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Summary

>

There is a concept of generalized symmetry specific to any
category of algebras (groups, rings,...)
In Ring, these include automorphisms, derivations
(infinitesimal automorphisms), but also certain non-linear
symmetries

» These are responsible for Witt vectors and A-rings.

» Witt vectors and A-rings are important in arithmetic algebraic

geometry

» but have famously complicated definitions.

» This can be explained by the non-linearity of the symmetries.
But generalized symmetries should be important everywhere
» Are there other kinds of generalized symmetries on rings?
> Are there new kinds of generalized symmetries in other

categories of algebras?

Today: open questions, the work of other people, some of my
own
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Frobenius lift
P

R——R Vxe RIx' e R
P(x) = xP + px'
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v

Rings with Frobenius lift naturally form a category

v

But not a good one! It doesn't have equalizers.

v

No control over x’—it is only determined up to p-torsion.

v

Solution: make x’ part of the data

v

Property of existence — a structure
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p-derivations (Joyal, Buium)

A p-derivation on R is a function 6: R — R modeled on

5(X) = = ¢(X)p_ va

i.e., satisfying all the axioms it does when ) is a Frobenius lift and
R is p-torsion free:

x-+3) =800 +30) -3 3 (”) e

i=1 !
(xy) = 6(x)y? + xPé(y) + pd(x)d(y)
5(0) =0
5(1) = 0

Leibniz rules for multiplication and addition: 6(x) = x’ = "dx/dp"
Category: d-rings

{ p-derivations on R} — {Frobenius lifts on R}, if R is p-tor-free
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Divided power series = cofree differential ring
Consider usual derivations d, instead of p-derivations §:
//?
{d-rings} —— Ring
~—__
wdiff
i t"
Wa(R) = {ZanH | an € R}, d=d/dt
= {(ao,al,...)}, d = shift

Multiplication law at the n-th component is given by the Leibniz
rule for d°"(xy) :

(ag,...)x(bo,...) = (aobo, aob1 + ai1bo, apba+2a1 b1+ azby, ..

)
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Witt vectors = cofree d-ring (Joyal)

LT o
{5—r|ngs}T>R1ng
~——
w
W(R)ZRXRXRX-n, 5(30,21,...):(31,32,...)

Mulitiplication at the n-th component is again given by the Leibniz
rule for §°"(xy), but now the same is true for addition!

L(p\ i p—i
(ao, a1,...) + (bo, b1,...) = (a0 + bo, al+b1_Zp<i)aobg yoeen)

(a0, a1,...) X (bo, b1,...) = (aobo, albg + agbl + paibi, ...)

Leibniz rules: p—1
6(x+y)=5(x)+6(y)—z(

1 P> iypfi
p\

507) = S0P + xP6(y) + pOx)S(y)
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Remarks

» Warning: The ring structure on R x R x --- above is not
equal to the Witt vector ring structure as it is usually defined!
Only uniquely isomorphic to it.

» Ex: W(Z/pZ) = ring Zp of p-adic integers «—characteristic 0!
» More generally, the map Z — W(R) is injective unless R = 0.

» Witt vectors are a machine for functorially lifting rings from
characteristic p to characteristic 0

» Better: Witt vectors are a machine for adding a Frobenius lift
to your ring, interpreted in an intelligent way
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de Rham-Witt complex (Bloch, Deligne, lllusie, 1970s-)

» de Rham cohomology has problems in characteristic p: any
function fP is a closed 0-form

d(fP) = pfP~1df =0

» One can lift rings/varieties to characteristic 0 using Witt
vectors

> ...the de Rham-Witt complex W5
» Calculates crystalline cohomology (with its Frobenius operator)

» Thus, if one is sufficiently enlightened, the concept of
Frobenius lift, or p-derivation, leads automatically to
crystalline cohomology.
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C =a category of ‘algebras’ (rings, groups, Lie algebras,. . .)
U: D — C comonadic, where the comonad W is representable:

Homc¢(P, R) = underlying set of W(R)

P = U(free object of D on one generator)

