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Abstract. We consider a finite difference scheme, called Quickest, intro-
duced by Leonard in 1979, for the convection-diffusion equation. Quickest
uses an explicit, Leith-type differencing and third-order upwinding on the
convective derivatives yielding a four-point scheme. For that reason the
method requires careful treatment on the inflow boundary considering
the fact that we need to introduce numerical boundary conditions and
that they could lead us to instability phenomena. The stability region is
found with the help of one of the most powerful methods for local anal-
ysis of the influence of boundary conditions – the Godunov-Ryabenkii
theory.

1 Introduction

Quickest is a finite difference scheme due to Leonard [8] that deduces this scheme
using control volume arguments. Davis and Moore [2] have shown that Quickest
can also be derived by considering the ∆t3 in the Taylor expansion of the time
derivative and make some subsequent approximations. Morton and Sobey [10]
using the exact solution of the convection diffusion equation, derived Quickest
based on a cubic local approximation. Quickest scheme uses an explicit, Leith-
type differencing and third-order upwinding on the convective derivatives yield-
ing a four-point scheme. In the limit D → 0 is third order accurate in time. The
use of third-order upwind differencing for convection greatly reduces the numer-
ical diffusion associated with first-order upwinding [1]. Some of the literature
about Quickest used in a flow simulation can be found in [1,2,6,8,9]. The major
difficulties associated with the use of Quickest scheme in multidimensions are
in the application of boundary conditions, being the major reason to study the
influence of a numerical boundary condition on the stability of the numerical
scheme.

Fourier analysis is the standard method for analysing the stability of discreti-
sations of an initial value on a regular structured grid. This model problem has
Fourier eigenmodes whose stability needs to be analysed. If they are stable at
all points in the grid, and the discretisation of the boundary conditions is also
stable then for most applications the overall discretisation is stable, in the sense
of Lax [12].
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The influence of the boundaries can be analysed using the Godunov-Rya-
benkii theory. The Godunov-Ryabenkii theory was introduced by Godunov and
Ryabenkii [3] and developed by Kreiss [7], Osher [11] and Gustafsson et al [4]
(now also called GKS theory). In this paper we find the stability region for the
Quickest scheme subject to a numerical boundary condition by applying the
Godunov-Ryabenkii theory.

Consider the one-dimensional problem of convection with velocity V in the x-
direction and diffusion with coefficient D:

∂u

∂t
+ V

∂u

∂x
= D

∂2u

∂x2
0 ≤ x < ∞, t ≥ 0 (1)

u(x, 0) = f(x) (2)

u(0, t) = 0 (3)

||u(·, t)|| < ∞ (4)

If we choose a uniform space step ∆x and time step ∆t, there are two dimen-
sionless quantities very important in the properties of the scheme:

µ =
D∆t

(∆x)2
, ν =

V ∆t

∆x

ν is called the Courant (or CFL) number.
Before we describe the Quickest scheme and its numerical boundary condi-

tion, we give in the next section, a brief overview of the Godunov-Ryabenkii
theory.

2 Godunov-Ryabenkii Stability Analysis

Two essential aspects of normal mode analysis for the investigation of the influ-
ence of boundary conditions on the stability of a scheme are that the initial value
problem needs to be stable for the Cauchy problem which is best analysed with
the von Neumann method (this means the interior scheme needs to be stable)
and that its stability could be destroyed by the boundary conditions, but the
converse its not possible.

In this section we give a brief description of the Godunov-Ryabenkii theory.
For more detailed information about the theory we suggest [12,13,14] and spe-
cially [4]. A particular note is to be made of the work [15,16], establishing a
relation between the GKS theory and group velocity.

We can approximate the problem (1)– (4) by the difference scheme

QUn
j = Un+1

j , j = r, r + 1, . . . (5)
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Q =
p∑

j=−r

ajE
j , EUn

j = Un
j+1. (6)

where aj are scalars.
Two important assumptions are made:
a) The scalars a−r and ap are non-singular;
b) The finite difference scheme (5) is von Neumann stable.
As Q uses r points to the left, the basic approximation can not be used

at x0, x1, x2, . . . , xr−1, so there we will have to apply boundary conditions. These
can be the conditions that are given for the original problem (in our particular
case is associated only with the point x0), but they can also be difference schemes,
which will then be called numerical boundary conditions. The choice of numerical
boundary conditions is crucial for the stability.

Let us assume that the boundary conditions can be written as

Un+1
β =

q∑

j=1

lβjU
n
j β = 0, 1, . . . , r − 1 (7)

where lβj are scalars.
The eigenvalue problem associated with our approximation is:

zφj = Qφj j = r, r + 1, . . . (8)

zφβ =
q∑

j=1

lβjφj β = 0, 1, . . . , r − 1 (9)

||φ||h < ∞ (10)

Lemma 1 Godunov-Ryabenkii Condition The approximation is unsta-
ble if the eigenvalue problem (8) – (10) has an eigenvalue z with |z| > 1.

