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Equivariant Fundamental Groupoid M4(G, X)

X is a G-space

Define a category (not a groupoid) N4 (G, X) with:
Objects (G/H, x) with H < G and x € X"
Arrows: (a,y) where y is a path from x to ay in X"
This is considered a path from x to y




Composition



Composition

(@.7) 0 (8.) = (aB.y * a()

where * is contatenation
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Example: S' as Z/2 space

Z/2



Example: S' as Z/2 space

W appears as two different objects:
W e X© gives (G/e, W)
W e X€ gives (G/G, W)

Every point comes tagged with specific fixed set; | will often
abuse notation and suppress the G/H



Example: S' as Z/2 space
Two paths from x to y:

gy



Example: S

There is a constant path from x to gx:

X

gx



Example: Ds



Example: Ds

A path from (G/e, x) to (G/e, y)



Example: Ds

A path from (G/H, x) to (G/K.,y)
Here the path must stay in X"

X------

?y



Example: T2



Example: T2

A path from x to y:



Example: T2

A loop from x to x:



Jumping Between Fixed Sets

o If x € XX, then there is constant path (G/H, x) — (G/K, x)
forH<K

o If ay € XH then y e xaHe™

e There exists a path x — y when

xeXH

yeXK

H < aKa™

there is a path in X!’ from x to ay



Making this Categorical:

Grothendieck Construction
Let # : C°P — Cat be a contravariant functor.

The Grothendieck category
|7
c
is defined by:

 An object is a pair (C, x) with C € Cy and x € ¥(C)o.

e Anarrow (g,¢): (C,x) — (C’,x’) is a pair with g: C —» C’
inCyandy: x - F(g)(x") in 7(C)1.

e Composition is defined by

((C x) 94 (99) (C'.x )(gw @) e, ,,))

— (C.x) (9'9.7(9) (¥ )ow)

(CN’ XN)



Functor from What?
Orbit Category

Og has
e objects: G/H for closed subgroups of G

e arrows: G-maps G/H — G/K definedby H — aK fora € G
such that H < aKe 1.

e a, € G define the same map when oK = K

e Thus maps G/H — G/K are defined by elements
a e (G/K).



Orbit Category

Og organizes fixed sets:
e A G-map G/H-2~X is defined by H — x for x € X"; then
gH — gx.
e X defines a contravariant functor ¢ : Og — Spaces:
G/H - x"
e ifa: G/H— G/K, and G/K—=~X we can compose

G/H-~G/K-2~X. This is defined by H —» aK — ax , so
X o ais just ax.



Interpret Fundamental Category as a Grothendieck
Construction
Let M, (G/H) = N(X*) the fundamental groupoid of X*:
Ny (G/H) has
» objects given by points x € X"
« arrows given by homotopy classes of paths in X"
For a: G/H — G/K, define a functor M(X¥) — n(x"):
o x € XK goes to ax € XH
e yin XX goes to ary in X"
Then
1(G.X) = [, Nx.

« objects are pairs (G/H, x) with x € X"
e Arrows are pairs

(a,y): (G/H,x) = (G/K,y),
where a: G/H — G/K and v is a path from x to ay in X"



Discrete M9(G, X)

« Objects of 79(G, X) are x € X"
e arrows are equivalence classes of maps y : x — ay

e (a,y) = (B,¢) when there exists

oc:G/HxI—- G/K

fromatogand A : I x I - XH such that

A0, t) = x

A1, 1) =o(t)y

A(s,0) = »(s)
1)



Example: T2

We have a 2-cell s: g — hfrom (g,y) to (h,y’)

..y

hy

yxsy =~y



Making this Categorical:
Grothendieck 2 Category
[Bakovic, Buckley]
e C a 2-category,
e ¥ : C° — Cat a contravariant 2-functor
Jo. 7 is a 2-category defined by:
e An object is a pair (C, x) with C € Cy and x € F(C)p
e Anarrow (g.y¥): (C,x) — (C’,x’) is a pair with g: C — C’
inCyand y: x - F(g)(x’) in F(C)1
e A2-cella: (g,v) = (g,¥): (C.x) =3 (C',x")is a2-cell
a@: g = g’ in C such that the diagram commutes in #(C):

x —L~F(g)(x')
l?‘-(oz)xl
X —=F(g)(x)




Creating NY(G, X) as a Grothendieck 2-category
We saw earlier that we have a functor
e M, (G/H) is a category (a groupoid)
e a: G/H — G/K defines a functor N(XKX) — M(X") (acting
by )
o Ifo:a— o isapathin Og(G/H, G/K) define a natural
transformation with components given by arrows ox for
x e XK.
Create 2-category

