Global dimension of the diagram category on a totally ordered set

Ahmet A. Husainov*

Any partially ordered set (J, \leq) will be considered as a small category J such that ObJ = J and MorJ consists of all pairs $x \leq y$ in J. A subset $U \subseteq J$ is open if $u \in U \& u < x \in J$ implies $x \in U$. A subset $I \subseteq J$ is coinitial if for every $x \in J$ there exists $y \in I$ such that $y \leq x$. The coinitiality of J is the inf of the cardinalities of coinitial subsets.

Let K be a ring with identity. Denote by Mod_K^J the category of all functors from J to the category Mod_K of left K-modules. For any abelian category \mathcal{A} we denote by $gl.dim\mathcal{A}$ the global dimension in the sense of [1].

Theorem. Let J be a totally ordered set which contains at least two elements, K be a commutative Noetherian ring with identity. If K is a Dedekind domain or a local ring then

$$gl.dimMod_K^J = n + 2 + gl.dimMod_K,$$

where \aleph_n is the sup of the coinitialities of open subsets $U \subset J$ such that $U \neq J$.

Mitchell's generalization [1, corollary 36.12] of the Osofsky statement [2, corollary 7.5] to the valuation categories gives equality

$$gl.dimMod_K^J = n+2$$

for each division ring K. Brune [3] proved the inequality

$$gl.dimMod_K^J \le n+2+gl.dimMod_K$$

for every commutative Noetherian ring K.

Let \mathbf{Z} be the ring of integers. Considering $K = \mathbf{Z}$ in the theorem we get author's result [4]. For the ordered set \mathbf{R} of reals we get $gl.dimMod_{\mathbf{Z}}^{\mathbf{R}} = 3$. This is the answer to the question of Brune [3].

References

- [1] B. Mitchell, Rings with several objects, Adv. Math. 8 (1972), 1-161.
- B. Osofsky, Homological dimension and the continuum hypothesis, Trans. Amer. Math. Soc. 132 (1968), 217-230.
- [3] H. Brune, Flache darstellungen von geordnete mengen, Manuscripta Math. 28 (1978), 141-154.
- [4] A.A. Husainov, On the global dimension of the abelian group valued diagrams category over a totally ordered set, Fund. Prikl. Mat. 4 (1998), 717-724 (Russian).

^{*}Research is supported by RF grant center at the Novosibirsk State University.