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Stability Analysis of Difference Methods for Parabolic
Initial Value Problems
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A decomposition of the numerical solution can be defined by the normal mode
representation, that generalizes further the spatial eigenmode decomposition of
the von Neumann analysis by taking into account the boundary conditions
which are not periodic. In this paper we present some new theoretical results
on normal mode analysis for a linear and parabolic initial value problem. Fur-
thermore we suggest an algorithm for the calculation of stability regions based
on the normal mode theory.

KEY WORDS: Convection–diffusion; finite differences; stability; normal
mode analysis.

1. INTRODUCTION

The von Neumann analysis is based on a decomposition of the numerical
solution in Fourier modes, implying periodic boundary conditions. While
the matrix analysis is based on a decomposition in eigenmodes of the
space discretisation operator, including the boundary conditions, neverthe-
less the normal mode analysis involves a decomposition of a more general
form than the one based on the eigenmodes of the space discretisation and
allows a detailed investigation of the influence of boundary conditions on
stability.

The normal mode analysis constitutes perhaps the most power-
ful method for local analysis of the influence of boundary conditions.
This method was initially presented by Godunov and Ryabenkii [5] and
developed by Kreiss [9] and Osher [14]. The original Godunov–Ryabenkii
theory provided a necessary condition for stability. A necessary and
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sufficient condition for stability was later developed by Gustafsson, Kreiss
and Sundstrom [7], henceforth called GKS theory. This theory covers lin-
ear, first order hyperbolic systems in one space dimension. Since 1971,
when GKS theory was first presented, related work has been done by Va-
rah [27] for parabolic problems, by Strikwerda [21] for semi-discretised
equations, by Michelson [11] for multidimensional problems and by Trefe-
then [25,26] where a relation between the GKS theory and group velocity
is established.

Additional work on applying the normal mode analysis can be
found in [1,6,12,13,15,17,19] showing us that this method often leads
to very complex calculations. To overcome the difficulty of the theoreti-
cal approach, recently Thuné proposed a numerical algorithm to calculate
GKS stability for linear hyperbolic equations [23] and linear hyperbolic
systems [24].

We are interested in parabolic problems with convective and diffu-
sive coefficients. The GKS theory that leads to necessary and sufficient
conditions for stability was proven for hyperbolic problems. For parabolic
problems we can apply the Godunov–Ryabenkii method which theoreti-
cally lead us to necessary conditions for stability although in a vast num-
ber of cases they appear to be also sufficient conditions.

The paper is organized as follows. In Sec. 2, we lay down a concise
overview of the Godunov–Ryabenkii theory. We introduce some new devel-
opments of the theory in Sec. 3. These results centre on the determinant
condition, the main condition we need to manipulate when performing
the stability analysis. The determinant condition involves a discontinuous
function. The discontinuity of this function is related to the multiplicity of
the normal modes that are solutions of an equation called the characteris-
tic equation. Here, we obtain a continuous function to replace the discon-
tinuous function and thus increase our understanding of the phenomenom
of normal modes with a multiplicity higher than one. In Sec. 4, we use the
same continuous function to develop an algorithm to determine the stabil-
ity of a numerical scheme with numerical boundary conditions.

2. GODUNOV–RYABENKII STABILITY ANALYSIS

The following is an adaptation of the von Neumann method for prob-
lems subject to non periodic boundary conditions and numerical boundary
conditions. One essential aspect of normal mode analysis for the investiga-
tion of the influence of boundary conditions on the stability of a scheme
is that the initial value problem needs to be stable for the Cauchy prob-
lem, which is best analysed with the von Neumann method. To make
this paper reasonably self-contained, we give a general overview of the
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Godunov–Ryabenkii theory in this section. For a complete description of
the theory see for instance [8,16,22].

We present the stability theory for a quarter-plane x, t �0. If there are
two physical boundaries, then the theory shows that each boundary can be
analysed separately. Thus, it is sufficient to study quarter-plane problems.

