Tannaka duality for Maschkean categories

Paddy McCrudden

This seminar aims to generalize classical Tannaka duality by replacing the category of vector spaces with more general monoidal categories.

Recall that given a coalgebra C in the category of vector spaces, one may form the category $\operatorname{Comod}_f(C)$ of finite dimensional representations of C and there is the forgetful functor into the category Vect_f of finite dimensional vector spaces. Conversely, given a category \mathcal{C} equipped with a functor $X : \mathcal{C} \to \operatorname{Vect}_f$, one may form the coalgebra $\operatorname{End}^{\vee}(X)$ in the category of vector spaces. A fundamental result [1] of Tannaka duality is that when X is the forgetful functor $\operatorname{Comod}_f(C) \to \operatorname{Vect}_f$, the coalgebra $\operatorname{End}^{\vee}(X)$ is canonically isomorphic to C. Tannaka duality also shows that there is a correspondence between monoidal structures on $\operatorname{Comod}_f(C)$ with the forgetful functor being strong monoidal, and bialgebra structures on C. Similarly, there is a correspondence between braidings on $\operatorname{Comod}_f(C)$ and cobraidings on C.

This seminar aims to generalize this theory by replacing coalgebras in the category of vector spaces with comonoids in a general braided monoidal category \mathcal{V} . First, a 2-functor

$\operatorname{Comod}_f : \operatorname{Comon}(\mathcal{V}) \to \mathcal{V}_f \operatorname{-Act}/\mathcal{V}_f$

is defined whose value on a comonoid in \mathcal{V} is its category of representations. When \mathcal{V} is a cocomplete monoidal category, this 2-functor has a left biadjoint E. The unit $\eta: C \to E(\text{Comod}_f(C))$ of this biadjunction is not in general an equivalence, although it is so when \mathcal{V} is the monoidal category of vector spaces. The problem of reconstructing a comonoid from its representations may be stated as finding sufficient conditions on \mathcal{V} that ensure that this unit is an equivalence. A class of braided monoidal categories, called *Maschkean categories*, is defined and it is shown that for these categories the unit is an isomorphism. It is further shown that when \mathcal{V} is a symmetric Maschkean category, $\text{Comod}_f : \text{Comon}(\mathcal{V}) \to \mathcal{V}_f \text{-Act}/\mathcal{V}_f$ is monoidally bi-fully-faithful, and this makes precise the idea that there is a correspondence between monoidal structures (respectively braided monoidal structures) on $\text{Comod}_f(C)$ and coquasi-bialgebra (respectively cobraided coquasi-bialgebra) structures on C. Of course, the category of vector spaces is a symmetric Maschkean category and it is shown that if \mathcal{V} is a symmetric Maschkean category and H is a cosemisimple cobraided Hopf algebra in \mathcal{V} then Comod(H) is again a Maschkean category. This allows us to conclude that many categories, including graded vector spaces, representations of a finite group, representations of a compact group, and representation of a compact quantum group, are Maschkean categories.

References

 A. Joyal and R. Street, An introduction to Tannaka duality and quantum groups, Springer Lecture Notes in Mathematics 1488 (1991), 411-492.