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Let C be a finitely complete category, given a morphism a: A — B,
the change of base functor
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Locally Cartesian Closed Categories

Let C be a finitely complete category, given a morphism a: A — B,
the change of base functor

a*: (Cl B)— (C|A)

sends

-

I,

Definition

C is locally cartesian closed if and only if all the change of base functors a*
have a right adjoint.
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Locally Algebraically Cartesian Closed (LACC) Categories

Let C be a finitely complete category, given a morphism a: A — B,
we can define a functor
a*: Ptg(C) — Pta(C)

that sends

™2

Axg X ——

X
<1A,soa>T 1 ST f
B

a

A——m>

Definition (Gray, 2012)

C is locally algebraically cartesian closed (LACC for short)
if and only if all the induced functors a* have a right adjoint.

X. Garcia-Martinez (USC) A characterisation of Lie algebras July 8th-14th, 2018 3/28



@ Abelian categories

X. Garcia-Martinez (USC) A characterisation of Lie algebras July 8th-14th, 2018 4/28



@ Abelian categories

@ Groups (over a cartesian closed category) (Gray, 2012)

X. Garcia-Martinez (USC) A characterisation of Lie algebras July 8th-14th, 2018 4/28



@ Abelian categories
@ Groups (over a cartesian closed category) (Gray, 2012)

o Lie algebras (over some monoidal categories) (Gray, 2012, G.M.-Gray, in
progress)
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Proposition (Gray, 2012)
If C has zero object, then it is LACC if and only if

i Ptg(C) ——C
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(LACC)

Proposition (Gray, 2012)
If C has zero object, then it is LACC if and only if

i Ptg(C) ——C

X
ST\Lf Ker f
B
has a right adjoint for all B.
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Points and actions

Let C be a semi-abelian category, the kernel functor has a left adjoint

X. Garcia-Martinez (USC) A characterisation of Lie algebras July 8th-14th, 2018 6/28



Points and actions

Let C be a semi-abelian category, the kernel functor has a left adjoint

Lk

Ptg(C) _ T~ C,
L

X. Garcia-Martinez (USC) A characterisation of Lie algebras July 8th-14th, 2018 6/28



Points and actions

Let C be a semi-abelian category, the kernel functor has a left adjoint

K
B

Ptg(C) _ T~ C,
L

(15 0)
sending X to B+ X —=8B.
LB
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L

(15 0)
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LB
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Points and actions

Let C be a semi-abelian category, the kernel functor has a left adjoint

Lk

Ptg(C) _ T~ C,
L

(15 0)
sending X to B+ X —=8B.
LB

This defines a monad Bb(—): C — C that sends any X to

B)XHBJrX%B
B

Bourn-Janelidze, 1998

An action of B on X (or a B-action) is an algebra over the monad Bb(—).
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Points and actions

Let C be a semi-abelian category, the kernel functor has a left adjoint

Lk

Ptg(C) _ T~ C,
L

(15 0)
sending X to B+ X —=8B.
LB

This defines a monad Bb(—): C — C that sends any X to

L1
B)XHB—&—XU%O ]>B
B

Bourn-Janelidze, 1998

An action of B on X (or a B-action) is an algebra over the monad Bb(—).
There is an equivalence of categories

Ptg(C) ~ B-Act(C)
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Non-associative algebras

Let K be a field. A non-associative algebra is a K-vector space with a linear map
ARA — A.

We denote the category by Algy.
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Non-associative algebras

Definition
Let K be a field. A non-associative algebra is a K-vector space with a linear map

ARA — A.

We denote the category by Algy.