The model problem we consider is a linear and parabolic initial
boundary problem. We have a convection-diffusion problem defined on a
half-real line, for V and D positive constants:

∂u

∂t
+V

∂u

∂x
=D

∂2u

∂x2
, 0�x <∞, t �0, (1)

u(x,0)=f (x), (2)

u(0, t)=0, (3)

u(·, t)∈L2(0,∞) for every fixed t. (4)

Suppose we have approximations Un
j to the values u(xj , tn) at the mesh

points xj , j = 0,1,2, . . . and assume we approximate the problem (1)–(4)
by the difference scheme

Un+1
j =QUn

j , j = r, r +1, . . . , (5)

Q=
p∑

j=−r

ajE
j , EUn

j =Un
j+1, (6)

where a−r and ap are non-zero. The aj ’s also depend of parameters µ and
ν defined by

µ= D∆t

∆x2
and ν = V ∆t

∆x
, (7)

where ∆t is the time step and ∆x the space step. An important assump-
tion is made: The finite difference scheme (5) is von Neumann stable and
dissipative. We recall that a scheme is dissipative if the amplification fac-
tor, z, is of the form

|z(θ)|�1− δθ2r , when |θ |<π (8)

for δ ∈ IR+ and positive integer r.
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The requirement of the scheme to be dissipative, arises quite natu-
rally for difference schemes for parabolic equations. We require the scheme
to be dissipative to strengthen the Godunov–Ryabenkii condition as it is
explained in the end of this section in the context of the normal mode
analysis.

Considering the finite difference scheme (5) we observe that as Q

uses r points upstream, the basic approximation can not be used at
x0, x1, x2, . . . , xr−1, so there we need to apply boundary conditions. In
our particular case the boundary given by the physical problem is associ-
ated only with the point x0. At the other points the boundary conditions,
called numerical boundary conditions, affect the difference scheme. Let us
assume that the boundary conditions can be written as

Un+1
β =

q∑

j=0

lβjU
n
j , β =0,1, . . . , r −1. (9)

The general technique is based on Laplace transforms of nodal val-
ues, which vary continuously with time. Therefore we define

Uj(t)=Un
j for tn � t � tn+1.

Applying the Laplace transform

Ũj (s)=
∫ ∞

0
e−stUj (t)dt

to (5)–(9) gives (see [8] for details),

zŨj =QŨj , j = r, r +1, . . . ,

zŨβ =
q∑

j=0

lβj Ũj , β =0,1, . . . , r −1,

Ũ ∈ l2(0,∞),

where z=es∆t and the coefficients lβj depend on ν and µ, and we assume
that µ is constant when ∆x varies.

Therefore, the eigenvalue problem associated with our approximation
is:

zφj =Qφj , j = r, r +1, . . . , (10)

zφβ =
q∑

j=0

lβjφj , β =0,1, . . . , r −1, (11)

φ ∈ l2(0,∞). (12)
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Lemma 2.1. (Godunov–Ryabenkii Condition). The approximation is
unstable if the eigenvalue problem (10)–(12) has an eigenvalue z∈ C with
|z|>1.

This follows from observing that if z is an eigenvalue of (10)–(12)
with eigenfunction φj , it is also true that Un

j = znφj is a solution of
(5)–(9). At a fixed time t , we have

U
t/∆t
j = zt/∆tφj

and for decreasing ∆t the solution grows without bound.

At this point, we discuss how to solve the eigenvalue problem
(10)–(12). Lemma 2.1 tells us that when z is such that |z|>1, then we have
an instability. What follows are results that help us to find an instability by
looking for an eigenvalue z such that |z|>1.

Consider the characteristic equation of the interior scheme. This
equation is generated by substituting Un

j by znκj in the interior numeri-
cal scheme (5)–(6), obtaining

z−
p∑

j=−r

aj κ
j =0. (13)

It can be proved that the general solution, φj , of the eigenvalue problem
(10)–(12) can be written in terms of certain solutions, κa , of the character-
istic equation (13) (see [8] for details). The general solution is given by

φj =
∑

|κa |<1

Pa(j)κ
j
a , κa =κa(z), |z|>1, (14)

which depends on r free parameters σ = (σ1, . . . , σr )
T , Pa(j) is a polyno-

mial in j and its order is at most ma − 1 where ma is the multiplicity of
κa . We will frequently refer to the solutions of (13) as the κ modes.

Remark 2.2. Note that if the roots κa are simple, from Eq. (14), the
solution has the form

φj =
∑

|κa |<1

σaκ
j
a , (15)

for some constants σa .

In order to know how many modes κ, that are solutions of (13), are
involved in the general solution (14) we present the following lemma.
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Lemma 2.3. For z ∈ C such that |z| > 1, there is no solution of
Eq. (13) with |κ|= 1 and there are exactly r solutions, counted according
to multiplicity, with |κ|<1.