= {natural 1-ary operations on objects of D}

» G-rings — Ring, G = group or monoid
P = {polynomials in elements of G} = Sym(ZG)

» d-rings — Ring, W = W9 = divided power series functor
P =Z[e,d,d?,...] = differential operators

» 0-rings — Ring, W = Witt vector functor
P = 7Z[e,§,6°%,...] = ‘p-differential operators’

A composition object of C is an object P of C plus a comonad
structure on the functor it represents. (‘Tall-Wraith monad object’)
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Generalized symmetries, continued

» Since P is the set of natural operations on objects of D,
we may think of it as a system of generalized symmetries
which may act on objects of C

» It is closed under composition and the all the operations of C

» E.g.: differential operators Z[e, d,d°?, .. .]
» An element f in a composition ring P is linear if it acts
additively whenever P acts on a ring
» The p-derivation § € Z[e, §,5°,...] is not linear, but the
Frobenius lift 1) = eP + pd is.
> In fact, the composition ring Z[e, 6, 6°2,...] cannot be
generated by linear operators! It is fundamentally nonlinear.
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Imperative task #1

Given C, determine all its composition objets P

>

>

R-modules: P = (noncomm.) ring with a map R — P

Groups (Kan): P is the free group on some monoid M.
So generalized symmetries are words in endomorphisms

Monoids (Bergman—Hausknecht): Generalized symmetries are
words in endomorphisms and anti-endomorphisms (but there
can be relations!)

Magnus Carlson (2016): If K is a field of characteristic 0, all
composition objects of CAlg are freely generated by
bialgebras of linear operators!
Is it possible to classify all composition objects in Ring?
» Carlson: Yes, if we allow denominators
» Buium: Some positive classification results for composition
rings generated by a single operator
» All known examples come from linear operators or lifting
Frobenius-like constructions from char p to char 0.
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be understood to include infinitesimal symmetries (vector fields
and derivations)

» But it should really include all generalized symmetries!

» Thm (Bird): Given an object X of C, there is a terminal
composition object acting on X.

» Call it END(X), the full symmetry composition object of X.

If you are interested in X, you must determine END(X), and then
you should try to work “END(X)-equivariantly”
» END(Z) L {quasi-polynomials Z — Z} (with Garner)

» END(F,[t]) = 7. Includes derivation d/dt, t-derivation
f—(f—1Ff9/t,...
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IIl. Generalized-equivariant algebriac geometry

Principal categories of algebraic geometry:
Ring®? = Aff C Sch C AlgSp C Shet(Aff) C PSh(Aff)

Is it possible to extend the theory of generalized symmetries from
Ring to non-affine schemes?

» Monoid and Lie algebra actions (linear symmetries) are OK:
G-schemes, g-schemes

» Can this be done for p-derivations and similar non-linear
symmetries? (Yes! See below.)

» Can this be done for every composition ring?

» Could there some kind of new generalized symmetry structures
that exist only at the non-affine level?
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d-structures on schemes (Greenberg, Buium, me)

Given a functor X: Ring — Set, define
Wi (X): C — X(W,(C)),
where W,,(C) is the ring of truncated Witt vectors (ao, ..., an).

» W,(C) is analogous to the truncated power series ring.
So Wp(X) is a Witt vector analogue of the n-th jet space, the
“arithmetic jet space”

Thm: If X is a scheme, then so is W, (X). Likewise for algebraic
spaces and sheaves in the étale topology.

» This allows us to extend the theory of p-derivations,
d-structures, and Witt vectors from rings to schemes —
“d-equivariant algebraic geometry”

» The proof (lllusie, van der Kallen, Langer-Zink, me) is not
formal!



Hilbert's 12th Problem

Given a finite extension K/Q, is there an explicit description of
K?b its maximal Galois extension with abelian Galois group?