A subvariety of Algy is any equationally defined class of algebras,
considered as a full subcategory V of Algy.
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Non-associative algebras

Lie algebras. They satisfy the equations

xx =0

x(yz) + y(zx) + z(xy) = 0
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Non-associative algebras

Lie algebras. They satisfy the equations

xx =0

x(yz) + y(zx) + z(xy) = 0

Associative algebras. They satisfy the equation

x(yz) — (xy)z =0
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Non-associative algebras

Lie algebras. They satisfy the equations

xx =0

x(yz) + y(zx) + z(xy) = 0

Associative algebras. They satisfy the equation

x(v2) = (xy)z = 0

Abelian algebras. They satisfy the equation

xy =0
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Non-associative algebras

If'V is a variety of algebras over an infinite field K, all of its identities are of the
form ¢(x, ..., X,), where ¢ is a non-associative polynomial.
Moreover, each of its homogeneous components (X, ..., X; ) is also an identity.
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form ¢(x, ..., X,), where ¢ is a non-associative polynomial.
Moreover, each of its homogeneous components (X, ..., X; ) is also an identity.

This means that if

(xy)z + x*

is an identity of V, then

X. Garcia-Martinez (USC) A characterisation of Lie algebras July 8th-14th, 2018 9/28



Non-associative algebras

If'V is a variety of algebras over an infinite field K, all of its identities are of the
form ¢(x, ..., X,), where ¢ is a non-associative polynomial.
Moreover, each of its homogeneous components (X, ..., X; ) is also an identity.

This means that if

is an identity of V, then

are also identities of V.

X. Garcia-Martinez (USC) A characterisation of Lie algebras July 8th-14th, 2018 9/28



Non-associative algebras

If'V is a variety of algebras over an infinite field K, all of its identities are of the
form ¢(x, ..., X,), where ¢ is a non-associative polynomial.
Moreover, each of its homogeneous components (X, ..., X; ) is also an identity.

This means that if

x(yz) + y(2x) + z(xy) + xy + yx
is an identity of V, then
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Non-associative algebras

If'V is a variety of algebras over an infinite field K, all of its identities are of the
form ¢(x, ..., X,), where ¢ is a non-associative polynomial.
Moreover, each of its homogeneous components (X, ..., X; ) is also an identity.

This means that if

x(yz) + y(zx) + z(xy) + xy + yx

is an identity of V, then

x(yz) + y(zx) + z(xy)
Xy + yx

are also identities of V.
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Preservation of coproducts of Bb(—)

Proposition (Gray, 2012)

Let V be a variety of non-associative algebras.
It is (LACC) if and only if the canonical comparison

(BvX + BbY) — Bb(X + Y)

is an isomorphism.
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Algebraic coherence

The following are equivalent:

o V is algebraically coherent,
i.e. the map (BbX + BbY) — Bb(X + Y) is surjective.
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Algebraic coherence

The following are equivalent:

o V is algebraically coherent,
i.e. the map (BbX + BbY) — Bb(X + Y) is surjective.

@ There exist \1,..., g, 1, - - -, g € K such that

z(xy) = M(2x)y + Aa(zy)x + - - - + Agy(xz)
(xy)z = p1(zx)y + pa(zy)x + -+ + pgy(xz2)

are identities of V.
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Algebraic coherence

The following are equivalent:

o V is algebraically coherent,
i.e. the map (BbX + BbY) — Bb(X + Y) is surjective.

@ There exist \1,..., g, 1, - - -, g € K such that
z(xy) = A(2x)y + Xa(zy)x + - -+ + dgy(x2)
(xy)z = pa(2x)y + pa(2zy)x + - - + psy(x2)

are identities of V.
e For any ideal I, I? is also an ideal.
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Algebraic coherence

The following are equivalent:

o V is algebraically coherent,
i.e. the map (BbX + BbY) — Bb(X + Y) is surjective.

@ There exist \1,..., g, 1, - - -, g € K such that

z(xy) = M(zx)y + Aa(zy)x + - + Xgy(xz)
(xy)z = pa(2x)y + pa(zy)x + - -+ + pgy(xz)
are identities of V.

e For any ideal I, I? is also an ideal.

