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Abstract

In this paper we present high-order difference schemes for convection diffusion problems. When we apply high-order numerical meth-
ods to problems where physical boundary conditions are not periodic there is a need to choose adequate numerical boundary conditions
in order to preserve the high-order accuracy. Next to the boundary we do not usually have enough discrete points to apply the high-order
scheme and therefore at these nodes we must consider different approximations, named the numerical boundary conditions.

The choice of numerical boundary conditions can influence the overall accuracy of the scheme and most of the times do influence the
stability. Here, we discuss which orders of accuracy are reasonable to be considered at the numerical boundary conditions, such that we
do not pay a high price in accuracy and stability.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In order to compute approximate solutions for evolu-
tionary partial differential equations with either explicit
or implicit schemes, it is necessary to use some form of
local approximation; local in the sense that solution values
at local nodes are used to generate an approximate solution
value at a new time level. Explicit methods have the advan-
tage that they are easily extended to multidimensional
problems and the local variables are directly determined
from previously known quantities.

In finite differences it is usual to try to make the local
domain as compact as possible, for instance using only
adjacent nodes when updating at a node. The domain of
local approximation may need to be large because the
degree of the equation is high or it may need to be enlarged
to accommodate a higher-order local approximation for a
low order differential equation. In either case schemes are
usually derived for infinite space domains; when space
boundaries occur they prevent such high-order schemes
from being applied directly. One method to deal with the
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second of these situations, a high-order local approxima-
tion to a low-order equation, is simply to use a lower-order
scheme immediately near boundaries and use a high-order
scheme for the major part of the interior of the domain.
Whether this is useful will depend on the nature of the
problem being approximated. If interest is centered on
dynamics in the interior and on time scales where boundary
effects have not propagated to the region of interest, then
this will be a reasonable approximation. If the boundary
influences the interior quickly, little may be gained by using
a high-order scheme to accurately propagate low-order
errors from the boundaries to the interior.

Finite difference schemes are some times afflicted with
unwanted oscillations. Some of the ways to deal with
unwanted oscillations are: the incorporation of extra artifi-
cial viscosity terms into the basic difference equations; local
adaptative modification of the discrete scheme to force the
solution of the modified equations to have the right behav-
iour or a change from the simple difference scheme formu-
lae to the one based on upwind differencing adjusted to
conform to the flow direction in the solution.

Particular examples of alterations in the equations to be
solved are the well-known TVD (total variation diminishing)
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schemes [4] and ENO (essentially non-oscillatory) schemes
[5] for difference equations and the schemes SUPG (stream-
line upwind Petrov–Galerkin) [1] and GLS (Galerkin least
squares) [8] versions of the finite element method. This kind
of schemes are particularly important for a convection equa-
tion but also to some extend for a convection diffusion equa-
tion [7,12,14], where a major objective can be to inhibit or
prevent oscillations.

Simple upwind differencing has been a popular proce-
dure employed over the years in finite difference schemes
to reduce oscillations [15]. This idea was also extended to
finite element methods (see for instance [2,6]). High-order
methods have gained increased attention in recent years
[3] and the necessity of a higher-order scheme is many times
related to the fact that simple finite difference scheme for-
mulae generally suffer from either severe stability con-
straints (central differencing) or loss of accuracy through
too much numerical diffusion (upwind differencing).

The work described in this paper is focused on a class of
high-order schemes, for the convection–diffusion equation
which do allow non-physical oscillatory behaviour in the
solution. We derive a high-order scheme which reduces
the oscillations near sharply varying gradients. This is
achieved by using a discretisation that corresponds to an
upstream differencing on the convective term. For compar-
ison we use the Quickest (Quadratic Upstream Interpola-
tion for Convective Kinematics with Estimated Streaming
Terms) scheme derived by Leonard [11] that also relies in
an upstream differencing and present third-order accuracy.
This scheme is well known in the literature by its no numer-
ical diffusion and low dispersion.

