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Non-commutative logic (NL) is a unification of:

− commutative linear logic [5] and

− cyclic linear logic [6, 12], a classical conservative extension of the Lambek calculus
[8].

Previous work [9, 1, 10] was devoted to proof nets and sequent calculus for NL. Here we
study the categorical semantics of NL. One can say that proof nets constitute already
a semantics of proofs of NL, but on one hand the extension to non-multiplicative con-
nectives is delicate (boxes) and on the other hand one would like to have a semantics
that is more general than syntax (correctness) and close enough (full completeness)

For non-commutativity, one thinks naturally about Hopf algebras [7]. Indeed the
category Mod(H) of modules over a given Hopf algebra H is monoidal closed, and we
know since the works of Barr and Seely [11] notably, that this is the right framework in
order to find models of linear logic. In fact, models of LL are ∗-autonomous categories
[2] but one can:

−restrict oneself to finite-dimensional modules: Mod(H)is then compact close, or

− use an idea of Lefschetz in the infinite-dimensional case: enrich the modules
with a linear topology, and then the sub-category TMod(H) of Mod(H) is ∗-
autonomous but not compact.

The essential point is that in general Mod(H) is not symmetric: indeed the
monoidal product is determined by the coalgebra structure of H, which need not
be symmetric. Varying the Hopf algebra enables then a control on the symmetry /
asymmetry of the category at hand. For instance by using Hopf algebras, Rick Blute
and Phil Scott have exhibited complete models of LL [3] and cyLL [4].

The following provides a definition of categorical models of the multiplicative
fragment MNL of non-commutative logic, that particularize ∗-autonomous categories.

Definition. An entropic category is a category C with the following structure:

− (C,⊗, 1,−◦,⊥) is a symmetric ∗-autonomous category,

− (C,�, 1,−•, •−,⊥) is a cyclic ∗-autonomous category,

− a monoidal natural transformation E : ⊗ .→ � such that the negations coincide.
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Theorem (Soundness and invariance by reduction). Entropic categories are
models of MNL: to a proof π of A is associated a morphism |π| : 1→ A of any entropic
category C, and if π reduces to π′ then |π| = |π′|.

Examples of entropic categories (therefore models of MNL) are obtained by con-
sidering sets G having 2 group structures with same inverse and same unit: Then
K[G] has 2 Hopf algebra structures with same multiplication (the diagonal), and one
dualizes to get 2 comultiplications (thus 2 tensors) with a single multiplication.

Theorem. Let k be a vector space, p a non zero natural number, n an odd divisor of
the Euler indicator φ(p) and H the Hopf dual of k[Zn × Zp]. The reflexive objects in
the category TMod(H) and associated morphisms form an entropic category (where
one of the 2 tensors is non-commutative).

This result relies on:

− a lemma which states that Zn×Zp indeed has several group structures with same
inverse and same unit (semi-direct products),

− the definition of a subset, Core(G), of G = Zn × Zp, which induces the definition
of the natural transformation E.
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