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Introduction The National Airspace System

An example system

The National Airspace System (NAS)
Safe separation problem:

Planes need to remain at a safe distance.
Can’t generally communicate directly.
Use radars, pilots, ground control, radios, and TCAS.1

Systems of systems:
A great variety of interconnected systems.
Work in concert to enforce global property: safe separation.

1Traffic Collision Avoidance System.
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Introduction The National Airspace System

Systems of interacting systems in the NAS
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Introduction The National Airspace System

Behavior contracts as predicates

plane 1 plane 2

radar satellite

National Airspace System

1-TCAS

2-TCAS

2-altitude1-altitude
radar signal

We assign to each...
... wire: a sheaf.
... box: a predicate—a behavior contract—on the product of its wires.

Prove that if each box’s predicate is satisfied, safe separation is achieved.

We’ll discuss such a situation using topos theory.
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Introduction Summary: motivation and plan

NAS use-case as guide

What’s the topos for the National Airspace System?
This question was a major guide for our work.
Need to combine many common frameworks into a “big tent”.

Differential equations, continuous dynamical systems.
Labeled transition systems, discrete dynamical systems.
Delays, non-instantaneous rules.
Determinism, non-determinism.

Need a logic so engineers can prove safety of combined systems.

Relationship to toposes:
Toposes have an associated internal language and logic.
Can use formal methods (proof assistants) to prove properties of NAS.
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Introduction Summary: motivation and plan

Plan of the talk

1. Define a topos B of behavior types.

2. Discuss temporal type theory, which is sound in B.

3. Return to a NAS use-case.
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The topos B of behavior types Choosing a topos

What is behavior?

We want to model various types of behavior.
What is a behavior type?

A behavior type is like “airplane behavior” or “pilot behavior”
Both are collections of possibilities, indexed by time intervals.
I want to conceptualize them as sheaves on time intervals.

So what should we mean by time?
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The topos B of behavior types Choosing a topos

First guess: R as timeline

R as timeline: Does it serve as a good site for behaviors?

What would a behavior type B ∈ Shv(R) be?
On objects:

For each open interval (a, b) ⊆ R, a set B(a, b).
“The set of B-behaviors that can occur on (a, b).”

On morphisms:
For each a ≤ a′ < b′ ≤ b, a function B(a, b) → B(a′, b′).
Restriction: “watch a clip of the movie”.

Gluing conditions:
“Continuity”: B(a, b) � lima<a′<b′<b B(a′, b′).
“Composition”: B(a, b) � B(a, b′) ×B(a′,b′) B(a′, b).

| | | |
a a′ b′ b
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The topos B of behavior types Choosing a topos

Why R is not preferable as the site

Two reasons not to use Shv(R) as our topos.
1. Often want to consider non-composable behaviors!

“Roughly monotonic”: ∀(t1 , t2). t1 + 5 ≤ t2 ⇒ f (t1) ≤ f (t2).
“Don’t move much”: ∀(t1 , t2).−5 < f (t1) − f (t2) < 5.
Neither of these satisfy “composition gluing”.

2. Want to compare behavior across different time windows.
Example: a delay is “the same behavior at different times.”
Shv(R) sees no relationship between B(0, 3) and B(2, 5).
We want “Translation invariance.”

Solution:
Replace R with an intervallic timeline, and...
... quotient by translation action.
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The topos B of behavior types An intervallic time-line, I R

An intervallic time-line, IR

For our timeline we use IR “the interval domain”.

Definition IR � tw(R, ≤)op.
Points: {[a, b] | a ≤ b ∈ R}.
[a, b] v [a′, b′] iff a ≤ a′ ≤ b′ ≤ b.
[a, b] is less precise than [a′, b′].
R ⊆ IR embeds as the maximal points, [r , r ].

IR is a Scott domain:
Its poset of points determines a topology...
...for which v is specialization order on points.
Basis: open intervals (a, b), denoting {[a′, b′] | a < a′ ≤ b′ < b}.

This space, IR is our timeline, and its points are intervals.
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The topos B of behavior types An intervallic time-line, I R

Shv(IR): behaviors in the context of time

Each X ∈ Shv(IR) is a behavior type occurring in the context of time.
IR is our (intervallic) time-line.
X (a, b) is the set of X -behaviors over the interval (a, b).
We can restrict behaviors to subintervals a ≤ a′ ≤ b′ ≤ b.
And behaviors satisfy “continuity gluing,”

X (a, b) � lim
a<a′<b′<b

X (a′, b′).