Assume that there is a root κ = eiξ , ξ ∈ IR. Then Eq. (13) implies that
z=∑p

j=−r aj e
ijξ . Because we have assumed that the approximation is von

Neumann stable, we necessarily have |z| = |∑p
j=−r aj e

ijξ | � 1. This is a
contradiction to the hypothesis |z| > 1; that is, there are no solutions κ

with |κ| = 1. The solutions κ are continuous functions of z and cannot
cross the unit circle. Therefore, the number of solutions with |κ| < 1 is
constant for |z| > 1, and we can determine their number from the limit
|z| tends to +∞. In this limit, the solutions with |κ|<1 converge to zero
and are, because a−r �=0, to first approximation, determined by

z−a−rκ
−r =0.

This equation has exactly r solutions κ =O(z−1/r ). This proves the lemma.

Substituting (14) into the boundary conditions (11) yields a system of
equations

C(z) σ =0,

σ = (σ1, . . . , σr )
T , and we can rephrase Lemma 2.1 in the following form.

Lemma 2.4. The approximation is unstable for some z ∈ C with
|z|>1, if

det C(z)=0. (16)

Direct application of Lemma 2.1.

Summarizing, the theory states that the interior scheme needs to be
von Neumann stable and when considered in the half-plane x �0, a mode
κj with |κ|>1 will lead to an unbounded solution in space, that is, κj will
increase without bound when j goes to infinity. Therefore |κ| should be
less than one, and the Godunov–Ryabenkii (necessary) stability condition
states that all the modes with |κ| � 1, generated by the boundary condi-
tions, should correspond to |z|<1. The form of the solution is very simi-
lar to the assumed Fourier modes, except that the amplitude of the spatial
oscillation decays exponentially with j away from the boundary.
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We can now explain in the context of normal mode analysis, the
meaning of the interior difference scheme being dissipative. The dissip-
ativity condition that we assume for the interior difference scheme (5),
tells us that |z|<1 for κ = eiξ , ξ ∈ IR, ξ �=0. This condition strengthens the
Godunov–Ryabenkii condition because the latter is a necessary condition
that does not take into account the instability mechanism associated with
|z|= |κ|=1.

3. NEW RESULTS ON NORMAL MODE ANALYSIS

The function, det C(z), that appears on the left side of the determi-
nant condition (16) is a discontinuous function in z, since the analytical
form of the function changes according to whether the κ modes present
multiple roots or not. In this section, we define another function that is
continuous and has the same z roots as the previously mentioned function
and is also used in Sec. 4 to develop an algorithm.

We consider a finite difference approximation of (1)–(4). The crucial
parameters for the stability of the approximations are µ and ν defined by
(7). Equations (13) and (16) form an implicit condition on µ and ν: the
approximation of (1)–(4) is practically unstable for those values of µ and
ν for which (13) and (16) have solutions with |z|>1, |κa|<1, a =1, . . . , r.

Let g be the function

g(z)=det C(z). (17)

The essential task when performing the stability analysis is to find the
eigenvalues z ∈ C with |z| > 1 that are solutions of the determinant
condition

g(z)=0. (18)

The form of the general solution φj of problem (10)–(12) in (14) changes
according to the multiplicity of the roots κa, a = 1, . . . , r, of Eq. (13), for
each |z|>1. Therefore the function g is not a continuous function. To see
it more clearly, we write the matrix C(z) explicitly in both cases, when the
κ’s are all simple and when there are some κ’s that are confluent, that is,
some of the κ’s are multiple roots. We denote Cr(z) :=C(z), for z such that
the κ’s are simple roots, and Cconf (z) := C(z), for z such that the κ’s are
confluent.

Although, in what follows the κ’s depend on z and it would be more
accurate to write κ(z), we will omit the variable z to have a clearer defini-
tion of the matrices.
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The matrix Cr(z) has the form:
⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

z−
q∑

j=1

l0j κ
j

1 · · · z−
q∑

j=1

l0j κ
j
a · · · z−

q∑

j=1

l0j κ
j
r

...
...

...

zκ
β

1 −
q∑

j=1

lβj κ
j

1 · · · zκ
β
a −

q∑

j=1

lβj κ
j
a · · · zκ

β
r −

q∑

j=1

lβj κ
j
r

...
...

