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Zero, and some other ‘infinitesimal’ levels
of a cohesive topos
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A quotation

The basic idea is simply to identify dimensions with levels and then
try to determine what the general dimensions are in particular
examples. More precisely, a space may be said to have (less than
or equal to) the dimension grasped by a given level if it belongs to
the negative (left adjoint inclusion) incarnation of that level. Thus
a zero-dimensional space is just a discrete one (there are several
answers, not gone into here, to the objection which general
topologists may raise to that) and dimension one is the Aufhebung
of dimension zero.

F. W. Lawvere
Some thoughts on the future of category theory

LNM 1488, 1991.
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Axioms for the contrast of cohesion E and non-cohesion S

Definition (Essentially in [L’07])

A geometric morphism p : E → S is pre-cohesive if the adjunction
p∗ a p∗ extends to a string

E
p!

��
a p∗

��
S

p∗

OO

a ap!

OO

such that:

0. p∗ : S → E is full and faithful,

1. (Nullstellensatz) the canonical θ : p∗ → p! is epic and

2. p! : E → S preserves finite products.

pieces a discr a points a codiscr
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Decidable objects

Let E be a topos.

Definition

An object X in E is decidable if ∆ : X → X × X is complemented.

Let Dec(E)→ E be the full subcategory of decidable objects.

Proposition∗
If S is Boolean and p : E → S is pre-cohesive and locally
connected then p∗ : S → E coincides with DecE → E .
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(based on a canonical choice ’dimension 0’)

Let E be a topos.
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Axiom 0 (Points)

Axiom 0) The inclusion DecE → E has a right adjoint.

Corollary

If Axiom 0 holds then the right adjoint E → DecE is the direct
image of a hyperconnected geometric morphism (that we denote
by p : E → DecE).

Proof.

The inclusion DecE → E preserves finite limits and is closed under
subobjects [CJ’96].

Fact: E
a p∗
��

DecE

p∗

OO Intuition: E
a points

��
DecE

discr

OO
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Axiom 1 (Nullstellensatz)

Axiom 1) The ‘points’ functor p∗ : E → DecE reflects initial object.

Proposition∗
If 0 and 1 hold then

p is local (i.e. p∗ has a right adjoint p!).
Moreover, p! : DecE → E coincides with the subtopos of
¬¬-sheaves.

Proof.

DecE is Boolean (well-known).
Then prove that p∗ : E → DecE must coincide with
¬¬-sheafification.
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Axiom 2 (Pieces)

Axiom 2) The ‘discrete’ inclusion p∗ : DecE → E is c. closed.

Corollary of [M’2017]

If Axioms 0, 1, 2 hold then p∗ has a finite-product preserving left
adjoint π0 : E → DecE with epic unit.

Intuition:

E

DecE

pieces a discr a points a codiscr

OO
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The UI of decidable objects and ¬¬-sheaves

Corollary

If a topos E is such that:

0. DecE → E has a right adjoint p∗,

1. (Nullstellensatz) The functor p∗ : E → DecE reflects 0 and

2. DecE → E is cartesian closed

then p : E → DecE is pre-cohesive and

p! : DecE → E coincides with E¬¬ → E .

For details see:
The Unity and Identity of decidable objects and double negation
sheaves.
To appear in the JSL.
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Sufficient Cohesion, Quality types
and Leibniz objects
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Quality types and Sufficient Cohesion

Let p : E → S be a pre-cohesive geometric morphism.

Definition

p is a quality type if the canonical

points = p∗ → p! = pieces

is an isomorphism.

Intuition: Every piece has exactly one point.

Definition

p is sufficiently cohesive if p!Ω = 1 (i.e. Ω is connected).

Intuition: points and pieces are different things.

Proposition [L’07]

If p is both sufficiently cohesive and a quality type then E = 1 = S.
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The canonical intensive quality

Let p : E → S be pre-cohesive.

An object X in E is Leibniz if the canonical pointsX → piecesX
is an isomorphism.

Theorem ([L’07] and Marmolejo-M [Submitted])

The full subcategory s∗ : L → E of Leibniz objects is the inverse
image of a hyperconnected essential morphism s : E → L and,
moreover, the composite q∗ = p∗s

∗ : L → S is a quality type.

