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> contains 7 = Liex and .# = Gp as a torsion theory (7, F).

> In fact it is (LACC) in the sense of [Gray, 2010], which makes it
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What can be done for Hopf algebras in general?
» This is the subject of my talk.
» Strategy: understand split extensions, which give us protomodularity.

> We first sketch the context where we shall be working.
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For the sake of this talk, a split extension (7, s, k) is a point (f,s) with k = ker(f).
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M
I when m mono implies m iso.
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K L M
» C protomodular = all points in C are strong. H /H\ : V
Proof. The arrow L — K is both a monomorphism K> fom
and a split epimorphism, hence it is an isomorphism. ‘ \H f v
m is then iso by the Split Short Five Lemma. U 0 Sy
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then Y unital implies that m is an isomorphism. .06 moh = moh! = h = h'. 0
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The commutative case

BiAlgy

-

BiA/g[K,coc

BiAlgy

\_

HopfAlgy

J

Protomodular objects are
> in BiAlgy .o the Hopf algebras;
> in BiAlgy: none;
> in BiAlgy . ?
In Alg[K’C we have + = ® and 0 = K so
> (BiAlgy ) ~ Mon((Algy .)°")
> (HopfAlgy ) ~ Gp((Algy )P)-
Via the Yoneda embedding, we see:

» commutative Hopf algebras are
protomodular in (BiAlgy )P

> HopfAlgy . is coprotomodular.

A consequence of this is that BiAlgy ., N BiAlgy . N HopfAlgy is an abelian category,
as a semi-abelian category which is coprotomodular [Janelidze, Marki & Tholen, 2002].
We regain a result of [Takeuchi, 1972] (and [Grothendieck], in the finite-dimensional case).



Conclusion

The category HopfAlgy is not protomodular,
even though something like the Split Short Five Lemma holds.



Conclusion

The category HopfAlgy is not protomodular,
even though something like the Split Short Five Lemma holds.

We need to restrict to (co)commutative Hopf algebras.



Conclusion

The category HopfAlgy is not protomodular,
even though something like the Split Short Five Lemma holds.

We need to restrict to (co)commutative Hopf algebras.

» What about a categorical framework which captures all situations simultaneously?



Conclusion

The category HopfAlgy is not protomodular,
even though something like the Split Short Five Lemma holds.

We need to restrict to (co)commutative Hopf algebras.

» What about a categorical framework which captures all situations simultaneously?

> The Split Short Five Lemma “for normal epis” looks like
an instance of relative protomodularity in the sense of [T. Janelidze, 2006].



Conclusion

The category HopfAlgy is not protomodular,
even though something like the Split Short Five Lemma holds.

We need to restrict to (co)commutative Hopf algebras.

» What about a categorical framework which captures all situations simultaneously?
> The Split Short Five Lemma “for normal epis” looks like
an instance of relative protomodularity in the sense of [T. Janelidze, 2006].
> However, this doesn’t seem to take into account the “twist”
which happens between commutative and cocommutative Hopf algebras.



Conclusion

The category HopfAlgy is not protomodular,
even though something like the Split Short Five Lemma holds.

We need to restrict to (co)commutative Hopf algebras.

» What about a categorical framework which captures all situations simultaneously?
> The Split Short Five Lemma “for normal epis” looks like
an instance of relative protomodularity in the sense of [T. Janelidze, 2006].
> However, this doesn’t seem to take into account the “twist”
which happens between commutative and cocommutative Hopf algebras.

» The commutative case is not sufficiently well understood:



Conclusion

The category HopfAlgy is not protomodular,
even though something like the Split Short Five Lemma holds.

We need to restrict to (co)commutative Hopf algebras.

» What about a categorical framework which captures all situations simultaneously?
> The Split Short Five Lemma “for normal epis” looks like
an instance of relative protomodularity in the sense of [T. Janelidze, 2006].
> However, this doesn’t seem to take into account the “twist”
which happens between commutative and cocommutative Hopf algebras.
» The commutative case is not sufficiently well understood:
> Do the protomodular objects characterise the Hopf algebras?



Conclusion

The category HopfAlgy is not protomodular,
even though something like the Split Short Five Lemma holds.

We need to restrict to (co)commutative Hopf algebras.

» What about a categorical framework which captures all situations simultaneously?
> The Split Short Five Lemma “for normal epis” looks like
an instance of relative protomodularity in the sense of [T. Janelidze, 2006].
> However, this doesn’t seem to take into account the “twist”
which happens between commutative and cocommutative Hopf algebras.
» The commutative case is not sufficiently well understood:

> Do the protomodular objects characterise the Hopf algebras?
> What about regularity or Barr-exactness?



Thank you!