...

zκr−1
1 −

q∑

j=1

lr−1j κ
j

1 · · · zκr−1
a −

q∑

j=1

lr−1j κ
j
a · · · zκr−1

r −
q∑

j=1

lr−1j κ
j
r

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Each column of the matrix Cr(z) is associated with one of the κ’s. We
denote the columns of the matrix Cr by �(κa), a = 1, . . . , r, and the col-
umns of the confluent matrix Cconf (z) by �conf (κa), a = 1, . . . , r. Suppose
that one of the κ’s, which we take to be the first one, κ1, has multiplicity
m, and the others are all simple. Then �conf (κa) = �(κa) for a > m, while
for 1<a �m we have

�conf (κa)=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−
q∑

j=1

l0j j
a−1κj

a

zκa −
q∑

j=1

l1j j
a−1κj

a

...

zβa−1κ
β
a −

q∑

j=1

lβj j
a−1κj

a

...

z(r −1)a−1κr−1
a −

q∑

j=1

lr−1j j
a−1κj

a

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Next we give the definition of a Vandermonde matrix and a confluent
Vandermonde matrix since we use it below.

A Vandermonde matrix of order r is a matrix of the form

Vr =Vr(κ1, κ2, . . . , κr )=

⎛

⎜⎜⎜⎝

1 1 · · · 1
κ1 κ2 · · · κr

...
...

...

κr−1
1 κr−1

2 · · · κr−1
r

⎞

⎟⎟⎟⎠ . (19)
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By a confluence of the lth column into the ath column we mean the
following limit operation: Replace in the lth column κl by κa +ε and sub-
tract from it the ath column; divide this new column by ε and then let
ε →0. The resulting matrix is denoted by Vconf :

Vconf =

⎛

⎜⎜⎜⎜⎜⎝

1 · · · 1 0 1 · · · 1
κ1 · · · κl−1 1 κl+1 · · · κr

κ2
1 · · · κ2

l−1 2κa κ2
l+1 · · · κ2

r

...
...

...
...

...

κr−1
1 · · · κr−1

l−1 (r −1)κr−2
a κr−1

l+1 · · · κr−1
r

⎞

⎟⎟⎟⎟⎟⎠
.

In other words, Vconf is the same matrix as Vr except for the lth col-
umn, which is the derivative of the ath column. A matrix obtained from
(19) by one or more confluences of columns is called a confluent Vander-
monde matrix, see [2–4] for more details about Vandermonde matrices.

We denote by Ubc the vector of the approximate solution in the first r

points of the mesh where we need to have numerical boundary conditions. We
have that

Ubc =V (z) σ, (20)

where σ = (σ1, . . . , σr )
T are the coefficients in the solution (14) and V (z) is

the Vandermonde matrix or confluent Vandermonde matrix depending on
the multiplicity of the κ’s for each z.

Consider the vector b= (b1, . . . , br )
T defined as

b=C(z) σ. (21)

From (21) and (20) we obtain

b=C(z)V −1(z)Ubc for each z, (22)

where V (z) is invertible for κi �=κj .
For different eigenvalues z the multiplicity of the κ’s can change and con-

sequently the matrices C(z) and V (z) change accordingly. In order to conclude
that the matrix C(z)V −1(z) is continuous, we first prove some useful lemma.

Lemma 3.1. Assume that κ1 has multiplicity of order m and that
κ1, . . . , κm are the confluent roots at the eigenvalue z = zconf . Then there
is a family of matrices E(z) such that:

(a) lim
z→zconf

Vr(z)E(z)=Vconf (zconf ),

(b) lim
z→zconf

Cr(z)E(z)=Cconf (zconf ).
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We have Vr(z) = Vr(κ1(z), . . . , κl(z), . . . , κr (z)), for z �= zconf . The roots κ1,
. . . , κm are confluent at z= zconf . Then for α =2, . . . ,m

κα(z)→κ1(zconf ), when z→ zconf .

We can write, for z �= zconf ,

κ2(z) = κ1(zconf )+ ε1(z),

κ3(z) = κ1(zconf )+ ε2(z),

...

κm(z) = κ1(zconf )+ εm−1(z).

For ε(z) defined as

ε(z)= (ε1(z), . . . , εm−1(z)),

we want to prove that there exists a family of matrices E(ε(z)) such that

lim
ε(z)→(0,...,0)

Vr(ε(z))E(ε(z))=Vconf (zconf ) (23)

and

lim
ε(z)→(0,...,0)

Cr(ε(z))E(ε(z))=Cconf (zconf ), (24)

where

Vr(ε(z))=Vr(κ1(zconf ), κ1(zconf )+ ε1(z), . . . , κ1(zconf )+ εm−1(z), . . . , κr (zconf )).

The matrices Cr(ε(z)) are defined similarly.
The differences between Vconf (zconf ), Cconf (zconf ) and Vr(zconf ),

Cr(zconf ), respectively, are in column 2 to column m. The (i + 1)th column
of the confluent matrices is the derivative of the ith column, in order to κ1, for
1� i �m−1.