Next up: keep durations, drop the fixed timeline.
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The topos B of behavior types B the topos of behavior types

Translation-invariant quotient topos B
We want translation-invariance, to compare behaviors over different times.

Translation action R
B−→ Aut(IR), r B (a, b) B (a + r , b + r )

This induces a left-exact comonad T on Shv(IR).
(Left-exact comonads are what define quotient toposes.)
For X ∈ Shv(IR), define TX ∈ Shv(IR) by

(TX )(a, b) B
∏
r∈R

X (a + r , b + r ).

T -coalgebras are translation-equivariant sheaves.
Define topos B B T -coAlg of “behavior types”.
In fact B is an étendue, meaning...

There is an inhabited object, which we call Time ∈ B,
And an equivalence Shv(IR) � B/Time.
Makes precise “Shv(IR) is behavior types in the context of time.”

11 / 22



The topos B of behavior types B the topos of behavior types

Translation-invariant quotient topos B
We want translation-invariance, to compare behaviors over different times.

Translation action R
B−→ Aut(IR), r B (a, b) B (a + r , b + r )

This induces a left-exact comonad T on Shv(IR).
(Left-exact comonads are what define quotient toposes.)
For X ∈ Shv(IR), define TX ∈ Shv(IR) by

(TX )(a, b) B
∏
r∈R

X (a + r , b + r ).

T -coalgebras are translation-equivariant sheaves.
Define topos B B T -coAlg of “behavior types”.
In fact B is an étendue, meaning...

There is an inhabited object, which we call Time ∈ B,
And an equivalence Shv(IR) � B/Time.
Makes precise “Shv(IR) is behavior types in the context of time.”

11 / 22



The topos B of behavior types B the topos of behavior types

Translation-invariant quotient topos B
We want translation-invariance, to compare behaviors over different times.

Translation action R
B−→ Aut(IR), r B (a, b) B (a + r , b + r )

This induces a left-exact comonad T on Shv(IR).
(Left-exact comonads are what define quotient toposes.)
For X ∈ Shv(IR), define TX ∈ Shv(IR) by

(TX )(a, b) B
∏
r∈R

X (a + r , b + r ).

T -coalgebras are translation-equivariant sheaves.
Define topos B B T -coAlg of “behavior types”.
In fact B is an étendue, meaning...

There is an inhabited object, which we call Time ∈ B,
And an equivalence Shv(IR) � B/Time.
Makes precise “Shv(IR) is behavior types in the context of time.”

11 / 22



The topos B of behavior types B the topos of behavior types

Translation-invariant quotient topos B
We want translation-invariance, to compare behaviors over different times.

Translation action R
B−→ Aut(IR), r B (a, b) B (a + r , b + r )

This induces a left-exact comonad T on Shv(IR).
(Left-exact comonads are what define quotient toposes.)
For X ∈ Shv(IR), define TX ∈ Shv(IR) by

(TX )(a, b) B
∏
r∈R

X (a + r , b + r ).

T -coalgebras are translation-equivariant sheaves.
Define topos B B T -coAlg of “behavior types”.
In fact B is an étendue, meaning...

There is an inhabited object, which we call Time ∈ B,
And an equivalence Shv(IR) � B/Time.
Makes precise “Shv(IR) is behavior types in the context of time.”

11 / 22



The topos B of behavior types B the topos of behavior types

Translation-invariant quotient topos B
We want translation-invariance, to compare behaviors over different times.

Translation action R
B−→ Aut(IR), r B (a, b) B (a + r , b + r )

This induces a left-exact comonad T on Shv(IR).
(Left-exact comonads are what define quotient toposes.)
For X ∈ Shv(IR), define TX ∈ Shv(IR) by

(TX )(a, b) B
∏
r∈R

X (a + r , b + r ).

T -coalgebras are translation-equivariant sheaves.
Define topos B B T -coAlg of “behavior types”.
In fact B is an étendue, meaning...

There is an inhabited object, which we call Time ∈ B,
And an equivalence Shv(IR) � B/Time.
Makes precise “Shv(IR) is behavior types in the context of time.”