@ V is an Orzech category of interest.
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Nilpotent algebras

Proposition
IfV is (LACC) and x(yz) = 0 is an identity in V, then V is abelian.
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morphism
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Nilpotent algebras

Proposition

IfV is (LACC) and x(yz) = 0 is an identity in V, then V is abelian.

Proof: Let B, X, Y be free algebras on one generator. Since V is (LACC), the
morphism
(BbX + BbY) — Bh(X +Y)

is an isomorphism.

The element
x(yb) € Bb(X +Y)

comes from zero.

The expression yb plays the role of just “one element” in Bb(X + Y).
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Nilpotent algebras

Proposition

IfV is (LACC) and x(yz) = 0 is an identity in V, then V is abelian.

Proof: Let B, X, Y be free algebras on one generator. Since V is (LACC), the
morphism
(BbX + BbY) — Bh(X +Y)

is an isomorphism.

The element
x(yb) € Bb(X +Y)

comes from zero.
The expression yb plays the role of just “one element” in Bb(X + Y).

Then if x(yb) is zero, either x(yb) = 0 or yb = 0 have to be rules of V. In both
cases, it implies that the algebra is abelian.
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Associative algebras

Proposition

The variety of associative algebras is not (LACC).
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Associative algebras

Proposition

The variety of associative algebras is not (LACC).

Proof: Consider again B, X, Y as free algebras on one generator. Assume that we
have an isomorphism:

(BbX + BbY) — Bh(X +Y)
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Associative algebras

Proposition
The variety of associative algebras is not (LACC).

Proof: Consider again B, X, Y as free algebras on one generator. Assume that we

have an isomorphism:
(BbX + BbY) — Bh(X +Y)

Then (xb)y and x(by) go to the same element in Bb(X + Y) but they are
different in (BbX + BbY).
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Operations of degree 2

IfV is a (LACC) anticommutative variety of algebras, i.e. xy = —yx Is an identity,
then V is subvariety of Lieg.
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Operations of degree 2

IfV is a (LACC) anticommutative variety of algebras, i.e. xy = —yx Is an identity,
then V is subvariety of Lieg.

Let K be an infinite field of char # 2.
IfV is a (LACC) commutative variety of algebras, i.e. xy = yx is an identity,
then V is abelian.
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Non-commutative and non-anticommutative

Let us assume that there are no operations of degree 2.
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Non-commutative and non-anticommutative

Let us assume that there are no operations of degree 2.
We need to see if there is any variety such that the map

(BbX + BbY) — Bh(X +Y)

is an isomorphism.

X. Garcia-Martinez (USC) A characterisation of Lie algebras July 8th-14th, 2018

15 /28



Non-commutative and non-anticommutative

Let us assume that there are no operations of degree 2.
We need to see if there is any variety such that the map

(BbX + BbY) — Bh(X +Y)

is an isomorphism.

x(by) = A1(xb)y + Aa(bx)y + A3y (xb) + Aay(bx)
+ As(xy)b + Ae(yx)b + A7b(xy) + Agb(yx)
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Non-commutative and non-anticommutative

Let us assume that there are no operations of degree 2.
We need to see if there is any variety such that the map

(BbX + BbY) — Bh(X +Y)

is an isomorphism.

x(by) = A1(xb)y + Aa(bx)y + A3y (xb) + Aay(bx)
+ As(xy)b + Ae(yx)b + A7b(xy) + Agb(yx)

= M (xb)y + Aa(bx)y + A3y (xb) + Aay(bx)
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Let us assume that there are no operations of degree 2.
We need to see if there is any variety such that the map

(BbX + BbY) — Bh(X +Y)

is an isomorphism.

x(by) = A1(xb)y + Aa(bx)y + A3y (xb) + Aay(bx)
+ As(xy)b + Ae(yx)b + A7b(xy) + Agb(yx)

= A1(xb)y + A2(bx)y + Asy(xb) + Aay(bx)
+ As (1 (bx)y + p2(xb)y + pay(bx) + - - + pzx(by) + pgx(yb))
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Non-commutative and non-anticommutative