We have the following system with m−1 equations and m−1 asymp-
totic approximations of the derivatives in order to κ1:

�(κ2(z)) ≈ �(κ1(zconf ))+
m−1∑

i=1

εi
1(z)

i!
�(i)(κ1(zconf )),



Stability Analysis of Difference Methods 55

�(κ3(z)) ≈ �(κ1(zconf ))+
m−1∑

i=1

εi
2(z)

i!
�(i)(κ1(zconf )),

...

�(κm(z)) ≈ �(κ1(zconf ))+
m−1∑

i=1

εi
m−1(z)

i!
�(i)(κ1(zconf )),

(25)

where �(κi(z)), i = 1, . . . ,m represent the i-column of Cr(z) or Vr(z).
From the fact that the system (25) has a solution we can conclude
that �(i)(κ1(zconf )), i = 1, . . . ,m − 1 can be written as a linear combi-
nation of �(κi(z)) i = 1, . . . ,m, where the linear coefficients depend on
ε1(z), . . . , εm−1(z). Therefore we conclude that there is a family of opera-
tors E(ε(z)) that satisfies the conditions (23) and (24).

Example 3.2. This is an example on how to define explicitly the
matrices E(ε(z)), whose existence is proved in Lemma 3.1. We omit the
variable z for the sake of clarity.

Suppose we have a 3 by 3 matrix C = [�(κ1) �(κ2) �(κ3)], where
�(κi), i =1,2,3 are 3×1 columns. We assume that κ1, κ2 and κ3 are con-
fluent roots such that

κ2 = κ1 + ε1,

κ3 = κ1 + ε2

and we define ε = (ε1, ε2). The system (25), for this particular case, has two
equations and by solving the system we get,

�
′
(κ1)≈ −ε2 + ε1

ε1ε2
�(κ1)− ε2

ε1(ε1 − ε2)
�(κ2)+ ε1

ε2(ε1 − ε2)
�(κ3),

�
′′
(κ1)≈ 2

ε1ε2
�(κ1)+ 2

ε1(ε1 − ε2)
�(κ2)− 2

ε2(ε1 − ε2)
�(κ3).

Therefore the matrix E(ε) such that

lim
ε→(0,0)

C(ε)E(ε)= [�(κ1) �
′
(κ1) �

′′
(κ1)]

is given by
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E(ε)=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 −ε1 + ε2

ε1ε2

2
ε1ε2

0 − ε2

ε1(ε1 − ε2)

2
ε1(ε1 − ε2)

0
ε1

ε2(ε1 − ε2)
− 2

ε2(ε1 − ε2)

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Theorem 3.3. The matrix C(z)V −1(z) is continuous.

The continuity problem of the matrix C(z)V −1(z) arises when for cer-
tain eigenvalues z the matrices C(z) and V (z) change because of the mul-
tiplicity of the κ’s. Hence the matrix is continuous if

lim
z→zconf

Cr(z)V
−1
r (z)=Cconf (zconf )V

−1
conf (zconf ), (26)

where z= zconf is the eigenvalue where the roots κ are confluent.
The equality (26) follows directly from the fact that exists a family of

matrices E(z) such that

lim
z→zconf

Cr(z)E(z)=Cconf (zconf ), lim
z→zconf

Vr(z)E(z)=Vconf (zconf ). (27)

Corollary 3.4. The function

d(z)=det C(z)/det V (z) (28)

is continuous.

This result follows from the continuity of C(z)V −1(z) and the definition
of the determinant.

Remark 3.5. For z∈ C, g(z)=0 if and only if d(z)=0.

The function d(z) has the same roots as g(z), it is a continuous func-
tion and also independent of ordering of κ’s. Therefore on trying to solve
g(z)= 0 for |z|> 1, we can have advantages in solving d(z)= 0 as it hap-
pens in Sec. 4.
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4. A NUMERICAL APPLICATION

In this section we present an algorithm for the stability of linear par-
abolic equations defined by Godunov–Ryabenkii theory. The central point
of our algorithm is the way we find the eigenvalues z ∈ C, with |z| > 1,
that are solutions of the determinant condition (18) and responsible for
the phenomenon of instability.

4.1. General Idea

The most recent approach to the creation of an algorithm for stability
investigation according to normal mode theory was given by Thuné [23,
24]. To investigate stability he used GKS theory for hyperbolic equations
[23] and hyperbolic systems [24], taking advantage of the special structure
of the system of algebraic equations whose solutions govern stability.

