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Previously Done

Boolean Algebras in a localic topos
Banaschewski, Bhutani; 1986
Borceux, Peddicchio, Rossi; 1990
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The Category MSet

MSet ' SetM

Limits as in Set

The subobject classifier Ω = {K |K is a left ideal of M}
mK = {x ∈ M|xm ∈ K}

Exponentiation BA = {f |f : M × A→ B : f is equivariant} = {f |f =
(fs) : ∀s, t ∈ M, fs : A→ B, tfs = ftst}
Free functor F : Set→MSet: F (X ) = M × X
m(n, x) = (mn, x)

Cofree functor H : Set→MSet: H(X ) = {f : M → X}
(mf )(n) = f (nm)

H(2) = P(M),mX = {x ∈ M|xm ∈ X}
H : Boo→MBoo

Monomorphisms in MSet are equivariant one-one maps
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Closure Operator in a Category

Definition

A family C = (CX )X∈MSet , with CX : Sub(X )→ Sub(X ) taking Y ≤ X to
CX (Y ), is called a closure operator on MSet if it satisfies the following:

1 (Extension) Y ≤ CX (Y )

2 (Monotonicity) Y1 ≤ Y2 ⇒ CX (Y1) ≤ CX (Y2)

3 (Continuity) f (CX (Y )) ≤ CZ (f (X )) for all morphisms f : X → Z

and we say that C is idempotetnt if additionally we have CX (CX (Y )) = Y
for every Y ≤ X

for Y ≤ X , Y is said to be

closed in X if CX (Y ) = Y

dense in X if CX (Y ) = X

S. Sepahani, M. Mahmoudi (Shahid Beheshti University)Stone Representation Theorem for Boolean Algebras in the Topos of (Pre)Sheaves on a MonoidCT, 13 July 2018 4 / 20



Ideal Closure Operator for I ER M

Definition

Let A ↪→ B. C I (A) = {b ∈ B|∀s ∈ I , sb ∈ A}

C I is idempotent iff I is idempotent

j I (K ) = {x ∈ M|∀s ∈ I , sx ∈ K}
m : Y � X is I -dense if ∀s ∈ I ,∀x ∈ X , sx ∈ Y
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I-Separated Objects and I-Sheaves

A ∈MSet is an I -separated object if for every dense monomorphism m,
any two equivariant maps from C to A making the diagram commutative
are equivalent. A is an I -sheaf if this map uniquely exists for every I -dense
m and every f .

B
m //

f
��

C

f̄��
A

Remark

A is I -separated iff ∀a, b ∈ A, (∀s ∈ I , sa = sb ⇒ a = b)
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The Category Shj I MSet

Shj I MSet is closed under limits in MSet.

Shj I MSet is closed under exponentiation in MSet.

Ωj I = Eq(j I , idΩ) is the subobject classifier of Shj I MSet

Ωj I ≤ im(j I )

Shj I MSet is a topos.
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Shj I MSet is a subtopos of MSet

Theorem

(Adamek, Herrlich, Strecker) If E is strongly complete and co-wellpowered,
then the following conditions are equivalent for any functor G : E → F :

G is adjoint

G preserves small limits and is cowellpowered.

Proposition

(Johnstone) Let E be a cartesian closed category, and L be a reflective
subcategory of E , corresponding to a reflector L on E . Then L preserves
finite products iff L is an exponential ideal of E .
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Boolean Algebras in a Topos

MBoo

Shj I Boo

H : Set→MSet can be lifted to H : Boo→MBoo

An internal counterpart for Ult(A) for a Boolean algebra A.
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Internal hom Object

BA × A
ev // B

[A,B]× Anλ // BA × Anλ

77

&&
(BA × A)nλ

evnλ // BA × A

ev

OO
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Internal hom Object in MBoo and in BooShj I MSet

Definition

In BooShj IMSet we have the following explicit definition for [A,B]
[A,B] = {(fs)s∈M |for every s ∈ M, fs : A→
B is a Boolean homomorphism, ∀s, t ∈ M, tfs = ftst}

Example

f : A→ B Boolean homomorphism for A,B ∈ MSet. Let fe = f and for
every s ∈ M, fs = sfs−1. Then (fs)s∈M ∈ [A,B].
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Initial Boolean Algebras

In Set

The initial Boolean algebra is 2, the two-element Boolean algebra.