E

p∗ ��

s∗ // L
q∗
��
S

The (monic) counit of s : E → L is called the Leibniz core and it is
denoted by λ : LX → X .
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The Leibniz core

The (monic) counit of s : E → L is called the Leibniz core and it is
denoted by λ : LX → X .

E

p
��

s // L
q

��

LX

λ
��

= •99
λ

��

•

S X = •99
//
•oo

From [L’16]:

“The Leibniz Core of a space X is the union L(X ) of
all its generalized points; [...] The more general figures that
substantiate cohesion between points are omitted in the reduction
from X to L(X ), but each point may have self-cohesion (which is
retained in L(X )).”
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Birkhoff objects and how they
relate with Birkhoff’s Theorem

(Joint work with F. Marmolejo)

Motivated by Lawvere’s paper
Birkhoff’s Theorem from a geometric perspective:

A simple example.
CGASA, 2016.
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Birkhoff objects

E

p
��

s // L
q

��

LX

λ
��

= •99
λ

��

•

S X = •99
//
•oo

Definition

An object R in E is Birkhoff if every commutative diagram

LX
λ // X

f //

g
// R

implies f = g .

From [L’16]: ”for any X , any ‘infinitesimal’ map L(X )→ R can be
integrated in at most one way to a global function X → R.”
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Hilbert vs Birkhoff

“The Noether-Birkhoff theorem is stronger than Hilbert’s theorem:

By considering a small generalization of ‘co-simple’, one obtains
not merely the existence of points, but the sufficiency of the
resulting notion of ‘generalized points’; here sufficiency refers to
the capacity to separate functions. In terms of algebras sufficiency
means that a certain induced homomorphism to a product of very
special algebras will always be monomorphic. The geometric way
to guarantee such a monomorphic map of algebras involves an
induced ‘pseudo-epimorphism’ from an amalgam of special ‘tiny’
spaces.”

[L’16]

A

ALGEBRA

monic //
∏

i∈I Si (Ti

site → (ALGEBRA)op

//
jointly epic

X | i ∈ I )

GEOMETRY/Cohesion

involves an induced
‘pseudo-epimorphism’ from an

amalgam of special ‘tiny’ spaces.
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A tentative ‘Birkhoff principle’

Algebra Cohesion/Geometry

Hilbert’s Theorem epimorphic points→ pieces

Birkhoff’s Theorem ???

Principle

(for a pre-cohesive p : E → S):

Birkhoff objects separate. (I.e. they form a separating class in E .)

‘There are enough Birkhoff objects’
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The case of presheaf toposes 1 : Pseudo-constants

Let C be a category with 1.

Definition

A map f : D → C in C is a pseudo-constant if

1
a //

b
// D

f // C

commutes for every a, b : 1→ D.

A map is a pseudo-constant iff it coequalizes all points.

For example:

Every point 1→ C is a pseudo constant. More
generally, if D has exactly one point then D → C is a
pseudo-constant for every C .
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The case of presheaf toposes 2

Let C be small, with 1, and s.t. every object has a point so that

p : Ĉ → Set is pre-cohesive.

Proposition (pseudo-constants and the B-principle)

If pseudo-constants are jointly epic in C then Birkhoff objects
separate in Ĉ.

Proof.

Representables are Birkhoff in Ĉ if and only if for every C in C, the
family of pseudo-constants with codomain C is jointly epic in C

(Ti

SITE

i //
jointly epic

X | i pseudo-constant)

GEOMETRY/Cohesion

Birkhoff objects separate
(B-principle)
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p : Ĉ → Set is pre-cohesive.

Proposition (pseudo-constants and the B-principle)

If pseudo-constants are jointly epic in C then Birkhoff objects
separate in Ĉ.
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family of pseudo-constants with codomain C is jointly epic in C

(Ti

SITE

i //
jointly epic

X | i pseudo-constant)

GEOMETRY/Cohesion

Birkhoff objects separate
(B-principle)
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Examples 1 (where points are enough)

Let A be the category of non-trivial f.p. distributive lattices.

By Birkhoff’s Theorem, for any A in A, the family of ‘copoints’
A→ 0 =↑= 2 is jointly monic.

That is, points are jointly epic in Aop.

Proposition (distributive lattices and the B-principle)

Birkhoff objects separate in classifier of non-trivial distributive
lattices.