Consider the characteristic equation of the interior scheme

z −
p∑

j=−r

ajk
j = 0. (11)

Lemma 2 For z such that |z| > 1, there is no solution of equation (11) with
|k| = 1 and there are exactly r solutions, counted according to their multiplicity,
with |k| < 1.

A general solution of (8) – (10) is of the form

φj =
∑

|ka|<1

Pa(j)kj
a, ka = ka(z), |z| > 1 (12)
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where ka are solutions of the characteristic equation (11). This solution depends
on r free parameters σ = (σ1, . . . , σr). Pa(j) is a polynomial in j. Its order is at
most ma − 1 where ma is the multiplicity of ka.

Note that if the solutions are simple, this implies that the solution has the
form

φj =
∑

|ki|<1

σik
j
i . (13)

This form of the solution is the one that usually arises in practice.
Substituting (12) into the boundary conditions (7) yields a system of equa-

tions
C(z)σ = 0,

σ = (σ1, . . . , σr) and we can rephrase Lemma 2 in the following form:

Lemma 3 The approximation is unstable if

Det C(z) = 0 for some z ∈ C with |z| > 1.

Summarising, this theory is a generalisation of the von Neumann stability anal-
ysis taking into account the influence of boundary conditions. It states that the
interior scheme needs to be von Neumann stable and when considered in the
half-plane x ≥ 0, a mode kj with |k| > 1 will lead to an unbounded solution in
space, that is, kj will increase without bound when j goes to infinity. Therefore
|k| should be lower than one, and the Godunov-Ryabenkii stability condition
states that all the modes with |k| ≤ 1, generated by the boundary conditions,
should correspond to |z| < 1.

3 Instability of a Quickest Scheme

Consider the interior difference scheme Quickest:

Un+1
j = [1− ν∆0 + (

1
2
ν2 + µ)δ2 + ν(

1
6
− ν2

6
− µ)δ2∆−]Un

j , (14)

where we use the central, backward and second difference operators: ∆0Uj :=
(Uj+1 − Uj−1)/2, ∆−Uj := Uj − Uj−1 and δ2Uj := Uj+1 − 2Uj + Uj−1.

We will consider two boundary conditions: the Dirichlet boundary condi-
tion associated with the original problem, Un

0 = 0 and the numerical boundary
condition that we need at the first point of the mesh,

Un+1
1 = [1− ν∆0 + (

1
2
ν2 + µ)δ2 + ν(

1
6
− ν2

6
− µ)δ2∆+]Un

1 , (15)

where ∆+ is the forward operator defined by ∆+Uj := Uj+1−Uj. This numerical
boundary condition is deduced by a similar method used in [10] to obtain the
Quickest scheme, using a local cubic interpolation of the points Un

j−2, U
n
j−1, U

n
j ,

Un
j+1. On the first point we can not use this interpolation since we do not have the
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point U−1. We do instead an interpolation of the points Un
0 , U

n
1 , U

n
2 , U

n
3 and

it gives the difference scheme (15). The use of this downwind third difference
at x = ∆x does not affect accuracy because it stills based on a cubic local
approximation near x = ∆x as the interior scheme. However, as we shall show,
it does have penalties in terms of stability.

Let us consider the corresponding eigenvalue problem:

zφj = [1− ν∆0 + (
1
2
ν2 + µ)δ2 + ν(

1
6
− ν2

6
− µ)δ2∆−]φj , j ≥ 2

φ0 = 0

zφ1 = [1− ν∆0 + (
1
2
ν2 + µ)δ2 + ν(

1
6
− ν2

6
− µ)δ2∆+]φ1. (16)

The Godunov-Ryabenkii condition tell us that the system (16) has an eigen-
value z with |z| > 1, then the approximation (14) – (15) is not stable. By Lemma
2 we have for this approximation that the characteristic equation for the inte-
rior scheme (14) has not k = eiξ, ξ real for |z| > 1 and there are exactly two
solutions ki, i = 1, 2 with |ki| < 1 for |z| > 1.

Consider the characteristic equation for the interior scheme (14)

k3(−c1 + c2 + c3) + k2(−z + 1− 2c2 − 3c3) + k(c1 + c2 + 3c3)− c3 = 0. (17)

where c1 = ν/2, c2 = ν2/2 + µ and c3 = ν(1− ν2 − 6µ)/6.
Assuming that the two solutions of the characteristic equation are distinct,

any solution of (16) has the form

φj = σ1k
j
1(z) + σ2k

j
2(z).

We want to find the solutions ki, i = 1, 2 of (17), such that |ki(z)| < 1, i = 1, 2
and the linear and homogeneous system

σ1 + σ2 = 0
σ1g(k1, z, µ, ν) + σ2g(k2, z, µ, ν) = 0 (18)

has a solution z with |z| > 1. The function g(k, z, µ, ν) is the polynomial:

g(k, z, µ, ν) = k3c3 + k2(−c1 + c2 − 3c3) + k(1− 2c2 + 3c3 − z).

