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» Edges: n,m <+ m, k
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Algorithms
3-colorability

Is this graph 3-colorable[1]?
» Nodes: pairs of distinct

natural numbers
» Edges: n,m << m, k
whenever n # k

No!

BTW, by compactness of FOL, a
graph is 3-colorable iff its every
finite subgraph is 3-colorable.
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A Linear equations
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» Consider the following set of linear equations[1]:

H# g
Ca—*

Xm,n + Xn k + Xk,m = 0

x01+x10=1

for pairwise distinct natural numbers m, n, k
» Does this set of equations have a solution in 2,7

» If you cannot answer, you may write a program that solves the
puzzle :-)
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» Let A be an algebraic structure (Think of A as the set of
natural numbers A/ with equality =)
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» Let A be an algebraic structure (Think of A as the set of
natural numbers A/ with equality =)
» One may define a von Neumann-like hierarchy V,,(A) of sets
with atoms A by transfinite induction [2]:
> Vo(A)=A
> Vo =P(V,)UV,
» Vy=Uqcr Va if Ais a limit ordinal

H® Xy
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natural numbers A/ with equality =)
» One may define a von Neumann-like hierarchy V,,(A) of sets
with atoms A by transfinite induction [2]:
> Vo(A)=A
> Vo =P(Va)UV,
» Vy=Uqcr Va if Ais a limit ordinal
» There is a natural action e of the group of automorphisms
Aut(A) of A on the whole universe V =J,. 0,4 Va-
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» Let A be an algebraic structure (Think of A as the set of
natural numbers A/ with equality =)

H® Xy

» One may define a von Neumann-like hierarchy V,,(A) of sets
with atoms A by transfinite induction [2]:

> W(A)=A
» Vo1 =P(Va)UV,
» Vy=Uqcr Va if Ais a limit ordinal
» There is a natural action e of the group of automorphisms
Aut(A) of A on the whole universe V =J,. 0,4 Va-
» Example: (012)(67) € Aut(N):
» 0—~1—2—0andb6—7+—6
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» Let A be an algebraic structure (Think of A as the set of
natural numbers A/ with equality =)
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» One may define a von Neumann-like hierarchy V,,(A) of sets
with atoms A by transfinite induction [2]:
> Vo(A)=A
> Vo =P(V,)UV,
» Vy=Uqcr Va if Ais a limit ordinal
» There is a natural action e of the group of automorphisms
Aut(A) of A on the whole universe V =J,. 0,4 Va-
» Example: (012)(67) € Aut(N):
» 0—=1—2—=0and6—7—06
> {0,1} — {1,2}
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» Let A be an algebraic structure (Think of A as the set of
natural numbers A/ with equality =)
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» One may define a von Neumann-like hierarchy V,,(A) of sets
with atoms A by transfinite induction [2]:
> Vo(A)=A
> Vo =P(V,)UV,
» Vy=Uqcr Va if Ais a limit ordinal
» There is a natural action e of the group of automorphisms
Aut(A) of A on the whole universe V =J,. 0,4 Va-
» Example: (012)(67) € Aut(N):
» 0—=1—2—=0and6—7—06
> {0,1} — {1,2}
» {0,1,2,3} — {0,1,2,3}
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» Let A be an algebraic structure (Think of A as the set of
natural numbers A/ with equality =)

H® Xy

» One may define a von Neumann-like hierarchy V,,(A) of sets
with atoms A by transfinite induction [2]:
> Vo(A)=A
> Va+1 = 'P(Va) U Ve
» Vy=Uqcr Va if Ais a limit ordinal
» There is a natural action e of the group of automorphisms
Aut(A) of A on the whole universe V =J,. 0,4 Va-
» Example: (012)(67) € Aut(N):
» 0—=1—2—=0and6—7—06
> {0,1} — {1,2}
> {07 17 2’ 3} = {0’ 1727 3}
> {{0,1},{6,7,8},7} — {{1,2},{6,7,8},6}
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» (Remember: think of algebraic structure A as the set of
natural numbers A/ with equality =.), define:
> set-wise stabiliser of X € V in Aut(A) as
Aut(A)x = {h € Aut(A): he X = X}
» point-wise stabiliser of X € V in Aut(A) as
Aut(A)(xy = {h € Aut(A): Vxexhe x = x}

