A remark on conservative cocompletions of categories

Jiří Velebil*

Given a class \mathbf{F} of small categories, M. Kelly has constructed in [Ke82], for every small category X, what we call a *free* \mathbf{F} -conservative cocompletion: this is a full embedding $E : X \longrightarrow X^*$ with X^{*} cocomplete, which is \mathbf{F} -cocontinuous (i.e., preserves all existing \mathbf{F} -colimits in X) and such that any other \mathbf{F} -cocontinuous functor H from X to a cocomplete category Y has an essentially unique extension to $H^* : X^* \longrightarrow Y$ which preserves all small colimits.

The construction of a free \mathbf{F} -conservative cocompletion can be performed for not neccessarily small categories X as well, the resulting X^{*}, however, need not be a category in the same universe as X.

We show a simple example of a locally small category X such that a free **F**-conservative cocompletion X^* is not locally small for \mathbf{F} = coequalizers.

We also derive a sufficient condition on a locally small category X such that its free **F**-conservative cocompletion X^* is locally small:

For each X-object X there should be at most a small set of vertices C_i , $i \in I$, of non-absolute **F**-colimit cocones such that $X(X, C_i)$ is nonempty.

Our condition, in case when $\mathbf{F} = \emptyset$, covers the well-known fact that each locally small category has a locally small free cocompletion.

Whether there exists a usable necessary and sufficient condition for local smallness of a free \mathbf{F} -conservative cocompletion of a locally small category is an open problem.

References

[Ke82] G.M. Kelly, Basic Concepts of Enriched Category Theory, London Math. Soc. Lecture Notes Series 64, Cambridge Univ. Press, 1982.

^{*} Joint work with Jiří Adámek.