Conjugation semigroups and conjugation monoids with cancellation

Margarida Raposo

University of the Azores Faculty of Science and Technology Department of Mathematics and Statistics

(joint work with A. Paula Garrão, N. Martins-Ferreira and M. Sobral)

CT 2018 Category Theory 2018

July 08-14, Ponta Delgada, Azores

A conjugation semigroup $(S,+,\overline{()})$ is a semigroup (S,+) equipped with a unary operation $\overline{()}:S\to S$ satisfying the following identities:

- $2 x + \overline{y} + y = y + \overline{y} + x$

A conjugation semigroup $(S,+,\overline{()})$ is a semigroup (S,+) equipped with a unary operation $\overline{()}:S\to S$ satisfying the following identities:

- $2 x + \overline{y} + y = y + \overline{y} + x$

Examples

- Any group with $\overline{x} = x^{-1}$.
- Any commutative monoid with $\overline{x} = e$.

A conjugation semigroup $(S,+,\overline{()})$ is a semigroup (S,+) equipped with a unary operation $\overline{()}:S\to S$ satisfying the following identities:

- $2 x + \overline{y} + y = y + \overline{y} + x$

Examples

- Any group with $\overline{x} = x^{-1}$.
- Any commutative monoid with $\overline{x} = e$.
- ullet $S=\{q\in \mathbb{H}|0<\|q\|<1\}$ with quaternion product and conjugation.

A conjugation semigroup $(S, +, \overline{()})$ is a semigroup (S, +) equipped with a unary operation $\overline{()}: S \to S$ satisfying the following identities:

- $2 x + \overline{y} + y = y + \overline{y} + x$

The quasivariety ${\cal S}$ of conjugation semigroups with *cancellation* is a weakly Mal'tsev category.

A finitely complete category is weakly Mal'tsev if for all pullbacks of split epimorphisms along split epimorphisms

the pair (e_1,e_2) , with $e_1=<1_A,sf>$ and $e_2=< rg,1_C>$, is jointly epimorphic.

Examples of weakly Mal'tsev categories are

- DLat, property characterizing it amongst the varieties of lattices
- quasivarieties of algebras with a ternary operation p(x, y, z) satisfying

$$p(x,y,y) = p(y,y,x)$$
 and $p(x,y,y) = p(x',y,y) \Rightarrow x = x'$.

Examples of weakly Mal'tsev categories are

- DLat, property characterizing it amongst the varieties of lattices
- quasivarieties of algebras with a ternary operation p(x, y, z) satisfying

$$p(x,y,y) = p(y,y,x)$$
 and $p(x,y,y) = p(x',y,y) \Rightarrow x = x'$.

In ${\mathcal S}$ we have

$$p(x,y,z) = x + \overline{y} + z$$

Admissibility diagrams

An admissibility diagram

gives rise to

$$\mathit{fr} = 1_{\mathit{B}} = \mathit{gs}$$
, $\alpha \mathit{r} = \beta = \gamma \mathit{s}$

The triple (α, β, γ) is admissible with respect to (f, r, g, s) if there exists a unique morphism $\varphi \colon A \times_B C \to D$ such that $\varphi e_1 = \alpha$ and $\varphi e_2 = \gamma$.

Then we say that the diagram (1) is admissible.

Admissibility in \mathcal{S}

Theorem:

 (Ad_1) the equation $x + \beta(b) + \beta(b) = \alpha(a) + \beta(b) + \gamma(c)$ has a unique solution for all $a \in A$ and $c \in C$ such that $f(a) = g(c) = b \in B$.

 (Ad_2) the equation

$$\alpha(a_1+a_2)+\overline{\beta(b_1+b_2)}+\gamma(c_1+c_2)=\alpha(a_1)+\overline{\beta(b_1)}+\gamma(c_1)+\alpha(a_2)+\overline{\beta(b_2)}+\gamma(c_2)$$

is satisfied for $a_1, a_2 \in A$ and $c_1, c_2 \in C$ such that $f(a_1) = g(c_1) = b_1 \in B$ and $f(a_2) = g(c_2) = b_2 \in B$.

Admissibility in ${\cal S}$

Theorem:

 (Ad_1) the equation $x + \beta(b) + \beta(b) = \alpha(a) + \beta(b) + \gamma(c)$ has a unique solution for all $a \in A$ and $c \in C$ such that $f(a) = g(c) = b \in B$.

 (Ad_2) the equation

$$\alpha(a_1+a_2)+\overline{\beta(b_1+b_2)}+\gamma(c_1+c_2)=\alpha(a_1)+\overline{\beta(b_1)}+\gamma(c_1)+\alpha(a_2)+\overline{\beta(b_2)}+\gamma(c_2)$$

is satisfied for $a_1, a_2 \in A$ and $c_1, c_2 \in C$ such that $f(a_1) = g(c_1) = b_1 \in B$ and $f(a_2) = g(c_2) = b_2 \in B$.

Also valid in \mathcal{M} , the category of conjugation monoids with cancellation.