Let us assume that there are no operations of degree 2.
We need to see if there is any variety such that the map

(BbX + BbY) — Bh(X +Y)

is an isomorphism.

x(by) = A1(xb)y + Aa(bx)y + A3y (xb) + Aay(bx)
+ As(xy)b + N6 (yx)b + Azb(xy) + Agb(yx)

= M (xb)y + Aa(bx)y + A3y (xb) + Aay(bx)
+ Xs (pa (bx)y + pa(xb)y + pay(bx) + - - + pzx(by) + pgx(yb))
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Non-commutative and non-anticommutative

Let us assume that there are no operations of degree 2.
We need to see if there is any variety such that the map

(BbX + BbY) — Bh(X +Y)

is an isomorphism.

x(by) = A1(xb)y + Aa(bx)y + A3y (xb) + Aay(bx)
+ As(xy)b + N6 (yx)b + Azb(xy) + Agb(yx)

= M (xb)y + Aa(bx)y + A3y (xb) + Aay(bx)
+ Xs (pa (bx)y + pa(xb)y + pay(bx) + - - + pzx(by) + pgx(yb))
+ Ao (11 (by)x + pa(yb)x + psx(by) + - - - + pzy (bx) + pgy(xb))
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Non-commutative and non-anticommutative

Let us assume that there are no operations of degree 2.
We need to see if there is any variety such that the map

(BbX + BbY) — Bh(X +Y)

is an isomorphism.

x(by) = A1(xb)y + Aa(bx)y + A3y (xb) + Aay(bx)
+ As(xy)b + Ae(yx)b + A7b(xy) + Agb(yx)

= M (xb)y + Aa(bx)y + A3y (xb) + Aay(bx)
+ Xs (pa (bx)y + pa(xb)y + pay(bx) + - - + pzx(by) + pgx(yb))
+ X6 (1 (by)x + p2(yb)x + pax(by) + - - + 7y (bx) + pgy(xb))
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Non-commutative and non-anticommutative

Let us assume that there are no operations of degree 2.
We need to see if there is any variety such that the map

(BbX + BbY) — Bh(X +Y)

is an isomorphism.

x(by) = A1(xb)y + Aa(bx)y + A3y (xb) + Aay(bx)
+ As(xy)b + A6 (yx)b + A7b(xy) + Agb(yx)

= A1(xb)y + Aa(bx)y + A3y (xb) + Mgy (bx)

+ X5 (pa(bx)y + pa(xb)y + pzy(bx) + - - + pzx(by) + pgx(yb))

+ X6 (1 (by)x + p2(yb)x + pax(by) + - - + 7y (bx) + pgy(xb))
(A (bx) ( (bx) +

+ A7 (A1(bx)y + Aa(xb)y + Asy(bx <4 A7x(by) + )\gx(yb))
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Non-commutative and non-anticommutative

Let us assume that there are no operations of degree 2.
We need to see if there is any variety such that the map

(BbX + BbY) — Bh(X +Y)

is an isomorphism.

x(by) = A1(xb)y + Aa(bx)y + A3y (xb) + Aay(bx)
+ As(xy)b + A6 (yx)b + Azb(xy) + Agb(yx)

= A1(xb)y + Aa(bx)y + A3y (xb) + Mgy (bx)

+ X5 (pa(bx)y + pa(xb)y + pzy(bx) + - - + pzx(by) + pgx(yb))

+ X6 (1 (by)x + p2(yb)x + pax(by) + - - + 7y (bx) + pgy(xb))
(A(bx) ( (bx) +

+ A7 (A1 (bx)y + Aa(xb)y + A3y (bx -+ Azx(by) + Asx(yb))
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Non-commutative and non-anticommutative

Let us assume that there are no operations of degree 2.
We need to see if there is any variety such that the map

(BbX + BbY) — Bh(X +Y)

is an isomorphism.

