Infinitary linear combinations in cotorsion modules

Reinhard Börger*

Let R be an integral domain which is not a field. Moreover, assume that R is complete and first-countable in the R-topology, i.e. in the unique ring topology in which the non-zero ideals form a basis of 0-neighbourhoods. An R-module M is called cotorsion (in the sense of Matlis) if $\operatorname{Hom}_R(K/R, M) = 0$ and $\operatorname{Ext}^1_R(K/R, M) = 0$, where K is the quotient field of R. Then it is more or less well-known that the cotorsion modules form a full reflective subcategory C of the category of all R-modules. We observed that C can be described as the category of all R-modules M admitting infinitary linear combinations $\sum_{n\in\mathbb{N}} \alpha_n x_n$ where $x_n \in M$ for all $n \in \mathbb{N}$, and $(\alpha_n)_{n\in\mathbb{N}}$ is a sequence in R which converges to 0 in the R-topology, such that $\sum_{n\in\mathbb{N}} \alpha_n (\sum_{m\in\mathbb{N}} \beta_{nm} x_m) = \sum_{m\in\mathbb{N}} (\sum_{n\in\mathbb{N}} \alpha_n \beta_{nm}) x_n$ holds whenever the left-hand side is defined. In particular, C is a variety of rank \aleph_1 . The above infinitary linear combinations between cotorsion modules. Moreover, C is abelian and (obviously) locally countable presentable, but not locally finitely presentable. We show some more properties of C, e.g. the non-existence of a cogenerator.

 $^{^{\}ast}$ Joint work with Ralf Kemper.