Existence of a map $\varphi: A \times_B C \to D$ with $\varphi e_1 = \alpha$ and $\varphi e_2 = \gamma$ implies that, for f(a) = g(c) = b,

$$\alpha(a) = \varphi(a, s(b)), \ \gamma(c) = \varphi(r(b), c), \ \beta(b) = \varphi(r(b), s(b)).$$

Existence of a map $\varphi: A \times_B C \to D$ with $\varphi e_1 = \alpha$ and $\varphi e_2 = \gamma$ implies that, for f(a) = g(c) = b,

$$\alpha(a) = \varphi(a, s(b)), \ \gamma(c) = \varphi(r(b), c), \ \beta(b) = \varphi(r(b), s(b)).$$

 $arphi \in \mathcal{S} \Rightarrow arphi(a,c)$ is the solution of

$$x + \overline{\beta(b)} + \beta(b) = \alpha(a) + \overline{\beta(b)} + \gamma(c)$$

and (Ad_2) is fulfilled.

Existence of a map $\varphi: A \times_B C \to D$ with $\varphi e_1 = \alpha$ and $\varphi e_2 = \gamma$ implies that, for f(a) = g(c) = b,

$$\alpha(a) = \varphi(a, s(b)), \ \gamma(c) = \varphi(r(b), c), \ \beta(b) = \varphi(r(b), s(b)).$$

 $arphi \in \mathcal{S} \Rightarrow arphi(a,c)$ is the solution of

$$x + \overline{\beta(b)} + \beta(b) = \alpha(a) + \overline{\beta(b)} + \gamma(c)$$

and (Ad_2) is fulfilled.

If (Ad_1) and (Ad_2) hold, taking $\varphi(a,c)$ the solution of (Ad_1) then $\varphi e_1 = \alpha$ and $\varphi e_2 = \gamma$ and $\varphi \in \mathcal{S}$.

Schreier split epimorphisms of monoids

Schreier split epimorphisms of monoids

In *Mon*

$$X \xrightarrow{k} A \xrightarrow{r} B$$
 with $fr = 1_B$ and $X = kerf$

is a Schreier split epi if there exists a unique set-theorical map $q:A\to X$, called the Schreier retraction, such that a=kq(a)+rf(a) for all $a\in A$.

Schreier split epimorphisms of monoids

In *Mon*

$$X \xrightarrow{k} A \xrightarrow{r} B$$
 with $fr = 1_B$ and $X = kerf$

is a Schreier split epi if there exists a unique set-theorical map $q:A\to X$, called the Schreier retraction, such that a=kq(a)+rf(a) for all $a\in A$.

To
$$X \stackrel{q}{\underset{k}{\longleftarrow}} A \stackrel{r}{\underset{f}{\longleftarrow}} B$$
 corresponds an action of B on X , $\varphi: B \to End(X)$

$$b \cdot x := \varphi(b)(x) = q(r(b) + k(x))$$

Conversely to each action $\varphi: B \to End(X)$ it corresponds a Schreier split epimorphism via semidirect product.

Schreier split epimorphism in ${\cal M}$

Schreier split epimorphism in ${\mathcal M}$

Given a Schreier split epi in ${\mathcal M}$

$$X \stackrel{q}{\underset{k}{\longleftrightarrow}} A \stackrel{r}{\underset{f}{\longleftrightarrow}} B$$

we have:

- **1** qr = 0;

Inducing internal structures

Given h:X o B and a Schreier spli epimorphism in $\mathcal M$

$$X \stackrel{h}{\underset{k}{\underbrace{\hspace{1em}}}} A \stackrel{r}{\underset{f}{\underbrace{\hspace{1em}}}} B$$

when does h induce:

a reflexive graph, an internal category, an internal groupoid?

Inducing reflexive graphs

Proposition

Given a Schreier split epimorphism and a morphism h in ${\mathcal M}$

$$X \stackrel{h}{\underset{k}{\underbrace{\hspace{1em}}}} A \stackrel{r}{\underset{f}{\underbrace{\hspace{1em}}}} B ,$$

h induces a reflexive graph $A \xrightarrow[\tilde{h}]{f} B$,

if and only if it satisfies the condition

$$(C_1) h(b \cdot x) + b = b + h(x)$$

If there exists a map $ilde{h}$, preserving addition and such that $ilde{h}k=h$ and $ilde{h}r=1_B$, then

$$\tilde{h}(a) = \tilde{h}(kq(a) + rf(a)) = hq(a) + f(a),$$

from which it follows that $\overline{\widetilde{h}(a)}=f(\overline{a})+h\overline{q(a)}$ and so

$$\tilde{h}(\overline{a}) = \overline{\tilde{h}(a)}.$$

If there exists a map $ilde{h}$, preserving addition and such that $ilde{h}k=h$ and $ilde{h}r=1_B$, then

$$\tilde{h}(a) = \tilde{h}(kq(a) + rf(a)) = hq(a) + f(a),$$

from which it follows that $\tilde{h}(a) = f(\overline{a}) + h\overline{q(a)}$ and so

$$\tilde{h}(\overline{a}) = \overline{\tilde{h}(a)}.$$

The existence of such \tilde{h} is equivalent to (C_1) .

