M-wellpowered and F sends cones inM to cones inM, then CoAlg(F )
has limits of shape I.

Proof.
Verify the Solution Set Condition for ∆: CoAlg(F ) −→ CoAlg(F )I .

Corollary
If F : Set→ Set preserves monocones of a certain type, then the
category CoAlg(F ) has limits of the same type.

Corollary
If F : Top→ Top preserves either small monocones or small initial
monocones of a certain type, then the category CoAlg(F ) has limits of
the same type.
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Vietoris functors



Vietoris functors on topological spaces

“Das Orginal”
For a compact Hausdorff space X , the classic Vietoris space VX consists
of the set of all closed subsets of X

VX = {K ⊆ X | K is closed}

equipped with the “hit-and-miss topology” generated by the subbasis of
sets of the form (where U ⊆ X is open)

U♦ = {A ∈ VX | A ∩ U 6= ∅} (“A hits U”),

U� = {A ∈ VX | A ∩ U{ = ∅} (“A misses U{”).

We obtain V : CompHaus→ CompHaus.

Leopold Vietoris (1922). “Bereiche zweiter Ordnung”. In: Monatshefte
für Mathematik und Physik 32.(1), pp. 258–280.
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This definition can be generalised to arbitrary topological spaces . . . but
does not always define a functor!!
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Vietoris functors more systematic (?)

Covariant presheafs
Consider, for a topological space X : X 7−→

(

2X

)op= VX .

The exponential is taken in PsTop.

The convergence 2X can be split into a function µ : U(2x )→ 2x

and the order relation ⊆: p→ A ⇐⇒ µ(p) ⊆ A.

We can dualise
the order but keep µ . . . and obtain the lower Vietoris space.

Restricting to (stably) compact spaces
The lower Vietoris functor restricts to V : StablyComp→ StablyComp

CompHaus ⊥

discrete
&&

forgetful
gg PosComp ' StablyComp
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compact Hausdorff topology α : UX → X and a partial order ≤ on X )
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and can be transferred along the adjunction above which leads to the
classic Vietoris functor V : CompHaus→ CompHaus.



General properties of Vietoris functors on Top

Theorem
V : Top→ Top preserve initial codirected cones.

The lower Vietoris functor preserves initial codirected monocones.
The compact Vietoris functor preserves initial codirected monocones
of Hausdorff spaces.
For every lower (compact) Vietoris polynomial functor
F : Top→ Top the category CoAlg(F ) has codirected limits (of
Hausdorff spaces).
Every compact polynomial functor and every lower polynomial
functor F : Top→ Top preserves regular monomorphisms.
For every Vietoris polynomial functor F : Top→ Top the category
CoAlg(F ) has equalisers.

Remark
None of the Vietoris functors preserves codirected limits in Top.
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What is known (to us) on subcategories of Top

For V : BooSp→ BooSp, CoAlg(V ) is complete . . .

Samson Abramsky (2005). “A Cook’s Tour of the Finitary Non-Well-Founded
Sets”. In: We Will Show Them! Essays in Honour of Dov Gabbay. Ed. by
S. Artemov, H. Barringer, and A. A. Garcez. London: College Publications,
pp. 1–18.

. . . and even better: CoAlg(V )op ' BAO is a finitary variety.

Clemens Kupke, Alexander Kurz, and Yde Venema (2004). “Stone coalgebras”.
In: Theoretical Computer Science 327.(1-2), pp. 109–134.

The compact Vietoris functor V : Haus→ Haus preserves codirected
limits. Hence, for all compact Vietoris polynomial functors
F : Haus→ Haus, CoAlg(F ) is complete.

Phillip Zenor (1970). “On the completeness of the space of compact subsets”.
In: Proceedings of the American Mathematical Society 26.(1), pp. 190–192.
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Cofiltered limits in CompHaus

Theorem
Let D : I → CompHaus be a cofiltered diagram. Then (pi : L→ D(i))i∈I
for D is a limit cone if and only if
1. (pi : L→ D(i))i∈I is mono and,
2. for every i ∈ I:

⋂
j→i

imD(j → i) = im pi ;

That is, “the image of each pi is as large as possible”.

Nicolas Bourbaki (1942). Éléments de mathématique. 3. Pt. 1: Les
structures fondamentales de l’analyse. Livre 3: Topologie générale. Paris:
Hermann & Cie.

Compare with:
Let D : I → Set be a filtered diagram. Then (ci : D(i)→ C)i∈I is a
colimit of D if and only if
1. (ci : D(i)→ C)i∈I is epi and,
2. for all i ∈ I and x , y ∈ D(i),

ci (x) = ci (y) ⇐⇒ ∃(i k−→ j) ∈ I .D(k)(x) = D(k)(y);
that is, “the kernel of each ci is as small as possible”.
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Vietoris coalgebras of stably compact spaces

Theorem
All Vietoris polynomial functors F : StablyComp→ StablyComp
preserve cofiltered limits. Hence, CoAlg(F ) is complete.