H® Xy
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» (Remember: think of algebraic structure A as the set of
natural numbers A/ with equality =.), define:
> set-wise stabiliser of X € V in Aut(A) as
Aut(A)x = {h € Aut(A): he X = X}
» point-wise stabiliser of X € V in Aut(A) as
Aut(A)(xy = {h € Aut(A): Vxexhe x = x}
> Aset S C Ais asupport of X € V iff Aut(A)(s) C Aut(A)x
> X € V is of finite support if there exists a finite S C A that
supports X

H® Xy
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» (Remember: think of algebraic structure A as the set of
natural numbers A/ with equality =.), define:
> set-wise stabiliser of X € V in Aut(A) as
Aut(A)x = {h € Aut(A): he X = X}
» point-wise stabiliser of X € V in Aut(A) as
Aut(A)(xy = {h € Aut(A): Vxexhe x = x}
> Aset S C Ais asupport of X € V iff Aut(A)(s) C Aut(A)x
> X € V is of finite support if there exists a finite S C A that
supports X
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> X € V is legitimate if it is hereditarily of finite support



Michal R. Przybylek

‘“‘Or*ﬁ_ Sets with atoms
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» (Remember: think of algebraic structure A as the set of
natural numbers A/ with equality =.), define:

> set-wise stabiliser of X € V in Aut(A) as
Aut(A)x = {h € Aut(A): he X = X}
» point-wise stabiliser of X € V in Aut(A) as
Aut(A)(xy = {h € Aut(A): Vxexhe x = x}
A set S C Alis a support of X € V iff Aut(A)sy € Aut(A)x
X € V is of finite support if there exists a finite S C A that
supports X

H® Xy

vy

X € V is legitimate if it is hereditarily of finite support
We shall restrict to legitimate sets only.

X € V is equivariant if it is supported by the empty set

vvyyy

X € V is coherent if it has only finitely many orbits
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» {0} is supported by {0}
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» {0} is supported by {0}
» {0,1} is supported by {0, 1}
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Q»; Examples

» {0} is supported by {0}
» {0,1} is supported by {0, 1}
> {2,3,4,...} is supported by {0, 1}

HB g



Michal R. Przybylek
Q“’m‘_ Legitimate sets
Q»; Examples

» {0} is supported by {0}

» {0,1} is supported by {0,1}

> {2,3,4,...} is supported by {0,1}

» {2,3,5,7,11,13,...} is not finitely supported
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> {2,3,4,...} is supported by {0,1}
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Q“’m‘_ Legitimate sets
Q»; Examples

{0} is supported by {0}

{0,1} is supported by {0,1}

{2,3,4,...} is supported by {0,1}
{2,3,5,7,11,13,... } is not finitely supported
N, N? is equivariant

N = {(n,m) € N': n# m} is equivariant

E = {(n,m,m, k) € N°: n# k} is equivariant

H® Xy

vVvvyVvYvVvyyypy
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» {0} is supported by {0}

» {0,1} is supported by {0,1}

> {2,3,4,...} is supported by {0,1}

» {2,3,5,7,11,13,...} is not finitely supported

> N, N? is equivariant

» N ={(n,m) € N: n# m} is equivariant

> E = {(n,m,m, k) € N?: n# k} is equivariant

> NV* = {(),(0),(1),...,(0,0),(0,1),(1,0),...,(3,7,2),... }

is equivariant, but not coherent
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\ Oligomorphic structures
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» Generally, if X is coherent X2 may be not :-(
» Example: (Z,+):
» Z has a single orbit — for every x < y € Z there exists
translation by k = y — x, which maps x to y
» 22 has infinitely many orbits — two pairs (x, y), (x’,y’) are in
the same orbit iff y — x = y’ — x’

HB e
Tew—*
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» Generally, if X is coherent X2 may be not :-(
» Example: (Z,+):
» Z has a single orbit — for every x < y € Z there exists
translation by k = y — x, which maps x to y
» 22 has infinitely many orbits — two pairs (x, y), (x’,y’) are in
the same orbit iff y — x = y’ — x’

H® Xy
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Oligomorphic structure
An algebraic structure A is oligomorphic if

> for every k, the action of Aut(A) on AX has finitely many orbits
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» Generally, if X is coherent X2 may be not :-(
» Example: (Z,+):
» Z has a single orbit — for every x < y € Z there exists
translation by k = y — x, which maps x to y
» 22 has infinitely many orbits — two pairs (x, y), (x’,y’) are in
the same orbit iff y — x = y’ — x’