x(by) = A1(xb)y + Aa(bx)y + A3y (xb) + Aay(bx)
+ As(xy)b + A6 (yx)b + Azb(xy) + Agb(yx)

= A1(xb)y + Aa(bx)y + A3y (xb) + Mgy (bx)

+ X5 (pa(bx)y + pa(xb)y + pzy(bx) + - - + pzx(by) + pgx(yb))
+ X6 (1 (by)x + p2(yb)x + pax(by) + - - + 7y (bx) + pgy(xb))
+ A7(A1(bx)y + Xa(xb)y + Asy(bx) + - + Azx(by) + Agx(yb))
+ Ag(A1(by)x + Xa(yb)x + Asx(by) + - -+ + Azy(bx) + gy (xb))
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A3u3 A7
A71na)g
A713Ag
A71ar7
A713A7

+

R i T S

Xadade
XaX3)e
Xadars
Aad3)s
Agrale
AgA3)e
Xgla)s
AgA3As
Xadarg
Xad3)g
AadaAry
Aad3A7
Agralg
AgA3)g
Aglar7
g3z




fi13

fl1a =

fi1s
fl1e
fi17
fi18

flig =

fi20

fiz1 =

fi22
f123
fi24
f125
fi2e
f127
fi28

—HBH1
—HBH2
—HKBHM3
—HBHa
—HBHB
—HBHE
—HBHT
—HBHME
—K7H1
THT7H2
—H7H3
—K7H4
—H7HB
—K7H6
—Kk7KHT
—H7HE

HeA1
HeA2
HEA3
rera
16AB
166
1eA7
neAg
HgAy
HgA2
ngA3
rgia
185
H8A6
ngAz
1gAg

+

+
+
+
+
n
+
+
n
+
+
+
+
+
+
+

A1neH2
A1usH2
A1memy
A1psHy
AsHeH2
A g 12
A5 16 H1
RN 1275
A116Ha
A1HEHA
A1reH3
A1uH3
AsH6HA
A5 514
A5 613
ABHEH3

+
+
+
+
+
+
+
+
+
+
+
+
+

+
+

A2X6H2
A2ApH2
A2reH1
A2 H1
AeA6H2
A6 A5 H2
A6 H1
A6 ABH1
A2 64
A2 14
A2X6 413
A2 13
AereHa
A6 5 Ha
A6r613

+
"
"
+
"
"
+
"
"
¥
"
+
"
"

+

A3neA2
AzpgA2
A3meA1
AzpsAl
A7HeA2
A7ugA2
A7HeA1
A7upAL
A316ra
A3usAra
A316A3
A31gA3
A7H6)a
A715Aa
A7r6A3

+ AeAsu3 + AzusA3

A characterisati

AadeAa
a5 A2
Aader1
AadsA1
AgreA2
g5 A2
AgAer1
AgAs A1
Xadera
XadsAa
AadeA3
XadsA3
Aglera
AgAsAg
XgleA3
Ag A5 A3

T T T T

+ X1pgre
+ A1uzre
+ Xipgus
+ A1uzes
+ Asugre
+ Asn7ie
+ AsugHs
+ Aspnzus
+ Xipgrs
+ Xipzig
+ A1ugur
+ Xipzpr
+ Asugrg
+ Asn7ug
+ AsugHr
+ Asuzur

n of Lie algebras

+

+
+
+
+
+
+
+
+
+
+
+
+
+
+
+

A2Agre +
A2A7mne +
A2Agus +
A2A7muE +
A6 gre T+
AeA7He +
A6 grs +
AeA7ms +
A2Agug +
A2A7mng +
A2Aguz +
A2A7p7 +
A6 grg +
AeA7Hg +
XeAgr7 +
Aer7mn7 +

A31gre
A3n7Xe
A3ngAs
Azpnz s
A71gre
A717N6
A71gAp
X717 X8
A31gAg
A3n7Ag
A3ugA7
A3uz A7
A7HgAg
A717 A8
A7ugA7
A7u7 A7

