Internal categorical (co)groups in topological spaces

Jesus G. Miranda*

Given a pointed topological space (X, p), it is well known that the suspension $\Sigma(X, p)$ is an *H*-cogroup and the loop space $\Omega(Y, q)$ is an *H*-group. Thus $\pi_n(X, p) = [(S^n, *), (X, p)]$ is a group for $n \ge 1$ (even abelian for $n \ge 2$) and there is an action of $\pi_1(X, p)$ on $\pi_n(X, p)$, $n \ge 1$, giving $\pi_n(X, p)$, $n \ge 2$, the structure of $\pi_1(X, p)$ -module.

In this work these results are raised to a categorical level which leads to higher homotopy structures. Using that Top_* , the category of pointed topological spaces, is enriched over the (monoidal) category Gpd of groupoids, we look for (braided or symmetric) categorical group structures in the track groupoid $Top_*((X,p),(Y,q))$. This lead us to define notions of internal categorical (co)group object in any enriched category over Gpd. Then we show the spaces $\Sigma(X,p)$ and $\Omega(Y,q)$ as important examples of such objects in Top_* , and define, for any $(X,p) \in Top_*$, higher homotopy groupoids $\rho_n(X,p) = Top_*((S^{n-1},*),(X,p)), n \geq 2$. These groupoids carry a tensor structure in such a way that $\rho_2(X,p)$ turns out to be a categorical group whereas $\rho_n(X,p)$ is a braided categorical group if $n \geq 3$ and even a symmetric categorical group if $n \geq 4$. Also, with a suitable notion of internal action, we prove that $\rho_n(X,p), n \geq 3$, turns out to be a $\rho_2(X,p)$ -module.

^{*}Joint work with Antonio R. Garzón.