H® Xy
R

Oligomorphic structure

An algebraic structure A is oligomorphic if

> for every k, the action of Aut(A) on AX has finitely many orbits

» Examples: (N,=),(Q, <), (Fx,,0,1,V,A, =), ...
» For an oligomorphic structure if X is coherent, then X is
coherent (for every natural k)



Michal R. Przybylek

AT,
‘“O*_ Good structures
W Oligomorphic structures
LES

» Generally, if X is coherent X2 may be not :-(
» Example: (Z,+):
» Z has a single orbit — for every x < y € Z there exists
translation by k = y — x, which maps x to y
» 22 has infinitely many orbits — two pairs (x, y), (x’,y’) are in
the same orbit iff y — x = y’ — x’

H® Xy
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Oligomorphic structure

An algebraic structure A is oligomorphic if

> for every k, the action of Aut(A) on AX has finitely many orbits

» Examples: (N, =),(Q, <), (Fy,,0,1,V,A, ),

» For an oligomorphic structure if X is coherent, then X is
coherent (for every natural k)

» The converse is almost true.
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» Generally, if X is coherent X2 may be not :-(
» Example: (Z,+):
» Z has a single orbit — for every x < y € Z there exists
translation by k = y — x, which maps x to y
» 22 has infinitely many orbits — two pairs (x, y), (x’,y’) are in
the same orbit iff y — x = y’ — x’

H® Xy
R

Oligomorphic structure

An algebraic structure A is oligomorphic if

> for every k, the action of Aut(A) on AX has finitely many orbits

» Examples: (N,=),(Q, <), (Fy,,0,1,V,A, =), ...

» For an oligomorphic structure if X is coherent, then X is
coherent (for every natural k)

» The converse is almost true. ALMOST :-)
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» A topological group G is called Roelcke precompact [3] if for
every open subgroup H C G, there are finitely many double
cosets HxH,x € G

H® Xy
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» A topological group G is called Roelcke precompact [3] if for
every open subgroup H C G, there are finitely many double
cosets HxH,x € G

H# g
Ca—*

» Theorem: A topological group is Roelcke precompact iff for
every action of G on a set X that has only finitely many orbits
the induced action on X* has only finitely many orbits (for
every natural k)
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» A topological group G is called Roelcke precompact [3] if for
every open subgroup H C G, there are finitely many double
cosets HxH,x € G
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» Theorem: A topological group is Roelcke precompact iff for
every action of G on a set X that has only finitely many orbits
the induced action on X* has only finitely many orbits (for
every natural k)

» Roelcke precompact groups were (independently?)
rediscovered by Blass and Scedrov and called coherent groups

» Theorem: A topological group G is coherent iff its classifying
op
topos Set® is coherent
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» A topological group G is called Roelcke precompact [3] if for
every open subgroup H C G, there are finitely many double
cosets HxH,x € G

H# g
Ca—*

» Theorem: A topological group is Roelcke precompact iff for
every action of G on a set X that has only finitely many orbits
the induced action on X* has only finitely many orbits (for
every natural k)

» Roelcke precompact groups were (independently?)
rediscovered by Blass and Scedrov and called coherent groups

» Theorem: A topological group G is coherent iff its classifying
topos Set®” is coherent

» BTW, for G = Aut(A) this classifying topos is equivalent to
the category of equivariant sets with atoms A :-)
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\ EE Sets with good atoms

» Therefore, every Th(A)-definable subset of A is a coherent
sets with atoms

H® Xy

> Examples:
» N={(n,m)ye N:n#m}
> £={(n,m,m k) € N?>: n# k}
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» Therefore, every Th(A)-definable subset of A is a coherent
sets with atoms
> Examples:
» N={(n,m)ye N:n#m}
> £={(n,m,m k) € N?>: n# k}
» Moreover, definable sets can be nested:
> {{a,b}: a,be N Na# b}
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» Therefore, every Th(A)-definable subset of A is a coherent
sets with atoms

H® Xy
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> Examples:
» N={(n,m)ye N:n#m}
> £={(n,m,m k) € N?>: n# k}
» Moreover, definable sets can be nested:
> {{a,b}: a,be N Na# b}
» If R is an equivalence relation on X, then: {(x,{y: xRy}): T}
represents the quotient X/R :-)