Proof.
Use

limit in StablyComp = limit in CompHaus + initial monocone,
the previous characterisation of cofiltered limits,
initial monocone in StablyComp = initial monocone in Top, and
the fact that V : StablyComp→ StablyComp preserves initial
monocones.

Theorem
Every lower Vietoris polynomial functor in Top that can be restricted to
StablyComp admits a terminal coalgebra. In particular, CoAlg(V ) has a
terminal object.

Corollary
The lower Vietoris functor V : Top→ Top admits a terminal coalgebra.
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Duality theory for coalgebras on Boolean spaces

Remark
For V : BooSp→ BooSp, the dual equivalence

CoAlg(V ) ' BAOop

follows immediately from Halmos duality:

BooSpV ' BAop
⊥,∨ :

Coalgebra X → VX = endomorphism in BooSpV.
Boolean algebra with operator = endomorphism in BA⊥,∨.
X −→7 Y is a function ⇐⇒ B → A preserves finite infima.
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Develop a similar duality theory for StablyCompV.



Duality theory for coalgebras on Boolean spaces

Remark
For V : BooSp→ BooSp, the dual equivalence

CoAlg(V ) ' BAOop

follows immediately from Halmos duality:

BooSpV ' BAop
⊥,∨ :

Coalgebra X → VX = endomorphism in BooSpV.
Boolean algebra with operator = endomorphism in BA⊥,∨.
X −→7 Y is a function ⇐⇒ B → A preserves finite infima.

Theorem
For V : PosComp→ PosComp, CoAlg(V )op is an ℵ1-ary quasivariety.



Enriched Stone-type dualities

Theorem
Consider the quantale [0, 1] ordered by the “greater or equal” relation >
and tensor product ⊕ given by truncated addition:

u ⊕ v = min(1, u + v).

Then [0, 1]-Cat is the category of “bounded-by-1” metric spaces and
non-expansive maps.

Then the functor

StablyCompV
C(−,[0,1])−−−−−−→ LaxMon([0, 1]-FinSup)op

is fully faithful.

Remark

[0, 1]-FinSup has as objects all finitely cocomplete [0, 1]-categories
(we think of them as “enriched ∨-semilattices”).
[0, 1]-FinSup has a bimorphism-representing monoidal structure.
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Thanks to Adriana Balan and

Anders Kock (1972). “Strong functors and monoidal monads”. In:
Archiv der Mathematik 23.(1), pp. 113–120.
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Enriched Stone-type dualities

Proposition
Mon([0, 1]-FinSup) is an ℵ1-ary quasivariety (and fully embeds into a
finitary variety).

To obtain an equivalence . . .
. . . we define a category A where we add [0, 1]-powers (unary operations)
and Cauchy completeness (an ℵ1-ary operation).

Then A is still an
ℵ1-ary quasivariety (and also fully embeds into a finitary one.)

A[0,1] = the full subcategory of A defined by those objects with
enough characters (into [0, 1]).
B[0,1] = same objects as A[0,1] with finitely cocontinuous
[0, 1]-functors which laxly preserve the multiplication.

Theorem

PosCompop
V

B[0,1]

PosCompop A[0,1] Mon([0, 1]-FinSup)

∼

∼

hom(−,[0,1])

[0, 1] is ℵ1-copresentable in PosComp,
hence A[0,1] is an ℵ1-ary quasivariety.



Enriched Stone-type dualities

Proposition
Mon([0, 1]-FinSup) is an ℵ1-ary quasivariety (and fully embeds into a
finitary variety).

To obtain an equivalence . . .
. . . we define a category A where we add [0, 1]-powers (unary operations)
and Cauchy completeness (an ℵ1-ary operation).

Then A is still an
ℵ1-ary quasivariety (and also fully embeds into a finitary one.)

A[0,1] = the full subcategory of A defined by those objects with
enough characters (into [0, 1]).
B[0,1] = same objects as A[0,1] with finitely cocontinuous
[0, 1]-functors which laxly preserve the multiplication.

Theorem

PosCompop
V

B[0,1]

PosCompop A[0,1] Mon([0, 1]-FinSup)

∼

∼

hom(−,[0,1])

[0, 1] is ℵ1-copresentable in PosComp,
hence A[0,1] is an ℵ1-ary quasivariety.



Enriched Stone-type dualities

Proposition
Mon([0, 1]-FinSup) is an ℵ1-ary quasivariety (and fully embeds into a
finitary variety).