Inducing internal categories

Proposition

Given a Schreier split epi and a morphism h in ${\mathcal M}$

$$X \stackrel{h}{\underset{k}{\underbrace{\hspace{1em}}}} A \stackrel{r}{\underset{f}{\underbrace{\hspace{1em}}}} B$$

h induces an internal category

$$A \times_B A \xrightarrow{m} A \xrightarrow{f} B$$

if and only if

$$(C_1) h(b \cdot x) + b = b + h(x), \forall x \in X, \forall b \in B$$

$$(C_2) h(y) \cdot x + y = y + x, \forall x, y \in X.$$

The reflexive graph $A \xrightarrow{f} B$ is an internal category if and only if the

diagram

The reflexive graph $A \xrightarrow[r]{f} B$ is an internal category if and only if the

diagram

Then if (C_2) holds, such an $m: A \times_B A \to A$ defining a Schreier internal category $A \times_B A \xrightarrow{m} A \xrightarrow{f} B$ exists, and is defined by

$$m(a,a')=kq(a)+a'$$

And (C_2) is also a necessary condition.

Inducing internal groupoids

Proposition

Given a Schreier split epimorphism and a morphism h in \mathcal{M}

$$X \stackrel{h}{\underset{k}{\rightleftharpoons}} A \stackrel{r}{\underset{f}{\rightleftharpoons}} B$$
, h induces an internal groupoid

$$A \times_B A \xrightarrow{m} A \xrightarrow{f} B$$

if and only if

$$(C_1) h(b \cdot x) + b = b + h(x), \forall x \in X, \forall b \in B$$

$$(C_2) h(y) \cdot x + y = y + x, \forall x, y \in X.$$

$$(C_3)$$
 X is a group and $-\overline{x} = \overline{(-x)}$

The internal category

$$A \times_B A \xrightarrow{m} A \xrightarrow{f} B$$

is an internal groupoid with the inverses defined on the "object of morphism" \boldsymbol{A} by

$$t(a) = -kq(a) + r\tilde{h}(a)$$

exactly when (C_3) is satisfied.

Example

$$B = \{q \in \mathbb{H} : ||q|| = 1\}$$

$$X = \{q \in \mathbb{H} : 0 < ||q|| \le 1\}$$

$$b \cdot x = bxb^{-1} = bx\overline{b}$$

$$X \stackrel{\pi_1}{< 1,0>} X \times_{\varphi} B \stackrel{<0,1>}{\underset{\pi_2}{\longleftarrow}} B$$

with $\overline{(x,b)} = (\overline{b} \cdot \overline{x}, \overline{b})$ is a Schreier split epi in \mathcal{M} .

Given $h: X \to B$, such that $h(x) = \frac{x}{\|x\|}$, h satisfies (C_1) (and so it induces a reflexive graph)

but not (C_2) (does not induce an internal category, in general).

"Smith is Hug"

Theorem

In the category $\mathcal M$ of conjugation monoids with cancellation, two Schreier equivalence relations R and S on the same object X commute in the sense of Smith-Pedicchio if and only if their normalizations commute in the sense of Huq.

"Smith is Hug"

Given two Schreier equivalence relations (R, r_1, r_2) and (S, s_1, s_2) on X

 r_1k , s_2I commute in Huq sense if and only if

$$\exists \varphi : R \times_X S \to X$$

such that $arphi e_1 = r_1$ and $arphi e_2 = s_2$, and this means that R and S commute, $s_1 \in S$

From local to global

The diagram

is admissible if and only if αk and γI Huq-commute.

From local to global

If just (f, r) is a Schreier split epi then the diagram

is admissible if and only if

$$\alpha k(q_f(c) \cdot x) + \gamma(c) = \gamma(c) + \alpha k(x)$$
 for all $x \in X$ and $c \in C$.

From local to global

If C = A and s = r, that is if we have a reflexive graph induced by h = gk, then the diagram

is admissible if and only if

$$\alpha k(h(y) \cdot x) + \gamma k(y) = \gamma k(y) + \alpha k(x)$$
, for all $x, y \in X$.

References

- [1] D.Bourn, N. Martins-Ferreira, A. Montoli and M. Sobral, *Schreier split epimorphisms in monoids and in semirings*, Textos de Matemática (série B), vol. 45, Departamento de Matemática da Universidade de Coimbra (2013).
- [2] N. Martins-Ferreira, Weakly Mal'cev categories, *Theory Appl. Categ.* 21 (2008) 91–117.
- [3] N. Martins-Ferreira and A. Montoli, On the "Smith is Huq" condition in S-protomodular categories, *Appl. Categ. Struct.* 25(2017) 59–75.
- [4] N. Martins-Ferreira and T. Van der Linden, A note on the "Smith is Huq" condition, *Appl. Categ. Structures* 20 (2012) 175–187.