Michal R. Przybylek
wouﬁ_ Good structures
\ EE Sets with good atoms

» Therefore, every Th(A)-definable subset of A is a coherent
sets with atoms

H® Xy

> Examples:
» N={(n,m)ye N:n#m}
> £={(n,m,m k) € N?>: n# k}
» Moreover, definable sets can be nested:
> {{a,b}: a,be N Na# b}
» If R is an equivalence relation on X, then: {(x,{y: xRy}): T}
represents the quotient X/R :-)

» Fact: “nested” definable sets form the pretopos completion of
definable sets
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- Programming in sets with atoms
OZ Reachability
» (USTCON) Does there exist an

undirected path from A to B?
(STCON) Does there exist a directed

. l path from A to B?

H® X
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» (USTCON) Does there exist an
undirected path from A to B?

(L-complete)
(STCON) Does there exist a directed

. l path from A to B? (NL-complete)
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LES

» (USTCON) Does there exist an
undirected path from A to B?
(L-complete)

» (STCON) Does there exist a directed
path from A to B? (NL-complete)

» (ASTCON) Does there exist an
alternating path from A to B?

(P-complete)
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Programming in sets with atoms
Reachability

» (USTCON) Does there exist an
undirected path from A to B?
(L-complete)

» (STCON) Does there exist a directed
path from A to B? (NL-complete)

» (ASTCON) Does there exist an
alternating path from A to B?
(P-complete)

» (U/A)STCON on coherent graphs with
atoms are decidable :-)
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S Programming in sets with atoms
OFZ Reachability
R 0

@—0 o
w Whi|eR/7éRd0
. l R « R
for (x,y) € E do
if x € R then
R+ RU{y}
end if
end for

end while



Michal R. Przybylek
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GFZ Reachability
AR

R <0
R + {A}
while R’ # R do
R+ R
for (x,y) € E do
if x € R then
R+ RU{y}
end if
T g end for
T« {(x,x): x € N} end while
while 7' # T do
T« T

T+ TU{{x,y): 3,(x,2) € T A(z,y) € E}
end while
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”Q:_ Coherent Automata[4]

» Coherent alphabet ¥
» Coherent set @ of states
» Transition relation 0 C Q X X X @

H® Xy
Tow—*

» Initial state gg € Q and a coherent set of final states F C Q
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Coherent alphabet ¥

Coherent set @ of states

Transition relation 0 C Q@ X X X Q

Initial state go € @ and a coherent set of final states F C @
Coherent automata do not determinise

Myhill-Nerode theorem for coherent deterministic automata
holds

P = NP in sets with atoms
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N More exciting problems
QE Coherent Automatal4]

Coherent alphabet ¥

Coherent set @ of states

Transition relation 0 C Q@ X X X Q

Initial state go € @ and a coherent set of final states F C @
Coherent automata do not determinise

Myhill-Nerode theorem for coherent deterministic automata
holds

P = NP in sets with atoms

Coherent automata over (N, =) are equivalent to register
automata
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- More exciting problems

QE Coherent Model Checking|[5]

> A coherent u-formula is given by the following syntax:
ou=p|X| [0 00| uX.

where p is a proposition from an equivariant set P, X is a
variable, and ® is a coherent set of pu-formulas.

H® Xy
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- More exciting problems

QE Coherent Model Checking|[5]

> A coherent u-formula is given by the following syntax:
ou=p|X| [0 00| uX.

where p is a proposition from an equivariant set P, X is a
variable, and ® is a coherent set of pu-formulas.

H® Xy

> A Kripke structure consists of a set of states K, a transition
relation R C K x K, and an interpretation W C P x K
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- More exciting problems
QE Coherent Model Checking|[5]

> A coherent u-formula is given by the following syntax:

pu=p|X |\ O] b | uX.0

where p is a proposition from an equivariant set P, X is a
variable, and ® is a coherent set of pu-formulas.

> A Kripke structure consists of a set of states K, a transition
relation R C K x K, and an interpretation W C P x K

» Satisfiability of coherent p-calculus is undecidable :-(

H® Xy
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- More exciting problems
QE Coherent Model Checking|[5]

> A coherent u-formula is given by the following syntax:

pu=p|X |\ O] b | uX.0

where p is a proposition from an equivariant set P, X is a
variable, and ® is a coherent set of pu-formulas.