+

R i I S

Xads)e
XaX7)e
XadgAs
Xad7)s
Agg e
g7 e
XsAg)s
AgA7 s
Xads)s
Xad7)g
AadgA7
Aad7A7
AggAg
AgA7)g
AggAz
AgA7A7




Non-commutative and non-anticommutative

We have 128 different polynomials in K[A1,. .., g, t1, . - ., tig]
that the coefficients A1, ..., Ag, i1, - . ., ug have to satisfy.
Then we used to the computer algebra package SINGULAR,
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Non-commutative and non-anticommutative

We have 128 different polynomials in K[A1,. .., g, t1, . - ., tig]
that the coefficients A1, ..., Ag, i1, - . ., ug have to satisfy.
Then we used to the computer algebra package SINGULAR,

Let K be a field of characteristic zero. If V is a (LACC) variety of non-associative
algebras without any identity of order 2, then )V is abelian.
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Subvarieties of Lie and n-arity

IfV is a proper (LACC) subvariety of Liek, then it is abelian.
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Subvarieties of Lie and n-arity

IfV is a proper (LACC) subvariety of Liek, then it is abelian.

IfV is a (LACC) variety of n-algebras, with n # 2, then it is abelian.
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Prime characteristic

If char # 2, all results previously done work without any problem,
but we should do a computation for all primes p.
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Prime characteristic

If char # 2, all results previously done work without any problem,
but we should do a computation for all primes p.

On the other hand, we know that

1=tfg+ -+ fisgis
where f; € Z[A1, ..., ug] and g € Q[\1,. .., ug).
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On the other hand, we know that

1=tfg+ -+ fisgis
where f; € Z[A1, ..., ug] and g € Q[\1,. .., ug).

Therefore, there exists n such that

n=rfigy+--+ fisglog
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Prime characteristic

If char # 2, all results previously done work without any problem,
but we should do a computation for all primes p.

On the other hand, we know that

1=tfg+ -+ fisgis
where f; € Z[A1, ..., ug] and g € Q[\1,. .., ug).

Therefore, there exists n such that

n=rfigy+--+ fisglog

Then it is just enough to compute a Grobner basis for the prime divisors of this n.

X. Garcia-Martinez (USC) A characterisation of Lie algebras July 8th-14th, 2018 26 /28



Characteristic 2

If char K = 2, the identity xx = 0 implies the identity xy = —yx, but not the
other way around.
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Characteristic 2

If char K = 2, the identity xx = 0 implies the identity xy = —yx, but not the
other way around.

Then, we can define the variety of quasi-Lie algebras denoted by qLiey, which
satisfies the Jacobi identity and xy = —yx.
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Characteristic 2

If char K = 2, the identity xx = 0 implies the identity xy = —yx, but not the
other way around.

Then, we can define the variety of quasi-Lie algebras denoted by qLiey, which
satisfies the Jacobi identity and xy = —yx.

Both varieties Lieg and qLiey are (LACC).

X. Garcia-Martinez (USC) A characterisation of Lie algebras July 8th-14th, 2018 27 /28



Main theorem

Summarising:
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Summarising:

Let V be a non-abelian (LACC) variety of non-associative n-algebras
over an infinite field K. Then,
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Summarising:

Let V be a non-abelian (LACC) variety of non-associative n-algebras
over an infinite field K. Then,
If charK # 2, then V = Lieg,
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Let V be a non-abelian (LACC) variety of non-associative n-algebras
over an infinite field K. Then,

If charK # 2, then V = Lieg,

If charK = 2, then V = Lieg or V = qLiey.
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Summarising:

Let V be a non-abelian (LACC) variety of non-associative n-algebras
over an infinite field K. Then,

If charK # 2, then V = Lieg,

If charK = 2, then V = Lieg or V = qLiey.
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