A

ALGEBRA

monic //
∏

i∈I 2 (1

site → (ALGEBRA)op

i //
jointly epic

X | i point)

GEOMETRY/Cohesion

Birkhoff objects separate
(B-principle)
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Examples 2 (more examples where points are enough)

Corollary (the B-principle in subtoposes)

Birkhoff objects separate in the classifier on non-trivial BA’s, that
of ‘connected’ dLatt’s , simplicial sets , reflexive graphs.

As in the case of reflexive graphs studied in [L’16],in all these
examples Birkhoff objects coincide with ¬¬-separated objects.
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Examples 3: the Gaeta topos for C (points are not enough)

Let A be the category of f.p. C-algebras without idempotents.

By Birkhoff, for any A in A, the family of all maps A→ B with B
subdirectly irreducible is jointly monic. By [McCoy’45] and
Noetherianity, such B are local (i.e. there is a unique B → C).

So, for any X in Aop, the family of all maps D → X such that D
has exactly one point is jointly epic. (See also [Emsalem’78].)

Corollary

Birkhoff objects separate in the classifier of C-algebras without
idempotents (as a pre-cohesive topos over Set).

A

ALGEBRA

monic //
∏

B sdi

B (Di

site → (ALGEBRA)op

i //
jointly epic

X | i p-c)

GEOMETRY/Cohesion

Birkhoff objects separate
(B-principle)

Note: In this case, Birkhoff does not imply ¬¬-separated.
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‘Infinitesimal’ levels and
Birkhoff objects

The consideration of Birkhoff objects leads to the consideration of
‘infinitesimal’ subtoposes.



24/29

‘Infinitesimal’ subtoposes

Let p : E → S be pre-cohesive.

Definition

A subquality of p is a subtopos g : F → E above p∗ a p! : S → E
such that

the composite f : pg : F → S is a quality type.

Fact:

For several p, there is a largest subquality w :W → E . Moreover:

1. w :W → E is an essential subtopos
(i.e. a level above S → E).

2. An object in E is separated w.r.t. W → E iff it is Birkhoff.

When it exists,let me call it level ε.

This happens in all the examples we mentioned.
In the less interesting ones (i.e. where 1 separates in the site),
w :W → E coincides with S → E .
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A more definite existence result

Let C be small, with 1, and s.t. every object has a point so that
p : Ĉ → Set is pre-cohesive.

Proposition

If every pseudo-constant in C factors through an object that has
exactly one point then p has a level ε.

Proof.

It is the essential subtopos determined by the subcategory C0 → C
of those objects that have exactly one point.

For example, 1→ ∆.

More interestingly, for the Gaeta topos of C, the objects of C0
op

are the finite dimensional local C-algebras.
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p : Ĉ → Set is pre-cohesive.

Proposition

If every pseudo-constant in C factors through an object that has
exactly one point then p has a level ε.

Proof.

It is the essential subtopos determined by the subcategory C0 → C
of those objects that have exactly one point.

For example,

1→ ∆.

More interestingly, for the Gaeta topos of C, the objects of C0
op

are the finite dimensional local C-algebras.



25/29

A more definite existence result

Let C be small, with 1, and s.t. every object has a point so that
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‘Infinitesimal’ levels are below 1; as they should.

Let p : E → S be pre-cohesive.

Proposition

If a subquality F → E is way-above level 0 then S is degenerate.

Proof.

Using the characterization of levels way-above 0 in M. Roy’s
thesis.
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Another quotation from L’s thoughts on the future of CT

The infinitesimal spaces, which contain the base topos in its
non-Becoming aspect, are a crucial step toward determinate
Becoming, but fall short of having among themselves enough
connected objects, i.e. they do not in themselves constitute fully a
’category of cohesive unifying Being.’ In examples the four adjoint
functors relating their topos to the base topos coalesce into two
(by the theorem that a finite-dimensional local algebra has a
unique section of its residue field) and the infinitesimal spaces may
well negate the largest essential subtopos of the ambient one which
has that property. This level may be called ’dimension ε’



28/29

Bibliography I

G. Birkhoff.
Subdirect unions in Universal Algebra.
BAMS, 1944.

F. W. Lawvere.
Birkhoff’s Theorem from a geometric perspective: A simple
example.
CGASA, 2016.

N. H. McCoy.
Subdirectly irreducible commutative rings.
Duke Math. J., 1945.

J. Emsalem.
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