Finite difference schemes typically consist of replace-
ment of the individual derivative terms in the partial differ-
ential equation by a set of discretised approximations (see
e.g. Smith [16]). However, different techniques have been
suggested for deriving finite differences for the unsteady
convection–diffusion equation (see e.g. Kolesnikov and
Baker [9], Morton and Sobey [13] and Xu et al. [20]).

Morton and Sobey [13], derived the Lax–Wendroff
scheme, due to Lax and Wendroff [10], and the Quickest
scheme, due to Leonard [11], using an evolution operator.
In this paper we derive high-order schemes using the evolu-
tion operator, associated to the convection–diffusion prob-
lem, considered in [13].

The major difficulty in using high-order schemes is due
to the presence of boundary conditions. Indeed, periodical
boundaries greatly simplify the implementation of high-
order schemes. However, there are physical models, such
as, in ocean modelling, that must take in consideration
the boundaries. Usually, in the literature little is said about
high-order difference schemes in the presence of non-peri-
odic boundary conditions since in the majority of cases,
to provide a modified scheme at a boundary which retains
the accuracy of the scheme used in the interior of the
domain will be very difficult. For the schemes derived we
will discuss which orders of accuracy are reasonable to be
considered at the numerical boundary conditions so that,
it will still be worthwhile to use a high-order scheme in
the interior.

An outline of the paper is as follows. In Section 2 we
describe higher-order schemes for the convection–diffusion
problem. Global error and truncation error are analyzed.
Also in this section, assuming periodic boundary condi-
tions, we derive stability conditions using the von
Neumann analysis. Section 3 is devoted to a convection–
diffusion problem with an inflow boundary. Since next to
the boundary we do not have enough discrete points to
apply the high-order schemes, we consider different numer-
ical boundary conditions. We finish this section with some
test problems. Although the order of accuracy of the over-
all scheme is influenced by the choice of a different scheme
near the boundary, in many situations to use a higher-order
scheme is still a better choice.
2. High-order schemes

Consider the one-dimensional problem with constant
velocity V in the positive x direction and constant diffusion
with coefficient D > 0:

ou
ot
þ V

ou
ox
¼ D

o
2u

ox2
; t > 0; x 2 R; ð1Þ

subject to the initial condition

uðx; 0Þ ¼ u0ðxÞ ð2Þ

and the boundary condition

uðx; tÞ ¼ 0 as jxj ! 1: ð3Þ

This initial value problem can be solved in closed form
using Fourier transforms in x to obtain the exact solution,

uðx; tÞ ¼ 1ffiffiffi
p
p

Z þ1

�1
u0 x� Vt þ 2

ffiffiffiffiffi
Dt
p

n
� �

e�n2

dn: ð4Þ

Let us choose a uniform time step Dt. Applying the result
to evolution over one time step, from time tn to
tnþ1 ¼ tn þ Dt write

uðx; tn þ DtÞ ¼
Z þ1

�1
uðg; tnÞGðx� g; DtÞdg;

where the Green’s function is given by

Gðz; sÞ ¼ 1ffiffiffiffiffiffiffiffiffi
Dps
p e�ðz�V sÞ2=4Ds:

As showed by Morton and Sobey [13] to derive either finite
difference or finite element approximations we substitute an
approximation to uðg; tnÞ in this integral, and exploit the
fact that the integration of a global polynomial can be car-
ried out exactly.
2.1. Finite difference schemes

Suppose we have approximations U n
j to the values

uðxj; tnÞ at the mesh points
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xj ¼ jDx; j ¼ 0;�1;�2; . . . ;

where Dx denotes the uniform space step. For this set of
values we denote Un :¼ fU n

jg and pjðx; UnÞ the interpolat-
ing polynomial, associated with the points xj, through U n

j

and the values at a certain number of neighboring points.
Then finite difference schemes can be generated from evolu-
tion of this interpolating approximation by