To obtain an equivalence . . .
. . . we define a category A where we add [0, 1]-powers (unary operations)
and Cauchy completeness (an ℵ1-ary operation). Then A is still an
ℵ1-ary quasivariety (and also fully embeds into a finitary one.)

A[0,1] = the full subcategory of A defined by those objects with
enough characters (into [0, 1]).
B[0,1] = same objects as A[0,1] with finitely cocontinuous
[0, 1]-functors which laxly preserve the multiplication.

Theorem

PosCompop
V

B[0,1]

PosCompop A[0,1] Mon([0, 1]-FinSup)

∼

∼

hom(−,[0,1])

[0, 1] is ℵ1-copresentable in PosComp,
hence A[0,1] is an ℵ1-ary quasivariety.



Enriched Stone-type dualities

Proposition
Mon([0, 1]-FinSup) is an ℵ1-ary quasivariety (and fully embeds into a
finitary variety).

To obtain an equivalence . . .
. . . we define a category A where we add [0, 1]-powers (unary operations)
and Cauchy completeness (an ℵ1-ary operation). Then A is still an
ℵ1-ary quasivariety (and also fully embeds into a finitary one.)

A[0,1] = the full subcategory of A defined by those objects with
enough characters (into [0, 1]).

B[0,1] = same objects as A[0,1] with finitely cocontinuous
[0, 1]-functors which laxly preserve the multiplication.

Theorem

PosCompop
V

B[0,1]

PosCompop A[0,1] Mon([0, 1]-FinSup)

∼

∼

hom(−,[0,1])

[0, 1] is ℵ1-copresentable in PosComp,
hence A[0,1] is an ℵ1-ary quasivariety.



Enriched Stone-type dualities

Proposition
Mon([0, 1]-FinSup) is an ℵ1-ary quasivariety (and fully embeds into a
finitary variety).

To obtain an equivalence . . .
. . . we define a category A where we add [0, 1]-powers (unary operations)
and Cauchy completeness (an ℵ1-ary operation). Then A is still an
ℵ1-ary quasivariety (and also fully embeds into a finitary one.)

A[0,1] = the full subcategory of A defined by those objects with
enough characters (into [0, 1]).
B[0,1] = same objects as A[0,1] with finitely cocontinuous
[0, 1]-functors which laxly preserve the multiplication.

Theorem

PosCompop
V

B[0,1]

PosCompop A[0,1] Mon([0, 1]-FinSup)

∼

∼

hom(−,[0,1])

[0, 1] is ℵ1-copresentable in PosComp,
hence A[0,1] is an ℵ1-ary quasivariety.



Enriched Stone-type dualities

To obtain an equivalence . . .
. . . we define a category A where we add [0, 1]-powers (unary operations)
and Cauchy completeness (an ℵ1-ary operation). Then A is still an
ℵ1-ary quasivariety (and also fully embeds into a finitary one.)

A[0,1] = the full subcategory of A defined by those objects with
enough characters (into [0, 1]).
B[0,1] = same objects as A[0,1] with finitely cocontinuous
[0, 1]-functors which laxly preserve the multiplication.

Theorem

PosCompop
V

B[0,1]

PosCompop A[0,1] Mon([0, 1]-FinSup)

∼

∼

hom(−,[0,1])

[0, 1] is ℵ1-copresentable in PosComp,
hence A[0,1] is an ℵ1-ary quasivariety.



Enriched Stone-type dualities

To obtain an equivalence . . .
. . . we define a category A where we add [0, 1]-powers (unary operations)
and Cauchy completeness (an ℵ1-ary operation). Then A is still an
ℵ1-ary quasivariety (and also fully embeds into a finitary one.)

A[0,1] = the full subcategory of A defined by those objects with
enough characters (into [0, 1]).
B[0,1] = same objects as A[0,1] with finitely cocontinuous
[0, 1]-functors which laxly preserve the multiplication.

Theorem

PosCompop
V

B[0,1]

PosCompop A[0,1] Mon([0, 1]-FinSup)

∼

∼

hom(−,[0,1])

[0, 1] is ℵ1-copresentable in PosComp,
hence A[0,1] is an ℵ1-ary quasivariety.



CoAlg(V ) as a quasivariety

Theorem

PosCompop
V

B[0,1]

PosCompop A[0,1] Mon([0, 1]-FinSup)

∼

∼

[0, 1] is ℵ1-copresentable in PosComp,
hence A[0,1] is an ℵ1-ary quasivariety.

Theorem
For V : PosComp→ PosComp, CoAlg(V )op is an ℵ1-ary quasivariety.

Theorem
The ℵ1-copresentable objects in PosComp are precisely the “generalised
metrisable” partially ordered compact space (i.e. induced by a
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