> A Kripke structure consists of a set of states K, a transition
relation R C K x K, and an interpretation W C P x K

» Satisfiability of coherent p-calculus is undecidable :-(

» Model checking for coherent pu-calculus over coherent Kripke
structures is decidable :-)

» Model checking for coherent pu-calculus does not have a
“finite/coherent-model” property

H® Xy
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- More exciting problems
QE Coherent Model Checking|[5]

> A coherent u-formula is given by the following syntax:

pu=p|X |\ O] b | uX.0

where p is a proposition from an equivariant set P, X is a
variable, and ® is a coherent set of pu-formulas.

> A Kripke structure consists of a set of states K, a transition
relation R C K x K, and an interpretation W C P x K

» Satisfiability of coherent p-calculus is undecidable :-(

» Model checking for coherent pu-calculus over coherent Kripke
structures is decidable :-)

» Model checking for coherent pu-calculus does not have a
“finite/coherent-model” property

» 3(A.ca G(pa — X(G—p,))) is not expressible in coherent
p-calculus, but its model-checking is decidable

H® Xy
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o More exciting problems
GE Constraint satisfaction problem[1]
AR

» A purely relational structure T is called template

> An instance / of template T is a structure in the
language of T

» A solution of [ over T is a homomorphism s: [ — T

» Example (3-colorability): given a graph (V, E) define:
T={R,G,B},#), | =(V,E)
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- More exciting problems
; Constraint satisfaction problem([1]

» A purely relational structure T is called template

> An instance / of template T is a structure in the
language of T

» A solution of [ over T is a homomorphism s: [ — T

» Example (3-colorability): given a graph (V/, E) define:
T={R,G,B},#), | =(V,E)

» Let T be a finite template such that CSP(T) is complete for

a complexity class C under logarithmic space reductions.
Then CSP-Inf(T) is decidable and complete for the
complexity class exp(C) under logarithmic space reductions.
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More exciting problems

=t

Constraint satisfaction problem([1]

¥

A purely relational structure T is called template

An instance | of template T is a structure in the

language of T

A solution of / over T is a homomorphism s: | — T
Example (3-colorability): given a graph (V, E) define:
T={R,G,B},#), | =(V,E)

Let T be a finite template such that CSP(T) is complete for
a complexity class C under logarithmic space reductions.

Then CSP-Inf(T) is decidable and complete for the
complexity class exp(C) under logarithmic space reductions.

For any equivariant, locally finite template, it is decidable
whether a given definable, equivariant instance over it has a
solution
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Oligomorphic Definable sets
structure A with atoms A

Classifying
topos for T

Sheaves/Site
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v

é’*ﬁ_ Definable sets
W Algorithms
AR

» Fix a decidable FO theory T, such that every finite set of
formulas generates a finite set (under logical operations)

» Let G = (N, E) be a T-definable graph
» Is the reachability problem for G decidable?
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A .
‘“Or*ﬁ_ Definable sets
i Algorithms
B xn

» Fix a decidable FO theory T, such that every finite set of
formulas generates a finite set (under logical operations)

» Let G = (N, E) be a T-definable graph
» Is the reachability problem for G decidable? — Yes!

» Assume that nodes N are represented by formula ¢, and
edges E are represented by formula ¢.
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comment: T/ C T store consecutive approximations to t.c. of ¢
T + 0
T —{x,%): ¥(x)}
while T # T do
T« T
T+ TU{,y):3z(x,2) e TANd(Z,y)}
end while
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» How about while-like programs in a general category C?
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» C should have at least finite products...
» Consider a graph G = (V, E) in C — to define a transitive
closure of E:
» There must be a well-defined composition of relations E o E,
which requires pullbacks and existential quantifiers
» There must be a well-defined notion of union of subobjects
» Fact: A category with finite limits, existential quantifiers and
well-behaved unions is just a coherent category :-)
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@f— Beyond classifying toposes

» Closure properties:
» products and cofiltered limits of coherent groups are coherent
> (finite) products of coherent toposes are coherent toposes
» products and filtered colimits of pretoposes are pretoposes

H# g
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> Most of the results survive when moving to the filtered
colimits of classifying toposes
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