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Conjugation Semigroups

A conjugation semigroup (S, +,()) is a semigroup (S, +) equipped with a
unary operation () : S — S satisfying the following identities:

Q@ X+x=x+Xx

Q@ x+ty+ty=y+y+x
Q@ (x+y)=y+Xx
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Conjugation Semigroups

A conjugation semigroup (S, +,()) is a semigroup (S, +) equipped with a
unary operation () : S — S satisfying the following identities:

Q@ X+x=x+Xx
Q@ x+y+y=y+y+x
Q@ (x+y)=y+Xx

Examples

@ Any group with x = x~1.

e Any commutative monoid with X = e.
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Conjugation Semigroups

A conjugation semigroup (S, +,()) is a semigroup (S, +) equipped with a
unary operation () : S — S satisfying the following identities:

Q@ X+x=x+Xx
Q@ x+y+y=y+y+x
Q@ (x+y)=y+Xx

Examples

@ Any group with x = x~1.

e Any commutative monoid with X = e.

e S={qge€H0<|q| <1} with quaternion product and conjugation.
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Conjugation Semigroups

A conjugation semigroup (S, +,()) is a semigroup (S, +) equipped with a
unary operation () : S — S satisfying the following identities:

Q@ X+x=x+X
Q@ x+y+y=y+y+x
@ (x+y)=y+Xx

The quasivariety S of conjugation semigroups with cancellation is a weakly
Mal'tsev category. J
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Weakly Mal'tsev Category
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Weakly Mal'tsev Category

A finitely complete category is weakly Mal'tsev if for all pullbacks of split
epimorphisms along split epimorphisms

€2
AxgC=——=C
T2
T e1 g S

the pair (e1, e2), with e =< 14,sf > and &g =< rg,1¢ >, is jointly
epimorphic.
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Weakly Mal'tsev Category

Examples of weakly Mal’tsev categories are
- DLat, property characterizing it amongst the varieties of lattices
- quasivarieties of algebras with a ternary operation p(x, y, z) satisfying

p(x,y,y) =p(y,y,x) and  p(x,y,y)=pX,y,y) = x=x"
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Weakly Mal'tsev Category

Examples of weakly Mal’tsev categories are
- DLat, property characterizing it amongst the varieties of lattices
- quasivarieties of algebras with a ternary operation p(x, y, z) satisfying

p(x,y,y) =p(y,y,x) and p(x,y,y) = p(x,y,y) = x =X

In S we have
p(x,y,z2)=x+y+z J
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Admissibility diagrams

An admissibility diagram gives rise to
¢ v
A—=B=—=¢C % ;Y
\l/ (1) AxgC B——5——D

fr=1g=gs,ar=08="s

The triple (o, 3,7) is admissible with respect to (f,r, g,s) if there exists a
unique morphism ¢: A xg C — D such that pe; = a and pe, = 7.

Then we say that the diagram (1) is admissible.
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Admissibility in S

Theorem:
f g
A——B=—=C
A diagram in S 8 fr=1p = gs, ar = 3 = ~s, is
“ K admissible if and only if
D

(Ady) the equation x 4 B(b) + B(b) = a(a) + B(b) + ( ) has a unique solution
for all a€ A and c € C such that f(a) = g(c)=b €

(Ads) the equation
a(ar+a2)+B(b1 + bo) +y(c+¢2) = a(ar) +B(b) +(a) +a(a) +B(ba) +7(c2)

is satisfied for a;,a, € A and ¢1, ¢ € C such that f(a;) = g(c1) = b1 € B and
f(a2) = g(c) = by € B.
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Admissibility in S

Theorem:
f g
A——B=—=C
A diagram in S 8 fr=1p = gs, ar = 3 = ~s, is
“ K admissible if and only if
D

(Ady) the equation x 4 B(b) + B(b) = a(a) + B(b) + ( ) has a unique solution
for all a€ A and c € C such that f(a) = g(c)=b €

(Ads) the equation
a(ar+a2)+B(b1 + bo) +y(c+¢2) = a(ar) +B(b) +(a) +a(a) +B(ba) +7(c2)

is satisfied for a;,a, € A and ¢1, ¢ € C such that f(a;) = g(c1) = b1 € B and
f(a2) = g(c) = by € B.

Also valid in M, the category of conjugation monoids with cancellation. .
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Sketch of proof:

Existence of a map ¢ : A xg C — D with pe; = a and ey = v implies
that, for f(a) = g(c) = b,

a(a) = ¢(a, (b)), 1(c) = @(r(b), c), B(b) = ¢(r(b),s(b)).
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Sketch of proof:

Existence of a map ¢ : A xg C — D with pe; = a and ey = v implies
that, for f(a) = g(c) = b,

a(a) = ¢(a, (b)), 1(c) = @(r(b), c), B(b) = ¢(r(b),s(b)).

v €S = p(a,c) is the solution of

x + B(b) + B(b) = a(a) + 5(b) +(c)
and (Ady) is fulfilled.
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Sketch of proof:

Existence of a map ¢ : A xg C — D with pe; = a and ey = v implies
that, for f(a) = g(c) = b,

a(a) = ¢(a, (b)), 1(c) = @(r(b), c), B(b) = ¢(r(b),s(b)).

v €S = p(a,c) is the solution of

x + B(b) + B(b) = a(a) + 5(b) +(c)
and (Ady) is fulfilled.