One of the difficulties associated with the determinant condition (18)
is that there are discontinuities, due to the changes of the multiplicities of
the κ’s. Thuné [24] writes about the problem of multiplicities in Sec. 5.1.
There, he notes (Lemma 6) that if κ(z0) has multiplicity greater than
one, then g1(z0)= 0, where g1(z) is the determinant for the case when all
eigenvalues have multiplicity one. Thus, he always used the form g1 of g.
If, during the iterative process, a solution z0 was found such that g1(z0)=
0, then he subsequently checked whether the corresponding κ’s had mul-
tiplicity one. If they had not, he went on to formulate g∗(z), the correct
g(z) with respect to these multiplicities. If g∗(z0)= 0, then z0 was truly a
solution, otherwise z0 was considered a false alarm.

In our case, one of the important tools that is applied to determine
the roots of g(z) is the choice of the function dr(z) defined by

dr(z)=det Cr(z)/det Vr(z). (29)

Suppose that the function dr(z) is a meromorphic function, meaning that
is analytic except for a finite number of poles, in a domain D,

D ={z∈ C : |z|<1+ r}, r real and positive. (30)

We assume those poles do not lie on the circle |z| = 1. Considering dr(z)

analytic in the annulus A, where A⊂D and is defined as

A={z∈ C : 1−α1 < |z|<1+α2}, α1, α2 real and positive, (31)
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we can approximate dr(z) by a Laurent series on A. Then for z∈A

dr(z)=
+∞∑

k=−∞
bkz

k with bk = 1
2πi

∮

C

dr(w)

wk+1
dw (32)

for all integer k, where C is the unit circle.
Our concern is to have a good approximation of the function dr(z)

around the unit circle since the onset of instability is when a root z crosses
the unit circle as µ and ν change. We denote S

n2
n1 (z) the truncated Laurent

series that approximates dr(z),

Sn2
n1

(z)=
n2∑

k=−n1

bkz
k. (33)

The functions dr(z) and S
n2
n1 (z) also depend on the parameters µ and ν

defined by (7), although we have omitted this in the notation, in the inter-
est of clarity. In the same way the z roots of dr(z) and S

n2
n1 (z) depend on

µ and ν, namely z(µ, ν).
The basic idea of our method is: for each (µ, ν) we first check the

practical von Neumann stability for the difference scheme. Inside the von
Neumann stability region we know the exact number of κ’s, the roots of
the characteristic equation, that are less than one in modulus for each z

with |z|>1, namely r. Once we find these roots κ, we order them by mag-
nitude so we can select the smallest first r roots and compute the func-
tion dr(z). The next step consists not in finding the z roots of the function
dr(z) but in counting the number of z roots, of the approximated function
S

n2
n1 (z), that lie inside the unit circle. With this counting process we expect

to detect when one of the z’s crosses the unit circle. Our numerical algo-
rithm is implemented using MATLAB.

Algorithm:

for ν =ν1 step νstep until νs

for µ=µ1 step µstep until µs

for θ =0 step θstep until 2π

a. Check von Neumann condition, by doing Un
j = zneijθ

and impose |z|�1.
endfor
if von Neumann unstable then

b. instability.
else

for θ =0 step θstep until 2π

c. z= eiθ .
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d. Compute roots κa(z) of the characteristic
equation.

e. Order roots by magnitude to find the κ’s
inside the unit circle.

f. Compute dr(z)=det Cr(z)/det Vr(z).
endfor
g. Compute Laurent series S

n2
n1 (z) that approximates

dr(z), by using the Fast Fourier Transform algorithm
incorporated in MATLAB.

h. Compute roots of zn1S
n2
n1 (z).

i. Count number of roots of zn1S
n2
n1 (z) that are less than

one in modulus.
endif

endfor
endfor

Suppose we fix ν. Then, the roots of dr(z) are continuous functions of µ,
z(µ). The instability is found when for some µ0 there is an eigenvalue z0 such
that |z0(µ0)|>1. When we approximate dr(z) by S

n2
n1 (z) we determine the insta-

bility point by counting the number of roots of S
n2
n1 (z) that are less than one in

modulus, as µ changes. If the number of z’s that are less than one in modulus
decreases at a certain µ0, then we have found the instability point, since one of
the roots that was less than one has become larger than one.

In Sec. 4.2 we apply the numerical algorithm described above to some
particular problems. By doing this we hope to give a better understanding
of how the algorithm works.