11 / 22



The topos B of behavior types B the topos of behavior types

Example behavior types X ∈ B

We contend that any sort of behavior can be modeled as an object X ∈ B.

Trajectories through a vector field,
Delays (+ delay differential equations),
Stochastic walk through a graph: “labeled transition system”.

• • •

• •

• •

a

c

b

d

e
f

i

g
h

Next up: want logic to define other interesting behaviors.
“Whenever I touch blue, I’ll spend 1 full sec. on blue within 5 sec’s.”
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The topos B of behavior types B the topos of behavior types

Preview of higher-order temporal logic for behavior

In any topos, logical expressions are amazingly convenient.
“Whenever I touch blue, I’ll spend 1 full sec. on blue within 5 sec’s.”
∀(t : Time).@t

[0,0]B(x) ⇒ ∃(r : R). 0 ≤ r ≤ 5 ∧ @t
[r ,r+1]B(x).

Kripke-Joyal semantics
Logical expressions like the above can be interpreted in the topos B.
E.g. the above defines a map P : X → Ω, given B : X → Ω.
This in turn gives a subtype {X | P} of “P-satisfying behavior”.

How is internal logic is convenient?
compact notation,
precise semantics,
quite expressive,
readable in natural language, e.g. English.

Next: use logic to define real “numbers”.
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Temporal type theory

Outline
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Temporal type theory Dedekind numeric objects

Dedekind numeric objects

In any sheaf topos, use logic to define various Dedekind numeric objects.

Start with Q ; it’s semantically the constant sheaf Q.
Think of a function L : Q → Ω as the “Q -lower bounds” for a real.
We can define the type

¯
R of lower reals internally:

¯
R B {L : Q → Ω | ∃q. Lq ∧ ∀q. Lq⇔ ∃q′. q < q′ ∧ Lq′}.

The semantics are nice on localic toposes. If X is a top. sp.,
~

¯
R�(U) � {lower semi-continuous functions U → R ∪ {∞}}.

Dually, define R̄ , with ~ R̄�(U) � {upper semi-continuous . . . }
¯
¯
R B

¯
R × R̄ : extended intervals.

R B {(L,R) : ¯
¯
R | ∀q.¬(Lq ∧ Rq) ∧ ∀(q < q′). Lq ∨ Rq′}.

We refer to
¯
R , R̄ , ¯

¯
R ,R , etc. as Dedekind numeric objects.
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~

¯
R�(U) � {lower semi-continuous functions U → R ∪ {∞}}.

Dually, define R̄ , with ~ R̄�(U) � {upper semi-continuous . . . }
¯
¯
R B

¯
R × R̄ : extended intervals.

R B {(L,R) : ¯
¯
R | ∀q.¬(Lq ∧ Rq) ∧ ∀(q < q′). Lq ∨ Rq′}.

We refer to
¯
R , R̄ , ¯

¯
R ,R , etc. as Dedekind numeric objects.
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Temporal type theory A finitely-presented language with semantics in B

Temporal type theory

TTT is a finitely presented sub-language of B’s internal language:
One atomic predicate symbol, unit speed : ¯

¯
R → Ω.

From here, define Time B { t : ¯
¯
R | unit speed(t) }.

Note that we can treat times t : Time as real intervals.

TTT axiomatics: find finitely many axioms with which to “do real work”.
Ten axioms, e.g. that Time is an R -torsor:

∀(t : Time)(r : R). t + r ∈ Time,
∀(t1 , t2 : Time).∃!(r : R). t1 + r � t2.

All are sound in B
We already had Time ∈ B externally in the éntendue B.
Check that with that interpretation, the ten axioms hold.
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Temporal type theory A finitely-presented language with semantics in B

Modalities, @ and π

There are a number of useful modalities (Lawvere-Tierney topologies).
Modalities are internal monads j : Ω→ Ω on the subobject classifier.

That is, P ⇒ jP, jjP ⇒ jP, j(P ∧ Q) ⇔ (jP ∧ jQ).
One-to-one correspondence {modalities} � {subtoposes}.

Example 1,2: in the context of t : Time, have modalities ↓t[a,b] ,@t
[a,b].