Unþ1
j ¼

Z þ1

�1
pjðg; UnÞGðxj � g; DtÞdg: ð5Þ

If the approximation scheme obtained comes from approx-
imating Un near xj by a polynomial pjðx; UnÞ, of degree R,

pjðx; UnÞ ¼
XR

r¼0

bjrðx� xjÞr; ð6Þ

then

Unþ1
j ¼ 1ffiffiffi

p
p

Z þ1

�1
pj x� V Dt þ 2

ffiffiffiffiffiffiffiffiffi
DDt
p

n; Un
� �

e�n2

dn:

When evaluating the previous integral we come across inte-
grals of the form

ar ¼
1ffiffiffi
p
p

Z þ1

�1
nre�n2

dn: ð7Þ

For r ¼ 0; 1; 2; . . . the values of the integrals can be ob-
tained using the recurrence relation:

a0 ¼ 1; a1 ¼ 0

ar ¼
1

2
ðr � 1Þar�2; r ¼ 2; . . . :

The approximate solution can be written as

U nþ1
j ¼ 1ffiffiffi

p
p

Z þ1

�1

XR

r¼0

bjr �V Dtþ2
ffiffiffiffiffiffiffiffiffi
DDt
p

n
� �r

e�n2

dn

¼
XR

r¼0

bjr
1ffiffiffi
p
p

Z þ1

�1

Xr

n¼0

r

n

� �
ð�V DtÞr�n 2

ffiffiffiffiffiffiffiffiffi
DDt
p� �n

nne�n2

dn

¼
XR

r¼0

bjr

Xr

n¼0

r

n

� �
ð�V DtÞr�n 2

ffiffiffiffiffiffiffiffiffi
DDt
p� �n

an;

where an is defined by (7). We have

Unþ1
j ¼ bj0 � bj1V Dt þ bj2 V 2ðDtÞ2 þ 2DDt

h i
� bj3 V 3ðDtÞ3 þ 6VDðDtÞ2

h i
þ bj4 V 4ðDtÞ4 þ 12V 2DðDtÞ3 þ 12D2ðDtÞ2

h i
� bj5 V 5ðDtÞ5 þ 20V 3ðDtÞ3DDt þ 60V DtD2ðDtÞ2

h i
þ � � � : ð8Þ

Within this framework one can obtain different high-order
schemes by different interpolations on a uniform mesh. We
use the usual central, backward, forward, second difference
and fourth difference operators,
D0U j :¼ 1

2
ðUjþ1 � U j�1Þ; D�Uj :¼ U j � U j�1;

DþU j :¼ Ujþ1 � U j; d2U j :¼ U jþ1 � 2U j þ U j�1; and

d4U j :¼ U jþ2 � 4Ujþ1 þ 6U j � 4U j�1 þ U j�2

to evaluate the coefficients bjr in terms of the nodal values
Un and obtain high-order schemes.

For the uniform space step Dx and time step Dt let:

l ¼ DDt

ðDxÞ2
; m ¼ V Dt

Dx
;

m is the Courant (CFL) number.
Quadratic interpolation: If we interpolate U j�1;U j and
Ujþ1, then

Unþ1
j ¼ 1� mD0 þ

1

2
m2 þ l

� �
d2

� �
U n

j : ð9Þ

Cubic interpolation: If we extend pjðx;UnÞ to include a cubic
term, that is, using U j�2 as well as Uj�1;U j and U jþ1, then

Unþ1
j ¼ 1� mD0þ

1

2
m2þl

� �
d2þ 1

6
mð1� m2� 6lÞd2D�

� �
Un

j :

ð10Þ
Quartic interpolation: If a quartic interpolant of
Uj�2; . . . ;U jþ2 is used then the approximation formula
for U nþ1

j becomes

Unþ1
j ¼ 1� mD0þ

1

2
m2þl

� �
d2þ1

6
mð1� m2�6lÞd2D�

�

þ 1

24
½12l2�2l�12lmð1� mÞþmð1� m2Þð2� mÞ�d4

�
Un

j :

ð11Þ

Quintic approximation: If a quintic interpolant of
Uj�3; . . . ;U jþ2 is used then the approximation formula
for U nþ1

j becomes

Unþ1
j ¼ 1� mD0þ

1

2
m2þl

� �
d2þ1

6
mð1� m2�6lÞd2D�

�

þ 1

24
12l2�2l�12lmð1� mÞþ mð1� m2Þð2� mÞ
	 


d4

þ 1

120
½�4mþ5ðm3þ6mlÞ�ðm5þ20m3lþ60ml2Þ�d4D�

�
Un

j :

ð12Þ
Note that the quadratic interpolation and the cubic inter-
polation are, respectively, the well-known Lax–Wendroff
scheme [10] and Quickest scheme [11]. The schemes not
yet studied in the literature are those obtained by the quar-
tic interpolation (11) and quintic interpolation (12).