4.2. Test Problems

We consider a finite difference scheme associated with different numer-
ical boundary conditions: one of the examples was taken from [19],
where the stability of the problem is discussed analytically by using the
Godunov–Ryabenkii theory and the other examples were taken from [20],
where the stability analysis is studied by using matrix analysis. These prob-
lems were also discussed in [18]. In this section we obtain the stability
results by using the algorithm described in Sec. 4.1, and they are consis-
tent with those results obtained in [19,20].

We consider a finite difference scheme called Quickest that was intro-
duced by Leonard [10] in 1979 as an alternative to upwind and central
differences. The Quickest scheme for the convection–diffusion equation (1)
is given by,

Un+1
j = [1−2c1∆0 + c2δ

2 + c3δ
2∆−]Un

j , (34)
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where c1 = ν/2, c2 = ν2/2 +µ and c3 = (ν/6)(1 − ν2 − 6µ). The operators
in (34) are the usual central, backward and second difference operators,

∆0Uj := 1
2 (Uj+1−Uj−1), ∆−Uj :=Uj−Uj−1, δ2Uj :=Uj+1−2Uj+Uj−1.

Quickest uses a third-order upwinding on the convective derivatives
yielding a four-point scheme. Therefore, it uses two points upstream and
this approximation can not be used at the points x0 and x1. At the point
x0 we apply the Dirichlet boundary condition associated with the physical
boundary condition (3),

Un+1
0 =0 (35)

and at the point x1 we need to consider a numerical boundary condition.
We first consider the following numerical boundary condition:

Un+1
1 = [1−2c1∆0 + c2δ

2 + c3δ
2∆+]Un

1 , (36)

where ∆+Uj :=Uj+1 −Uj .
The eigenvalue problem associated with our approximation is given

by (34)–(36):

zφj = [1−2c1∆0 + c2δ
2 + c3δ

2∆−]φj , j �2, (37)

φ0 = 0, (38)

zφ1 = [1−2c1∆0 + c2δ
2 + c3δ

2∆+]φ1. (39)

The Godunov–Ryabenkii condition tell us that if the system (37)–(39) has
an eigenvalue z∈ C with |z|>1, then the approximation (34)–(36) is unsta-
ble. As explained before these eigenvalues z∈ C with |z|> 1 are the same
as the roots of the function d(z) defined by (28).

The characteristic equation for the interior scheme (34) is a cubic
equation of the form,

κ3(−c1 + c2 + c3)+κ2(−z+1−2c2 −3c3)+κ(c1 + c2 +3c3)− c3 =0.

(40)

From Lemma 2.3 this equation has not solutions κ =eiξ , ξ real for |z|>1
and there are exactly two solutions κi, i =1,2 with |κi |<1 for |z|>1.

In this particular example, the matrices Cr(z) and Vr(z) defined in the
beginning of Sec. 3 are given by

Cr(z)=
(

1 1
g1(κ1, z,µ, ν) g1(κ2, z,µ, ν)

)
, Vr(z)=

(
1 1
κ1 κ2

)
,
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where κ1 and κ2 are the solutions of the cubic equation (40) and the func-
tion g1(κ, z,µ, ν), associated with the numerical boundary condition (36),
is defined as

g1(κ, z,µ, ν)=κ3c3 +κ2(−c1 + c2 −3c3)+κ(1−2c2 +3c3 − z).

Using the matrices defined above, the function dr(z), given by (29),
can be written in the form

dr(z)= g1(κ2, z,µ, ν)−g1(κ1, z,µ, ν)

κ2 −κ1
. (41)

The function defined in (41) must be meromorphic in order to be
approximated by a Laurent series. We have that κ1 and κ2 are functions
of z. For z∈ C such that κ1(z) �=κ2(z), we can show that

dr(z)= (κ2
1 +κ1κ2 +κ2

2 )c3 + (κ1 +κ2)(−c1 + c2 −3c3)+1−2c2 +3c3 − z.

(42)

Consequently, the analyticity of the function dr(z) is associated with the
functions κi(z), i =1,2 that are solutions of the cubic equation (40).