↓t[a,b]P B P ∨ (a < t ∨ t < b).
@t
[a,b]P B (P ⇒ (a < t ∨ t < b)) ⇒ (a < t ∨ t < b).

These are hard to read, but correspond to useful subtoposes:
@t
[a,b] corresponds to single point subtopos {[a, b]} ⊆ IR.

↓t[a,b] corresponds to its closure ↓ [a, b] ⊆ IR.

Example 3: We have “pointwise” modality π.
πP B ∀(t : Time).@t

[0,0]P.

Corresponds to the dense subtopos R ⊆ IR.

We can use these modalities to define local Dedekind numeric types.
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Temporal type theory Local reals and derivatives

Local Dedekind numeric types

For any modality j , we can define
¯
R j , R̄ j , ¯

¯
R j , R j , etc.

¯
R j B {L : Q → Ωj | j∃q. Lq ∧ ∀q. Lq⇔ j∃q′. q < q′ ∧ Lq′}

When j � id this is lower semicontinuous fns on IR.
When j � π, it’s lower semicontinuous fns on R ⊆ IR.
When j � @t

[a,b], it’s lower semicontinuous fns on a point.

Now we are equipped to define derivatives.
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Temporal type theory Local reals and derivatives

Derivatives of continuous reals

We can define derivatives internally.
Semantics of x : Rπ is: a continuous function on R.

Evaluation of x at a point r : R is given by @[r ,r ]x ∈ R@[r ,r ]
We denote this x@(r ).

We define the derivative more gen’ly for any interval function x : ¯
¯
Rπ.

Result is another interval function Ûx : ¯
¯
Rπ, defined by:

q1 < Ûx < q2 iff for all r1 < r2 : R ,

q1 �
x@(r2) − x@(r1)

r2 − r1
� q2.

Theorem: Ûx internally is linear in x and satisfies Leibniz rule.
Theorem: Ûx externally has semantics of derivative of x .
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Temporal type theory Local reals and derivatives

Differential equations

As a logical expression, derivatives work like anything else.

Consider a differential equation, like

f (Ûx , Üx , a, b) � 0.

is just a formula in the logic.

We also define “labeled transition systems” internally...
...given two constant sheaves and two maps E ⇒ V .
Can more generally define any “hybrid system”.
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Application to the NAS The internal language in action

Setup of safety problem

Variables to be used, and their types:

t : Time. T ,P : Cmnd. a : Rπ . safe, margin, del, rate : Q .

What these mean:

t : Time. time-line (a clock).
a : Rπ. altitude (continuously changing).

T : Cmnd. TCAS command (occurs at discrete instants).

P : Cmnd. pilot’s command (occurs at discrete instants).
safe : Q . safe altitude (constant).
margin : Q . margin-of-error (constant).
del : Q . pilot delay (constant).
rate : Q . maximal ascent rate (constant).
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Application to the NAS Combining local contracts for safety guarantee

Behavior contracts
t : Time. time-line (a clock).
a : R π . altitude (continuously changing).
T : Cmnd. TCAS command (occurs at discrete instants).
P : Cmnd. pilot’s command (occurs at discrete instants).
safe : Q . safe altitude (constant).
margin : Q . margin-of-error (constant).
del : Q . pilot delay (constant).
rate : Q . maximal ascent rate (constant).

Axioms from disparate models of behavior:
θ1 B (margin > 0) ∧ (a ≥ 0).

θ2 B (a > safe + margin⇒ T � level).
θ′2 B (a < safe + margin⇒ T � climb).
θ3 B (P � level⇒ Ûa � 0) ∧ (P � climb⇒ Ûa � rate).
θ4 B is delayed(del,T ,P).

This is an abbreviation for a longer logical condition.

Can prove safe separation

∀(t : Time). ↓t0(t > del +
safe

rate
⇒ a ≥ safe).
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Conclusion Further reading

If you’re interested in reading more

Two related books:
Temporal Type Theory (Springer Berkhaüser)

Freely available: https://arxiv.org/abs/1710.10258

Technical parts, some friendly parts

Seven Sketches in Compositionality (Cambridge University Press?)
Joint with Brendan Fong
Freely available: https://arxiv.org/abs/1803.05316

Chapter 7 is about this material
Totally friendly!

Questions and comments are welcome. Thanks!
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