We can also use this framework to generate schemes on
non-uniform meshes. The coefficients bjr in (6) are in this
case computed by taking into account that polynomial
interpolation is done through points not uniformly spaced.
This procedure originates difference operators on a non-
uniform mesh analogous to the central, backward, for-
ward, second difference and fourth difference.
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2.2. Global error and truncation error

The schemes in the previous section can be written in the
matricial form,

Unþ1 ¼ AUn; ð13Þ
where the matrix A contains the coefficients of the differ-
ence formulas. In order to have a matrix of finite dimen-
sions we assume that the boundary conditions are periodic.

For the exact solution, we denote un the set un :¼
fuðxj; tnÞg. The error En ¼ un �Un for the set of nodal
errors, is given by

Enþ1 ¼ AEn þ DtT n; ð14Þ
where T n is the truncation error. For any chosen norm for
the error, the practical stability requirement is that
jjAjj 6 1. Then a global error bound is given by

jjEnjj 6 jjE0jj þ Dt
Xn�1

j¼0

jjT jjj 6 jjE0jj þ ðnDtÞ max
06j6n�1

jjT jjj:

Since we assume the boundary conditions are periodic, the
stability conditions obtained by jjAjj2 6 1, where jj � jj2 is
the two-norm, are equivalent to the stability conditions ob-
tained using the von Neumann Fourier analysis [17].

The following local truncation error of the schemes can
be derived using the modified equation method as in [19] or
the Peano kernel theorem as in [13].
Quadratic interpolation: (Lax–Wendroff)

DtT n
j ¼

1

6
Dx3mð1� m2 � 6lÞUn

x3ðxjÞ

þ 1

24
Dx4ð12l2 � 2lþ 3m2ð1� m2 � 4lÞÞU n

x4ðxjÞ þ � � �

ð15Þ
Cubic interpolation: (Quickest)

DtT n
j ¼

1

24
Dx4ð12l2 � 2l� 12lmð1� mÞ þ mð1� m2Þ

� ð2� mÞÞU n
x4ðxjÞ þ � � � ð16Þ

Quartic interpolation: We have

DtT jxj
¼ 1

120
Dx5ð�4mþ 5ðm3 þ 6mlÞ

� ðm5 þ 20m3lþ 60ml2ÞÞU n
x5 þ � � � ð17Þ

Quintic interpolation: We have

DtT jxj
¼ 1

720
Dx6ð�12mþ 4ðm2 þ 2lÞ þ 15ðm3 þ 6mlÞ

� 5ðm4 þ 12m2lþ 12l2Þ � 3ðm5 þ 20m3lþ 60ml2Þ
þ ðm6 þ 30m4lþ 120l3 þ 180l2m2ÞÞUn

x6 þ � � �
ð18Þ

On theoretical grounds, over a finite interval of time these
estimates are sensitive to the values of m and l considered,
since l and m need not be constant and may vary depending
on how Dx and Dt are related when we refine the mesh.
Nevertheless, in general, we expect the quadratic interpola-
tion to be close to OðDx2Þ, the cubic interpolation close to
OðDx3Þ, the quartic interpolation close to OðDx4Þ and the
quintic interpolation should be OðDx5Þ.
2.3. Fourier stability analysis

Clearly, the von Neumann condition is very important
both practically and theoretically. Even for variable coeffi-
cient problems it can be applied locally (with local values of
the coefficients) and because instability is a local phenom-
enon, due to the high frequency modes being the most
unstable, it gives necessary stability conditions which can
often be shown to be sufficient.