» K =Q: Yes, the Kronecker-Weber theorem (1853-1896):
adjoin all roots of unity exp(2—;“) to Q



Hilbert's 12th Problem

Given a finite extension K/Q, is there an explicit description of
K?b its maximal Galois extension with abelian Galois group?
» K =Q: Yes, the Kronecker-Weber theorem (1853-1896):
adjoin all roots of unity exp(2—;”) to Q
» K=Q(v—d),d > 0: Yes, Kronecker's Jugendtraum
(1850s—1920): adjoin certain special values of elliptic and
modular functions to Q(v/—d)



Hilbert's 12th Problem

Given a finite extension K/Q, is there an explicit description of
K?b its maximal Galois extension with abelian Galois group?
» K =Q: Yes, the Kronecker-Weber theorem (1853-1896):
adjoin all roots of unity exp(2—;”) to Q
» K=Q(v—d),d > 0: Yes, Kronecker's Jugendtraum
(1850s—1920): adjoin certain special values of elliptic and
modular functions to Q(v/—d)
» Nowadays, people usually express them in terms of adjoining

the coordinates of torsion points on commutative group
schemes, instead of special values of transcendental functions



Hilbert's 12th Problem

Given a finite extension K/Q, is there an explicit description of
K?b its maximal Galois extension with abelian Galois group?
» K =Q: Yes, the Kronecker-Weber theorem (1853-1896):
adjoin all roots of unity exp(2—;”) to Q
» K=Q(v—d),d > 0: Yes, Kronecker's Jugendtraum
(1850s—1920): adjoin certain special values of elliptic and
modular functions to Q(v/—d)
» Nowadays, people usually express them in terms of adjoining
the coordinates of torsion points on commutative group
schemes, instead of special values of transcendental functions

» No other answers to H12 are known. But H12 is imprecise!



Hilbert's 12th Problem

Given a finite extension K/Q, is there an explicit description of
K?b its maximal Galois extension with abelian Galois group?

» K =Q: Yes, the Kronecker-Weber theorem (1853-1896):
adjoin all roots of unity exp(2—;”) to Q

» K=Q(v—d),d > 0: Yes, Kronecker's Jugendtraum
(1850s—1920): adjoin certain special values of elliptic and
modular functions to Q(v/—d)

» Nowadays, people usually express them in terms of adjoining
the coordinates of torsion points on commutative group
schemes, instead of special values of transcendental functions

» No other answers to H12 are known. But H12 is imprecise!

» Class field theory (Hilbert—Takagi—Artin, 1896-1927) gives an
explicit description of Gal(K®/K)—but not of K?!



Hilbert's 12th Problem

Given a finite extension K/Q, is there an explicit description of
K?b its maximal Galois extension with abelian Galois group?

» K =Q: Yes, the Kronecker-Weber theorem (1853-1896):
adjoin all roots of unity exp(2—;”) to Q

» K=Q(v—d),d > 0: Yes, Kronecker's Jugendtraum
(1850s—1920): adjoin certain special values of elliptic and
modular functions to Q(v/—d)

» Nowadays, people usually express them in terms of adjoining
the coordinates of torsion points on commutative group
schemes, instead of special values of transcendental functions

» No other answers to H12 are known. But H12 is imprecise!

» Class field theory (Hilbert—Takagi—Artin, 1896-1927) gives an
explicit description of Gal(K®/K)—but not of K?!

» New idea: Use periodic points on Ak-schemes instead!
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Fix a finite extension K/Q. Let Ok denote its subring of algebraic
integers. Let R be an Ok-algebra.

» A Ak-structure on R is a commuting family of endomorphisms
1y, one for each nonzero prime ideal p C Ok such that
Pp(x) = xV#) mod pR, where N(p) = |Ok/p|.

» Similarly for schemes.

» If there is nontrivial torsion, we have to interpret all this in the
enlightened way, as with Frobenius lifts at a single prime.

» — composition Ok-algebra Ak, again nonlinear!

