Some remarks on topological functors

Rolf Rother

A theory of topological functors is presented in the book [1]. A topological functor is a faithful functor $U : \mathbf{A} \to \mathbf{X}$ that has unique U-initial lifts of U-structured sources. A theorem that R.-E. Hoffmann proved in his thesis [2] plays a very important role in our investigations. It says that from each category \mathbf{A} there is at most one topological functor into the category **Set** of sets modulo natural isomorphy. In [3] he proves moreover that from each category \mathbf{A} there is at most one topological functor into a balanced category (i.e. a category in which each bimorphism is isomorphic) modulo equivalence. Functors $F : \mathbf{A} \to \mathbf{X}$ and $G : \mathbf{A} \to \mathbf{Y}$ are equivalent iff there exists an equivalence $H : \mathbf{X} \to \mathbf{Y}$ such that $H \circ F \cong G$.

We will see for functors $\mathbf{A} \xrightarrow{U} \mathbf{B} \xrightarrow{V} \mathbf{C}$ if the composition VU and U are topological then so is V. We get that from each category \mathbf{A} there is at most one topological functor into a balanced basecategory modulo isomorphy, i.e. for topological functors $F : \mathbf{A} \to \mathbf{X}$ and $G : \mathbf{A} \to \mathbf{Y}$ into balanced categories there exists an isofunctor $H : \mathbf{X} \to \mathbf{Y}$ such that $H \circ F \cong G$. We will describe the basecategories \mathbf{X} into which there exists at most one topological functor from each category modulo natural isomorphy.

By looking on the above uniqueness-theorems one could expect that in the case of a full subcategory $\mathbf{B} \subseteq \mathbf{A}$ and a topological functor $U : \mathbf{A} \to \mathbf{Set}$ the only chance for a functor from **B** to **Set** to be topological is the restriction of U. In general this is not true. But it holds if (\mathbf{A}, U) is a c-construct, i.e. every constant map between (the underlying sets of) objects is a morphism.

References

- J. Adámek, H. Herrlich and G. E. Strecker, Abstract and Concrete Categories, Wiley-Interscience (1990).
- [2] R.-E. Hoffmann, Die kategorielle Auffassung der Initial- und Finaltopologie, Bochum, thesis (1974).
- [3] R.-E. Hoffmann, Topological Functors and Factorizations, Arch. Math. (Basel) 26 (1975), 1-7.