In MSet

The initial Boolean algebra is 2. i.e. The two-element Boolean algebra
with identity action of M.

in BooShj I MSet

The initial Boolean algebra is the sheaf reflection of 2 which is the
I -closure of 2 in Ω2

j I
:

2̄ = {f ∈ Ω2
j I : ∀s ∈ I , sf ∈ 2}

S. Sepahani, M. Mahmoudi (Shahid Beheshti University)Stone Representation Theorem for Boolean Algebras in the Topos of (Pre)Sheaves on a MonoidCT, 13 July 2018 12 / 20



Example

* e a b

e e a b
a a a b
b b a b

I = {a, b}

1

~~   
x1

  

x2

~~
0
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Ore-like Conditions

Lemma

If for the monoid M and its right ideal I we have that

∃s ∈ I∀t ∈ M,Ms ∩Mst 6= ∅

then 2 is injective with respect to all I -dense monomorphisms and 2̄ = 2

Lemma

If for the monoid M and its right ideal I we have that 2 = 2̄ then

∀t ∈ M,Mt ∩MI 6= ∅
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Stone Map in Set

Lemma

The functor U lt(−) : Boo→ Set is left adjoint to the functor
P(−) : Set→ Boo.

s : A→ P(U lt(A)) is the unit of the adjunction at A. s(a)(α) = α(a).

P(U lt(A))× U lt(A) // 2

A× U lt(A)

f

77

s(a)×idU lt(A)

OO

f (a, α) = α(a)
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Stone Map in MSet

Lemma

The functor [−, 2] : MBoo→MSet is left adjoint to the functor
2(−) : MSet→MBoo.

Let s : A→ 2[A,2] be the unit of the adjunction at A: A→ 2[A,2]. i.e.
s(a)(m, α) = αe(ma).

2[A,2] × [A, 2] // 2

A× [A, 2]

f

99

s(a)×id[A,2]

OO

f (a, α) = α(e, a) = αe(a)

s is an embedding iff ∀a 6= b ∈ A,∃(m, α) ∈ M × [A, 2] s.t.
s(a)(m, α) 6= s(b)(m, α) or equivalently αe(ma) 6= αe(mb)
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Stone Map in Shj I MSet

Lemma

The functor [−, 2̄] : BooShj I MSet→ Shj I MSet is left adjoint to the

functor 2̄(−) : Shj I MSet→ BooShj I MSet.

Let s : A→ 2̄[A,2̄] be the unit of the adjucntion at A: A→ 2̄[A,{2̄]. i.e.
s(a)(m, α) = αe(ma).

2̄[A,2̄] × [A, 2̄] // 2̄

A× [A, 2̄]

f

::

s(a)×id[A,2̄]

OO

f (a, α) = α(e, a)
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When does Stone Representation Theorem hold in MSet?

Theorem

For a monoid M T.F.A.E.

s is an embedding for every A ∈ MBoo;

s is an embedding for H(2);

M is a group.
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Summary

The Stone Representation Theorem holds in MBoo iff MSet is
Boolean.

Still to be done
When is the Stone map an embedding in BooShj IMSet?

Definition

(X , T ) a topological space object. X ∈MSet, T ≤ ΩX

f∅ ∈ T
fM ∈ T
for every index set I , if ∀i ∈ I , fi ∈ T then

∨
i∈I fi ∈ T

for every finite index set I , if ∀i ∈ I , fi ∈ T then
∧

i∈I fi ∈ T
so we have a compatible family of topologies.

Define a Stone space in MSet and in Shj IMSet. (Neighborhood,
zero-dimensionality, Hausdorffness,...)

Axiom of choice
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