Limits and pointwise colimits in accessible categories

Pierre Ageron

First consider the following problem: given a class \mathcal{I} of small categories, describe a class \mathcal{S} of sketches such that a category **A** is accessible and has \mathcal{I} -limits if and only if it is equivalent to Mod(**S**) for some sketch **S** in S. To quote only but the two easiest examples:

Theorem 1. [Ageron95] A category **A** is α -accessible and has nonempty limits if and only if it is equivalent to Mod(**S**) for some sketch **S** all of whose cones are of size $< \alpha$ and all of whose cocones are based on the empty category.

Theorem 2. [Lair96] A category **A** is accessible and has a terminal object if and only if it is equivalent to $Mod(\mathbf{S})$ for some sketch **S** all of whose cocones are based on connected categories. (Note: no control of the rank is possible here.)

Other cases have been treated, either by Lair or by myself: accessible categories with pullbacks and equalizers [Ageron95], with pullbacks [Ageron96], with equalizers [Lair97], etc. In each case the problem amounts to determine the class of colimits (*not* meaning the class of indexations) which commute to the considered type of limits in **Set**.

In general, there is no hope to solve the similar problem for colimits: unlike limits, they cannot be *forced* to be pointwise. Accidentally however, there is an analogue to Theorem 1:

Theorem 3. [Ageron97] A category **A** is α -accessible and has nonempty colimits if and only if it is equivalent to Mod(**S**) for some sketch **S** all of whose cones are of size $< \alpha$ and all of whose cocones: (i) share their vertex with a cone based on the empty category; and (ii) are based on categories with non empty limits of size $< \alpha$ with the corresponding limit cones being distinguished in **S**.

Corollary (of Theorems 1 and 3). The full subcategories of α -ACC consisting respectively of α -accessible categories with nonempty limits and of α -accessible categories with nonempty colimits are Cartesian closed. (Note: α -ACC itself is not Cartesian closed.)

Any analogue to Theorem 2 has to be of a different form, involving a generalised notion of accessibility. First, say that an object A in a category with an initial object 0 is **nonempty** if $\text{Hom}(A, 0) = \emptyset$. Say that a category **A** is α -**positively accessible** if **A** has α -filtered colimits, an initial object, and a small full subcategory **B** consisting of nonempty α -presentable objects so that every object of **A** is an empty or α -filtered colimit of objects in **B**. Then:

Theorem 4. [Ageron99] A category A is positively accessible if and only if it is

equivalent to $Mod(\mathbf{S})$ for some sketch \mathbf{S} all of whose cones are based on nonempty categories.

Now let **S** be a sketch. Define S^+ as **S** with a terminal object *S* added and the following items distinguished: the cone (id_S, id_S) based on the discrete category with two objects, the cones of **S** completed with the arrows from them to *S*, the same cocones as those of **S**.

Theorem 5. [Ageron99] (i) Let **S** be a sketch all of whose cones are based on nonempty α -small categories. If Mod(**S**) is α -positively accessible, then Mod(**S**) is α -accessible.

(ii) Let **S** be a sketch all of whose cones are of size $< \alpha$. If Mod(**S**) is α -accessible, then Mod(**S**⁺) is α -positively accessible.

Results similar to Theorems 4 and 5 apply for example to sketches all of whose cones are based on *connected* categories: in this case Theorem 5 gives a result announced by S. Lack.