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Schematically, an (00, 1)-category is a category “weakly enriched” over
oo-groupoids/homotopy types ... but this is tricky to make precise.

Rezk ——— Segal

RelCat i \ H - Top-Cat

® topological categories and relative categories are the simplest to
define but do not have enough maps between them

quasi-categories (nee. weak Kan complexes),

Rezk spaces (nee. complete Segal spaces),
Segal categories, and

(saturated |-trivial weak) |-complicial sets
each have a homotopically meaningful internal hom.
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Q: How might you develop the category theory of (oo, 1)-categories?

Two strategies:
® work analytically to give categorical definitions and prove theorems
using the combinatorics of one model

(eg., Joyal, Lurie, Gepner-Haugseng, Cisinski in qCat;
Kazhdan-Varshavsky, Rasekh in Rezk; Simpson in Segal)

® work synthetically to give categorical definitions and prove
theorems in all four models qCat, Rezk, Segal, 1-Comp at once

Our method: introduce an co-cosmos to axiomatize common features
of the categories qCat, Rezk, Segal, 1-Comp of (oo, 1)-categories. J
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Henceforth co-category and oo-functor are technical terms that mean
the objects and morphisms of some oco-cosmos.
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The homotopy 2-category of an co-cosmos is a strict 2-category whose:
® objects are the co-categories A, B in the oo-cosmos
® |-cells are the co-functors f: A — B in the oo-cosmos
/
o 2-cells we call co-natural transformations A~ 4 B which are
~_ 7

g
defined to be homotopy classes of |-simplices in Fun(A, B)

Prop. Equivalences in the homotopy 2-category

f 1, 1,
~—
A~ 7B A 1= A B 1= B
Y~ — ~_ ~_
9 agf fa

coincide with equivalences in the co-cosmos.

Thus, non-evil 2-categorical definitions are “homotopically correct.”
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A taste of the formal category theory
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B
/ lf is an absolute right lifting diagram if it and any restriction
C —QUC A
X —>B X ‘5B
are right liftings: cl e lf _ . H!ilar/' lf, in which case:
C — A C /T*U/) A
B

° / ¢ is absolute right lifting
4p

E
E L

. / l; is absolute right lifting it~ °/,. g is
Yo T/’ 17
¢ — B <
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An adjunction between co-categories is an adjunction (A, B, f, u, 1), ¢)
in the homotopy 2-category.

~» Hence all 2-categorical theorems about adjunctions become
theorems about adjunctions between oo-categories! In particular:

f B

A right adjoint B :?L A is an absolute right lifting u/z lf
T 7 e

A A

Hence, a limit functor or limit of d: 1 — A7 is an absolute right lifting

P A A
s Pt b
A 1 AJ < hm// lA limd .~ lA
T 7 S

AT —— A7 1 ’—>d A7
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Right adjoints preserve limits ‘

J
Prop (right adjoints preserve limits). If A “IOB and )\ Al = dis
~_

u

A—+ B
a limit cone then / lA lA is absolute right lifting.
Iy
5 AJ ) BJ

Proof: It suffices to show the transposed cone is absolute right lifting

/lA: ) U(ﬁf
%l/u/l/’ e s

1—>AJ 1T>AJ_AJ

which is the case by 2-naturality and composition of absolute right liftings.
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Universal properties of adjunctions and limits ‘

HomA(fa g)

cod dom
Any cospan has a comma oo-category C ’/ ¢ \'“ B with
=
N T
A f

. . . Homa(f,9)
comma span a two-sided discrete fibration aka a module C' —+—

B
Thm. r lf absolute lifting iff Hom (B, r) ~ Hom 4(f, g).
Up + CxB

C—> A

J
T~
Cor. A\i){B iff Hom 4 (f, A) >~ 4, gHomz(B, u).

u

Cor. d: 1 — A7 has a limit £ iff Hom 4 (A, £) ~ 4 Hom 4.(A, d).
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The calculus of modules ‘

Thm. Any co-cosmos has a virtual equipment of co-categories,

oo-functors, modules, and “multilinear” module maps:
B, B, E

Ay —— A} ——  — A

./i Ja lg

B : » B

0 F n

E(b,a)
A=——A X--+»Y
with units H W H and restriction of scalars al Uy lb
A--+-» A A—— B
Hom 4 E

~» The homotopy 2-category embeds covariantly and contravariantly.

E F
Modules A + B and A -+ B areisomorphic iff &' =~ 4, 5 F'so the
virtual equipment captures the formal category theory of co-categories.
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A cosmological biequivalence F: KX =% L between oo-cosmoi is

® a cosmological functor: a simplicial functor that preserves
isofibrations and the simplicial limits

® surjective on objects up to equivalence: if C' € £ there exists
AeXwithFA~Cel

® alocal equivalence: Fun(A, B) = Fun(FA, FB) € gCat

Prop. A cosmological biequivalence induces a biequivalence of
homotopy 2-categories, defining (local) bijections on:

® equivalence classes of co-categories
® jsomorphism classes of parallel co-functors

® )-cells with corresponding boundary

and fibered equivalence classes of modules, respecting representability.

|dea: FAQA/,FBQB/ % :K:/AXB =~ 'C/FAXFB =~ L/A/XB/
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Rezk ——— Segal o
wn cosmological biequivalences between
T\I, models of (0o, 1)-categories
1-Comp — gCat

Model-Independence Theorem. A cosmological biequivalence induces a
biequivalence of virtual equipments of modules and thus preserves,
reflects, and creates all co-categorical properties and structures.

The existence of an adjoint to a given functor.

The existence of a limit for a given diagram.

The property of a given functor defining a cartesian fibration.
The existence of a pointwise Kan extension.

Analytically-proven theorems also transfer along biequivalences: J

® Universal properties in an (oo, 1)-category A are determined
elementwise, by each a: 1 — A.
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Summary “

® |n the past, the theory of (oo, 1)-categories has been developed
analytically, in a particular model.

® A large part of that theory can be developed simultaneously in
many models by working synthetically with (oo, 1)-categories as
objects in an co-cosmos.

® The axioms of an co-cosmos are chosen to simplify proofs by
allowing us to work strictly up to isomorphism insofar as possible.

® Much of this development in fact takes place in a strict 2-category
of (o0, 1)-categories, (00, 1)-functors, and (oo, 1)-natural
transformations using the methods of formal category theory.

® Both analytically- and synthetically-proven results about
(00, 1)-categories transfer across “change-of-model” functors called
biequivalences.

® Open problems: many (oo, 1)-categorical notions are yet to be
incorporated into co-cosmology.
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