Since the first equation gives σ1 = −σ2, the linear homogeneous system (18) has
a non-trivial solution if

g(k1, z, µ, ν)− g(k2, z, µ, ν) = 0.

Consider k1(z) and k2(z) defined as:

k1(z) =
r1
2

+

√
−3r2

1 + 4r2
2

k2(z) =
r1
2

−
√
−3r2

1 + 4r2
2
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where r1 and r2 are:

r1(z, µ, ν) =
(1− z)(−c1 + c2 + c3)− 4c1c3 + 2c2(c1 − c2)

(1− z)c3 − 2c1c3 − (c1 − c2)
2 (19)

r2(z, µ, ν) =
(1− z)(z − 1 + 4c2)− (c21 + 6c1c3 + 3c22)

(1− z)c3 − 2c1c3 − (c1 − c2)
2 (20)

Let f(k, z, µ, ν) denote the characteristic polynomial for the interior scheme
(see (17)). After some algebraic manipulations we can prove that for c3 	= 0, k1(z)
and k2(z) are solutions of

f(k1, z, µ, ν)− f(k2, z, µ, ν) = 0 (21)
g(k1, z, µ, ν)− g(k2, z, µ, ν) = 0. (22)

If additionally to (21) k1(z) and k2(z) verify f(k1, z, µ, ν)+ f(k2, z, µ, ν) = 0
then k1(z) and k2(z) are solutions of f . In that way we have two solutions of f
that verify (22). Note that the characteristic polynomial f is a third order poly-
nomial, which means we expect three roots, although we only find the analytical
solution of two of them. Let C(z, µ, ν) = f(k1, z, µ, ν) + f(k2, z, µ, ν). For each
(µ, ν) we want to find zµν such that C(zµν , µ, ν) = 0. The requirement for insta-
bility is |zµν | > 1. Experimentally we observe that the solution z(µ, ν) lies inside
|z| = 1 for certain values of µ and ν and then crosses it at z = −1. We can say
z = −1 is the value of transition from stable to unstable.

The function C(z, µ, ν) as the form

C(z, µ, ν) = r1(z, µ, ν)(3r2(z, µ, ν)− 2r2
1(z, µ, ν))(−c1 + c2 + c3)

(2r2(z, µ, ν)− r2
1(z, µ, ν))(−z + 1− 2c2 − 3c3)

+r1(z, µ, ν)(c1 + c2 + 3c3)− 2c3.

Let p(µ, ν) = C(−1, µ, ν). We plot p(µ, ν) = 0 in Fig. 1. a).
For (µ, ν) such that p(µ, ν) < 0 there exists an eigenmode zµν < −1 such

that C(zµν , µ, ν) = 0 (Fig. 1.b)).
This means that for S1 = {(µ, ν) : p(µ, ν) < 0} there exists zµν real and less

than −1 such that k1(zµν , µ, ν) and k2(zµν , µ, ν) are solutions of f and verify
(22). To assure that this eigenmode zµν which absolute value is bigger than one,
determine an instable region we still need to verify that for these (µ, ν) we do
have |ki(zµν , µ, ν)| < 1, i = 1, 2.

For z fixed let us define the following sets: Az = {(µ, ν) : |k1(z, µ, ν)| < 1} and
Bz = {(µ, ν) : |k2(z, µ, ν)| < 1.} For z < −1, Bz ⊂ Az, i. e., if |k2(z, µ, ν)| < 1
then |k1(z, µ, ν)| < 1. We plot C(z, µ, ν) = 0 and Bz for z = −1,−1.5 in Fig. 2.

From the figure we observe that in the region B−1 the root k2(−1, µ, ν), for
(µ, ν) : p(−1, µ, ν) = 0, become bigger than one approximately for ν < 0.09. For
z = −1.5 the same happens but for ν even smaller. Since one of the roots we
found become larger than one we can not conclude anything about the instability
of the method for ν < 0.09. This is not a big problem since the von Neumann
condition give us a stability limit for this region. We will plot the curve p(µ, ν) =
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Fig. 1. a) p(µ, ν) = 0; b) C(z, µ, ν) = 0 for z = −1,−1.2,−1.5,−2
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Fig. 2. a) C(−1, µ, ν) = 0 is the line (–) and B−1 is the region between the
lines (-·-); b) C(−1.5, µ, ν) = 0 is the line (–) and B−1.5 is the region between
the lines (-·-)
0 for ν > 0.09 and the von Neumann stability condition. We can see the unstable
region plotted in Fig. 3. In fact running experiments numerically the region called
stable in Fig. 3 is the exact region of practical stability.
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condition (–)
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