The following important points should be noted con-
cerning the von Neumann method of examining stability.
The method which is based on Fourier analysis applies
only if the coefficients of the linear difference equation
are constant. Boundary conditions are neglected by the
von Neumann method which applies in theory only to pure
initial value problems with periodic initial data. It does
however provide necessary conditions for stability of con-
stant coefficient problems regardless of type of boundary
conditions.

If we assume periodic boundary conditions the von
Neumann analysis is based on the decomposition of the
numerical solution into a Fourier series as

Un
j ¼

XN

p¼�N

jn
p einpðjDxÞ

where i ¼
ffiffiffiffiffiffiffi
�1
p

, jn
p is the amplification factor of the pth

harmonic and np ¼ pp
NDx. The product npDx is often called

the phase angle:

h ¼ npDx

and covers the domain ð�p;pÞ in steps of p=N . The region
around h = 0 corresponds to the low frequencies while the
region h ¼ p is associated with the high frequencies. In par-
ticular, the value h ¼ p corresponds to the highest fre-
quency resolvable on the mesh, namely the frequency of
wavelength 2Dx.

Considering a single mode, jn eijh, its time evolution is
determined by the same numerical scheme as the complete
numerical solution U n

j . Hence inserting a representation of
this form into a numerical scheme we obtain a stability
condition by getting an upper bound for the amplification
factor, j.

The amplification factor is said to satisfy the von

Neumann condition if there is a constant K such that

jjðnÞj 6 1þ KDt 8n 2 R: ð19Þ

However, for some problems the presence of the arbitrary
constant in (19) is too generous for practical purposes,
although being adequate for eventual convergence in the
limit Dt! 0. In practice, the inequality (19) is substituted
by the following stronger condition:

jjðnÞj 6 1 8n 2 R: ð20Þ
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This has been called practical stability by Richtmyer and
Morton [15] or strict stability by other authors. In some
cases condition (19) allows numerical modes to grow expo-
nentially in time for finite values of Dt. Therefore, the prac-
tical, or strict, stability condition (20) is recommended in
order to prevent numerical modes from growing faster than
the physical modes of the differential equation.

Next, we present some results on stability based in the
von Neumann analysis for the four schemes.

The result that follows, about the Lax–Wendroff
scheme, can be found in various works such as Warming
and Hyett [19].

Proposition 1. A necessary and sufficient condition for

stability of the Lax–Wendroff scheme (the quadratic inter-

polation) is

m2 þ 2l 6 1:

The Quickest scheme is more complex than the Lax–
Wendroff scheme and consequently so is its von Neumann
stability analysis. A necessary stability condition for the
Quickest scheme was given by Leonard [11]. In the next
lemma we combine this necessary condition with an addi-
tional one.

Lemma 2. If the Quickest scheme (cubic interpolation) is

stable then

m2 þ 6l
1� 2m
3� 2m

6 1; m2 þ 6lð1� 2mÞP �2m: ð21Þ

Proof. The amplification factor for the Quickest scheme is
given by

jðhÞ ¼ 1� im sin h� ðm2 þ 2lÞð1� cos hÞ � m
3
ð1� m2 � 6lÞ

� ð1� e�ihÞð1� cos hÞ:

The necessary conditions (21) are obtained imposing
jjðpÞj 6 1 since for h ¼ p we have the fundamental fre-
quency that corresponds to the maximum wavelength.
The necessary condition given by Leonard [11], the first
condition of (21), was obtained from jðpÞP �1. We have

jðpÞ ¼ 1� 2ðm2 þ 2lÞ � 4m
3
ð1� m2 � 6lÞ

and if jjðpÞj 6 1 then

m2 þ 2lþ 2m
3
ð1� m2 � 6lÞ 6 1;

m2 þ 2lþ 2m
3
ð1� m2 � 6lÞP 0:

The conditions of the lemma follow from these
inequalities. h

Although analytical von Neumann necessary and suffi-
cient stability conditions have not been so far stated in
the literature for the Quickest scheme, they have been com-
puted numerically and plotted in papers by Leonard [11]
and Morton and Sobey [13]. In the following theorem how-
ever we provide the analytical necessary and sufficient con-
ditions for the Quickest scheme.