Suppose we write the cubic equation (40) as

κ3 +a2κ
2 +a1κ +a0 =0, (43)

where

a2 = −z+1−2c2 −3c3

−c1 + c2 + c3
, a1 = c1 + c2 +3c3

−c1 + c2 + c3
, a0 = −c3

−c1 + c2 + c3
. (44)

Then for κi =xi −λ, with λ= (1/3)a2 and defining

p = 3a1 −a2
2

3
and q = 9a1 −27a0 −2a3

2

27
(45)

the cubic equation (43) can be written in the form

x3 +px +q =0. (46)

The solutions, xi ’s, of (46) satisfy the Newton’s identities and after some
algebra we have that

x2
1 +x1x2 +x2

2 =−p (47)

and therefore the roots, κi ’s, of the cubic equation (43) verify

κ2
1 +κ1κ2 +κ2

2 =−p +3λ2 −λ
q

p
. (48)
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According to (48) the function dr(z) given by (42) has poles at z∈ C such
that p(z)=0, this is, at z∈ C such that a2(z)=±√

3a1. Note that only the
coefficient a2 of (43) depends on z. Furthermore, from [19] we know that
κ1 + κ2 has a pole. Then, the function dr(z) is analytic except for a finite
number of poles, this is, it is a meromorphic function.

We approximate the function dr(z) by the truncated Laurent series
S

n2
n1 (z) defined on (33). Recall that the functions dr(z) and S

n2
n1 (z) depend

also on the parameters µ and ν. The coefficients bk on (33) are computed
using the fast Fourier transform algorithm in MATLAB and then we cal-
culate the roots of the polynomial function zn1S

n2
n1 (z). For each µ and ν

we count the roots, of this polynomial function, that are inside the unit
circle and we detect that for a certain value of µ and ν one of the z roots
that was inside the unit circle travels to the outside. The fact that the poly-
nomial function S

n2
n1 (z) approximates dr(z) on the unit circle assures us

that when a root of zn1S
n2
n1 (z) crosses the unit circle, this root approximates

one of the roots of dr(z).
In Fig. 1, we plot the z roots of the polynomial function z15S16

15(z)

for ν = 0.4 and µ changing, and we can observe that at some point one
of the z roots crosses the unit circle at z=−1. We show only the roots z

with |z| < 2, although we have 31 roots in total. Figure 2 plots the out-
put of the algorithm and we observe it is in agreement with the theoreti-
cal approach presented in [19]. The crossing at z=−1 in Fig. 1 was also
determined analytically in the same paper.

Next we apply the numerical algorithm to two additional numeri-
cal boundary conditions discussed in [20] and called, the Lax–Wendr-
off numerical boundary condition and the numerical boundary condition
using a fictitious point, given by

Un+1
1 = [1−2c1∆0 + c2δ

2]Un
1 (49)

and

Un+1
1 = [1−2c1∆0 + c2δ

2]Un
1 + c3(U2 −3U1 +βU1), (50)

respectively, where β = (−c1 + c2)/(c1 + c2). The interior scheme is still
defined by (34) with the Dirichlet boundary condition (35). However,
since we have a different numerical boundary condition the matrix Cr(z)

changes and instead of the function g1(κ, z,µ, ν) we have the func-
tions g2(κ, z,µ, ν) and g3(κ, z,µ, ν) associated, respectively, with the Lax–
Wendroff numerical boundary condition and the numerical boundary
condition using a fictitious point. Thus the functions g2 and g3 are as
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Fig. 1. Roots of the approximated function S16
15 (z) and the unit circle |z|=1.

follows:

g2(κ, z,µ, ν) = κ2(c1 − c2)+κ(z−1+2c2),

g3(κ, z,µ, ν) = κ2(c1 − c2 − c3)+κ(z−1+2c2 + (3−β)c3).

We obtain the stability regions plotted in Figs. 3a and b that are accord-
ing to the results in the paper by Sousa and Sobey [20]. In Fig. 3b we do
not have any Godunov–Ryabenkii eigenmodes since the method is stable
in all the von Neumann stability region.
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Fig. 2. Stability region for the downwind third difference numerical boundary condition:
von Neumann condition (–) and Godunov–Ryabenkii condition (- · -) using the numerical
algorithm with the approximated function S16

15 (z).

0.2 0.4 0.6 0.8 1 1.2 1.4

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

ν

µ
0.2 0.4 0.6 0.8 1 1.2 1.4

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

µ

ν

Fig. 3. von Neumann condition (–) using the numerical algorithm with the approximated
function S16

15 (z): (a) Stability region for the Lax–Wendroff numerical boundary condition; (b)
Stability region for the numerical boundary condition using a fictitious point.
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5. CONCLUDING REMARKS

The essential task when performing normal mode stability analysis is
to find the solutions of the determinant condition. In this paper, we have
presented a continuous function associated with the determinant condition
and the main idea amounts to a new way of looking at the phenome-
non of multiple roots. We have then taken advantage of this function to
build an algorithm for the implementation of stability analysis according
to Godunov–Ryabenkii theory.
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