M(G.X) = [, Ny
2-cells are exactly what tom Dieck mods out:
Y ay
sy

]
Y a'y



Composing 2-cells:

Category theory says:

Leta: (g.v) = (g’,¥'): (C,x) 3 (C',x’) and
B:(h,6)= (H,0): (C',x") =3 (C",x"”) be 2-cells in fc?':

x—LoF(g)(x) InF(C), and x —L=F(h)(x") inF(C).
L’f’(a)x' lfc(ﬁ)xu

X—=7(g)x) X — =7 (h)(x")




Composing 2-cells:

7(9)(%)

F(9)7 (M (x")

LT

F(9)(x)

(@)F(hy(xrr)
F(g)F (h)(x”) F(9)F By

F(9") ()

‘ F(g)FB)x)

T ’
F(a)y
/ (@) (y(xrr
/ X//

F(9)(X)

to get ¥ (B o a).



Composing 2-cells

vy:Xx—>ayandy :x - a'ywitha2-cells:a— o«
and
l:y—>PBzand ' x - Bzwitha2-cellt:B— B

Y ay
sy
X /
Y a'y



Composing 2-cells

We want to get a 2-cell from y «al 10y’ xa’’:

aj abz




Composing 2-cells

FillinsBz:aBz - &’/Bzand sB'z: af'z - a'B'z

Then atz « sp’'z ~ sBz « o'tz and this gives the required 2-cell.



Functoriality
Suppose X; is a Gi-space, and Xs is a Go-space. A morphism
is given by a group homomorphism ¢ : G; — G, and an
equivariant map f : Xy — X5 such that f(gx) = ¢(g)f(x).
Then we get M(yp, ) : Mg, (X1) —» nGz(Xg)
e Objects: F(Gi/H, x) = (Gz/¢(H), f(x)).
It x € XM, then f(x) € X5,

e Arrows: If y : x = ay in X", define
F(y) = f(y) : f(x) — f(ay) = ¢(@)f(y).



2-cells:

Functoriality

~aa
-
~a
~



Natural Transformations

Natural transformations between equivariant maps:

r: X1 - Gz
denote r(x) = rx, such that
rxfi(x) = fa(x)
Naturality:

Ix

fi(x) f(x)
w(g)j lwz(g)
f1(9x) = ¢1(9)fi (X) ——F— £(9x) = ¢2(9)f2(X)

ax

So
rax1(9) = w2(X)rx



Natural Transformations

Make I into a 2-functor: Suppose r is a natural transformation

from ((p1 , f1) to ((pg, f2)
Given (G/H, x) with x € X", assign the constant path Ct,(x)

from f;(x) = ry'fa(x) to fa(x)
/® fi(x)

1
rx,c

1
\
\
\
\
\

Yo )



Natural Transformations

Is this natural?

lety : x — y be an arrow of Mg, (X4)

given by apath y : x — ay.

Consider naturality square of arrows f;(x) — f(y):



Natural Transformations

Compare compositions:

f 1

:‘.\“rX’ C ‘," r_1’ c
Py

0 BHY) |
'fz(ay)

and



Natural Transformations

Compare compositions:

f(x) ")
fy(ay)

r 1Y) 1
My ffay)

These are not the same.



Pseudo Natural Transformation
For every morphism vy : x — ay, we assign a 2-cell to fill in the
diagram (and satisfy required coherence.)

f(x) 1Y)
f(ay)

Iy 1
My f{ay)



Psuedo Natural Transformations
Use equviariance and naturality to rewrite the ends of this:

f(x) 1Y)
f(ay)

r 1Y)
r'X1f2(ay)

fi(ay) = e1(@)fi(y) = e1(a)r, foy) = 1y p2(@)fa(y)
and
ry folay) = ryl ga(@)fa(y)



Psuedo Natural Transformations

Use equviariance and naturality to rewrite the ends of this:

fi(y)

f,(x) rayp2(@)fa(y)

1 B (y)

rtea(@)fa(y)

Remember that y : x — ay.



Pseudo Natural Transformation

rl o ea(a)
-1
e B (y) e

rewe(a)ia(y)



Where is this going?

Many orbifolds are represented by compact Lie group actions
This representation is not unique - Morita equivalence

All Morita equivalences are given by equivariant maps of two
very specific types

Goal: show that the discrete fundamental group category is an
orbifold invariant
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