» Wilkerson, Joyal: Ag-ring = A-ring as in K-theory



Ak-structures and Hilbert's 12th Problem (with de Smit)

» Given a Ag-scheme X, a point x is periodic if ¢ (x) is
periodic as a function of p (in a certain technical sense)



Ak-structures and Hilbert's 12th Problem (with de Smit)

» Given a Ag-scheme X, a point x is periodic if ¢ (x) is
periodic as a function of p (in a certain technical sense)



Ak-structures and Hilbert's 12th Problem (with de Smit)

» Given a Ag-scheme X, a point x is periodic if ¢ (x) is
periodic as a function of p (in a certain technical sense)
» Eg. K=Q, X(C) = C*, ¢p(x) = xP
Then x is periodic < x is a root of unity



Ak-structures and Hilbert's 12th Problem (with de Smit)

» Given a Ag-scheme X, a point x is periodic if ¢ (x) is
periodic as a function of p (in a certain technical sense)
» Eg. K=Q, X(C) = C*, ¢p(x) = xP
Then x is periodic < x is a root of unity

» Thm: The coordinates of the periodic points of X generate an
abelian extension of K (if X is of finite type).



Ak-structures and Hilbert's 12th Problem (with de Smit)

» Given a Ag-scheme X, a point x is periodic if ¢ (x) is
periodic as a function of p (in a certain technical sense)

» Eg. K=Q, X(C) = C*, ¢p(x) = xP
Then x is periodic < x is a root of unity

» Thm: The coordinates of the periodic points of X generate an
abelian extension of K (if X is of finite type).

» An extension L/K is A-geometric if it can be generated by the
periodic points of some such X



Ak-structures and Hilbert's 12th Problem (with de Smit)

>

Given a Ak-scheme X, a point x is periodic if 9),(x) is
periodic as a function of p (in a certain technical sense)

Eg. K=Q, X(C) = C*, ¢p(x) =xP

Then x is periodic < x is a root of unity

Thm: The coordinates of the periodic points of X generate an
abelian extension of K (if X is of finite type).

An extension L/K is A-geometric if it can be generated by the
periodic points of some such X

This allows for a yes/no formulation of Hilbert's 12th Problem:
Is K% /K a A-geometric extension?



Ak-structures and Hilbert's 12th Problem (with de Smit)

>

Given a Ak-scheme X, a point x is periodic if 9),(x) is
periodic as a function of p (in a certain technical sense)

Eg. K=Q, X(C) = C*, ¢p(x) =xP

Then x is periodic < x is a root of unity

Thm: The coordinates of the periodic points of X generate an
abelian extension of K (if X is of finite type).

An extension L/K is A-geometric if it can be generated by the
periodic points of some such X

This allows for a yes/no formulation of Hilbert's 12th Problem:
Is K% /K a A-geometric extension?

Thm: Yes, in the Kroneckerian cases: Q and Q(v/—d).



Ak-structures and Hilbert's 12th Problem (with de Smit)

>

Given a Ak-scheme X, a point x is periodic if 9),(x) is
periodic as a function of p (in a certain technical sense)

Eg. K=Q, X(C) = C*, ¢p(x) =xP

Then x is periodic < x is a root of unity

Thm: The coordinates of the periodic points of X generate an
abelian extension of K (if X is of finite type).

An extension L/K is A-geometric if it can be generated by the
periodic points of some such X

This allows for a yes/no formulation of Hilbert's 12th Problem:
Is K% /K a A-geometric extension?

Thm: Yes, in the Kroneckerian cases: Q and Q(v/—d).

Any answer, positive or negative, for any other K would be
very interesting!
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. Concluding questions

» Given any composition ring P, can the notion of P-structure
be extended from rings to schemes?

» Yes in the cases we care most about so far: linear,
d-structures, A-structures
» But the non-linear ones here require real theorems!
» However, that might be enough in general if there is a
classification result for composition rings
» Can we make sense of END(X) for non-affine schemes?

» If so, we might hope to find new Ax-schemes, and hence say
something about Hilbert's 12th Problem, by looking and
END(X) for specific X, say Pg_

» Can one classify the composition objects in CAlgg_ ?
» There are nonlinear ones! Use positivity instead of integrality!
» There must be many examples of other categories of algebras
with generalized symmetries which are interesting and
important!



