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Introduction
I By now there are numerous variants of category theory; for example,

I categories enriched in a fixed monoidal category or bicategory,
I categories parametrized over a fixed category,
I stacks on a site,
I categories with given extra properties or structure,
I the derivators of homotopy theory,
I quasicategories (= weak Kan complexes = (∞, 1)-categories).

I There can be different morphism choices: functors, modules, . . ..
I In all cases, each class forms a bicategory. The surprise is how

penetrating this observation is! Many specific features of each
example can be understood through bicategorical concepts.

I The bicategorical concept of left extension is extremely expressive.
This is well documented.

I Little has been done on preservation and reflection of left extensions
by morphisms between bicategories.

I The goal is to explain how this can happen in comonadic situations.
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Left extensions
Please remember this diagram for three more frames!!
A diagram

A
m //

n
��

κ +3

B

k
��

C

in a bicategory N exhibits k as a left extension of n along m when, for all
g : B → C , the function

N (B,C )(k , g) −→ N (A,C )(n, g ◦m) ,

(k
θ

=⇒ g) 7→ (n
κ
=⇒ k ◦m θ◦m

==⇒ g ◦m)

is a bijection. Such k is unique up to a unique isomorphism: write

k = lan(m, n) .

In his thesis, Dubuc suggested “Lan” as a contraction of “left Kan”.
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Respecting left extensions

The left extension is respected by a morphism f : C → D when the diagram

A
m //

f ◦n
��

f ◦κ+3

B

f ◦k
��

D

exhibits f ◦ k as a left extension of f ◦ n along m; symbolically,

f ◦ lan(m, n) ∼= lan(m, f ◦ n) .
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Right adjoints as left extensions

Here is what Dubuc called “The Formal Adjoint Functor Theorem”.

Proposition

A morphism m : A→ B in a bicategory has a right adjoint if and only if the
identity of A has a left extension lan(m, 1A) along m which is respected by
m. In that case, m∗ = lan(m, 1A) is the right adjoint and it is respected by
all morphisms f : A→ D; that is, lan(m, f ) = f ◦m∗.
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Creation of left extensions

Definition
A lax functor F : N →M creates left extensions when, given morphisms
m : A→ B and n : A→ C in N and a diagram

FA
Fm //

Fn
!!

τ +3

FB

h
}}

FC

in M which exhibits h = lan(Fm,Fn), there exists a diagram that you all
remember and isomorphism h ∼= Fk unique up to isomorphism with

Fκ = (Fn
τ
=⇒ h ◦ Fm ∼= Fk ◦ Fm F2=⇒ F (k ◦m)) ;

moreover, the remembered diagram must exhibit k = lan(m, n).
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Remarks

I Clearly pseudofunctors which are local equivalences create left
extensions.

I Pseudofunctors which create left extensions reflect the existence of
right adjoints.

I Left extensions in a one-object bicategory ΣV are internal right
cohoms in the monoidal category V . So, for a monoidal functor
U : W → V , to say ΣU : ΣW → ΣV creates left extensions is to say
U : W → V creates right cohoms.
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Hopf monoidal comonads

I Some references here are
(i) [Bruguières-Lack-Virelizier: Advances 227(2) (2011)],
(ii) [Chikhladze-Lack-St: TAC 24(19) (2010)] and
(iii) [St: APCS 6(2) (1998)].

I For a monoidal comonad
(D, ε : D → 1, δ : D → D2,D0 : I → DI ,D2 : DX ⊗ DY → D(X ⊗ Y ))
on a monoidal category V , the fusion map is the natural
transformation with components

vY ,DX = (DY ⊗ DX
1⊗δ−−→ DY ⊗ D2X

D2−→ D(Y ⊗ DX )) .

I The monoidal comonad D on V is Hopf when the fusion map is
invertible.

I Examples include tensoring D = H ⊗− with a Hopf monoid H in a
braided V .
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Coalgebras for Hopf monoidal comonads

While not made explicit in reference (ii) of the last frame, the constructions
are there for the next result in which D-Coalg is the monoidal category of
Eilenberg-Moore D-coalgebras.

Theorem
If D is a Hopf monoidal comonad on a monoidal category V then the
underlying functor

U : D-Coalg −→ V

creates cohoms.
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Easy examples

Let DGAb denote the category of differential graded (that is, chain
complexes of) abelian groups. The strong monoidal comonadic functors

Σ: GAb→ Ab , U : DGAb→ GAb and Σ: DGAb→ Ab

are all Hopf monoidal comonadic.
Therefore they reflect dualizability.
The dualizable objects of Ab are of course the finitely generated free
abelian groups. So, for example, a chain complex of the form

· · · → 0→ Z

[
3
−2

]
−−−−−→ Z⊕ Z

[ 2 3 ]
−−−−−−→ Z→ 0→ 0→ . . .

has a dual in DGAb.
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Creative change of base
In the situation of the last Theorem, put W = D-Coalg and assume V is
cocomplete and closed. Then we have the bicategory V -Mod of
V -enriched categories and modules (or distributors or profunctors) between
them. Also, we have W -Mod.

Theorem
If the right adjoint to U preserves colimits, the change of base
pseudofunctor

U∗ : W -Mod −→ V -Mod

creates left extensions. In particular, a W -module M : K 7→ A is Cauchy
if and only if the V -module U∗M : U∗K 7→ U∗A is.

Incidentally, the right adjoints of all of Σ: GAb→ Ab, U : DGAb→ GAb
and Σ: DGAb→ Ab have further right adjoints.
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Example

I A DG-module M : I 7→ A from the unit DG-category I to a small
DG-category A amounts to a DG-functor M : A op → DGAb.

I The Cauchy completion QA of A (following Lawvere) is the full
sub-DG-category of the presheaf DG-category [A op,DGAb] consisting
of those M which have a right adjoint module; that is, the DG-functor
[A op,DGAb](M,−) preserves small weighted colimits.

I DG-Morita Theorem:

[A op,DGAb] ' [Bop,DGAb] if and only if QA ' QB

I The Theorem implies that a DG-module M : I 7→ A is Cauchy if and
only if the additive module Σ∗M : I 7→ Σ∗A is a retract of a finite
direct sum of representables in the additive presheaf category on Σ∗A .
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The general context
I Our previous Theorems are instances of a theorem pertaining to the

tricategory Caten of [Kelly-Labella-Schmitt-St JPAA 168(1) (2002)].

I Objects of Caten are bicategories, morphisms are categories enriched
on two sides. These morphisms include lax functors while

Caten(1,V ) = V -Cat .

I We show that Caten admits the Eilenberg-Moore construction V G for
comonads with underlying U : V G → V actually a pseudofunctor. So

U∗ : V G -Cat→ V -Cat

is comonadic.
I We adapt the Beck Comonadicity Theorem internally to Caten.
I We produce a fusion map v for any comonad (V ,G ) in Caten and

define G to be left Hopf when v is invertible. Indeed, if G is Hopf so
is the comonad generated by U∗ and its right adjoint.
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The general theorems

Theorem
If G is a left Hopf comonad on the bicategory V in Caten then the
pseudofunctor U : V G → V creates left extensions.

Theorem
If G is a comonad on the locally cocomplete bicategory V in Caten then
the U -induced pseudofunctor

Ũ : V G -Mod→ V -Mod

is comonadic in CATEN via a comonad G̃ on V -Mod. If G is left Hopf
comonad and the right adjoint to U preserves local colimits then the
comonad G̃ is also Hopf.
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Thank You

kpp p
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