If (Ad1) and (Ads) hold, taking ¢(a, c) the solution of (Adi) then pe; = «
and ey =~y and p € S.
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Schreier split epimorphisms of monoids
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Schreier split epimorphisms of monoids

In Mon

XT>A<7r; B with fr = 1g and X = kerf
f

is a Schreier split epi if there exists a unique set-theorical map g : A — X,
called the Schreier retraction, such that a = kq(a) + rf(a) for all a € A.
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Schreier split epimorphisms of monoids

In Mon

XT>A<7Z B with fr = 1g and X = kerf
f

is a Schreier split epi if there exists a unique set-theorical map g : A — X,
called the Schreier retraction, such that a = kq(a) + rf(a) for all a € A.

To X =y - A<T B corresponds an action of B on X, ¢ : B — End(X)

b-x:= ¢(b)(x) = q(r(b) + k(x))

Conversely to each action ¢ : B — End(X) it corresponds a Schreier split
epimorphism via semidirect product.
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Schreier split epimorphism in M
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Schreier split epimorphism in M

Given a Schreier split epi in M

X< A<7B

we have:

Q@ gk =1x;

Q gr=0;

@ q(0)=0;

@ k(b-x)+ r(b) = r(b) + k(x);

Q@ q(a+4d)=q(a) +q(rf(a) + q(2);
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Inducing internal structures

Given h: X — B and a Schreier spli epimorphism in M
h
X =9 =r—RB
f'
when does h induce:
a reflexive graph,

an internal category,

an internal groupoid?
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Inducing reflexive graphs

Given a Schreier split epimorphism and a morphism h in M

f

h induces a reflexive graph A==— B,
h

if and only if it satisfies the condition

(G1) h(b-x)+ b=b+ h(x)
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Sketch of proof:

If there exists a map h, preserving addition and such that hk = h and
hr = 1pg, then

F(a) = F(ka(a) + rf(a)) = ha(a) + F(a),

from which it follows that h(a) = f(3) + hq(a)
and so
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Sketch of proof:

If there exists a map h, preserving addition and such that hk = h and
hr = 1pg, then

F(a) = F(ka(a) + rf(a)) = ha(a) + F(a),

from which it follows that h(a) = f(3) + hq(a)
and so

The existence of such h is equivalent to (Cy).
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Inducing internal categories

Given a Schreier split epi and a morphism h in M

h induces an internal category

AxgA—">A=r—=B

h

if and only if
(G) h(b-x)+b=b+ h(x), Vx € X,Vbe B

(&) h(y) - x+y=y+x, Vx,y € X.
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Sketch of proof:

f'

The reflexive graph A==r— B is an internal category if and only if the
h

diagram

A"BHA

\L / is admissible.
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Sketch of proof:

f'

The reflexive graph A==r— B is an internal category if and only if the
h

diagram

A"B%A

\L / is admissible.

Then if (G) holds, such an m: A xg A — A defining a Schreier internal

f
category A xp A—"> A=r— B exists, and is defined by

And ((,) is also a necessary condition.
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Inducing internal groupoids

Given a Schreier split epimorphism and a morphism h in M

h
X<_:>A<%—> B, h induces an internal groupoid
t
() ¢
AxgA—"s> A<——B
h
if and only if

(1) h(b-x)+ b= b+ h(x), Vx € X,Vb € B
(&) h(y) x+y=y+x, Vx,y € X.

(G3) X is a group and —x = (—x)
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Sketch of proof:

The internal category

P
AxgA—s>A=r=B8B

h

is an internal groupoid with the inverses defined on the "object of
morphism" A by

t(a) = —kq(a) + rh(a)

exactly when (G3) is satisfied.
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B={qeH:|q] =1}

X={qgeH:0<|q| <1} b-x = bxb~! = bxb
T <0,1>
X=e X X B=——=8B
<1,0> 2

with (x, b) = (b- X, b) is a Schreier split epi in M.

Given h: X — B, such that h(x) = T P satisfies (G1) (and so it induces
a reflexive graph)

but not (C,) (does not induce an internal category, in general).
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In the category M of conjugation monoids with cancellation, two Schreier

equivalence relations R and S on the same object X commute in the sense
of Smith-Pedicchio if and only if their normalizations commute in the sense
of Hugq.
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Given two Schreier equivalence relations (R, r1, r2) and (S, si,s2) on X

Y
A
Ilﬁqg
Rxx$S —
P2
Pluel S1 ]:5
qr iR S
X = R X
k r2 \“i
rn

rnk, spl commute in Huq sense if and only if

Jp:RxxS—X

such that pe; = 1 and pe> = s, and this means that R and S commute,
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From local to global

The diagram

is admissible if and only if ak and v/ Hug-commute.
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From local to global

If just (f,r) is a Schreier split epi then the diagram

is admissible if and only if

ak(gr(c) - x) +v(c) = v(c) + ak(x) for all x € X and c € C.
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From local to global

If C = Aand s =r, that is if we have a reflexive graph induced by h = gk,
then the diagram

is admissible if and only if

ak(h(y) - x) + vk(y) = vk(y) + ak(x), for all x,y € X.
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