Theorem 3. Let a ¼ 2ml� ðm=3Þð1� m2Þ, n ¼ ð2lþ m2Þ2�
m2 þ 2að1� 2mÞ and d ¼ 4að2lþ m2 � m� aÞ. The Quickest

scheme is stable if and only if

(a) The condition �2lþ n� d 6 0 is satisfied;

(b) Let S ¼ fðl; mÞ : 0 6 n=2d 6 1g. For ðl; mÞ 2 S,

n2=4d 6 2l.
Proof. Considering the fact that

1� cos h ¼ 2 sin2ðh=2Þ and

sin2 h ¼ 4 sin2ðh=2Þð1� sin2ðh=2ÞÞ;

the modulus of the amplification factor of the Quickest
scheme is given by

jjðhÞj2 ¼ 1� 8l sin2ðh=2Þ þ 4½ð2lþ m2Þ2 � m2 þ 2að1� 2mÞ�
� sin4ðh=2Þ � 16að2lþ m2 � m� aÞ sin6ðh=2Þ:

Let s ¼ sin2ðh=2Þ then

jjðhÞj2 ¼ 1� 8lsþ 4½ð2lþ m2Þ2 � m2 þ 2að1� 2mÞ�s2

� 16að2lþ m2 � m� aÞs3:

It follows jjðhÞj2 ¼ 1þ 4s/ðsÞ, where for s 2 ½0; 1�,

/ðsÞ ¼ �2lþ ½ð2lþ m2Þ2 � m2 þ 2að1� 2mÞ�s
� 4að2lþ m2 � m� aÞs2:

The stability condition jjðhÞj 6 1 8h 2 R, is satisfied if and
only if the condition

/ðsÞ 6 0; s 2 ½0; 1�

is satisfied. To prove this condition it is necessary and suf-
ficient to prove that /ð0Þ 6 0, /ð1Þ 6 0 and that for
s� 2 ½0; 1� such that /0ðs�Þ ¼ 0 then /ðs�Þ 6 0.

We have that /ð0Þ ¼ �2l and it is negative for all l.
The inequality /ð1Þ 6 0 is true if and only if the condition
(a) of the theorem is satisfied. The zero of the function /0ðsÞ
is

s� ¼
ð2lþ m2Þ2 � m2 þ 2að1� 2mÞ

8að2lþ m2 � m� aÞ : ð22Þ

We want to find l and m such that 0 6 s� 6 1 and
/ðs�Þ 6 0. We have

/ðs�Þ ¼ �2lþ 1

4

½ð2lþ m2Þ2 � m2 þ 2að1� 2mÞ�2

4að2lþ m2 � m� aÞ : ð23Þ

The condition /ðs�Þ 6 0 is verified if and only if

½ð2lþ m2Þ2 � m2 þ 2að1� 2mÞ�2

16að2lþ m2 � m� aÞ 6 2l:

and this proves the theorem. h
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Fig. 1. Fourier stability region for: (a) quadratic and (b) cubic.
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We illustrate the stability conditions for the Lax–
Wendroff scheme and Quickest scheme in Fig. 1.

Although the analytical necessary and sufficient condi-
tions presented above, for the Quickest scheme have a cum-
bersome form, we can check for a fixed value of m or l for
which values the method is stable. For instance, if m ¼ 1=2
and we want to find for which values of l the method is prac-
tically stable, we have a ¼ l� 1=8, n ¼ 4ðl� 1=8Þðl� 3=8Þ
and d ¼ 4ðl� 1=8Þ2. The first condition of the theorem is
satisfied for all l, but the second condition gives us that
the method is practically stable for 0 6 l 6 9=8. Similarly,
if l = 0, then we easily can check that the conditions of
the theorem give us 0 6 m 6 1. Also, for m ¼ 0; 1 we have
that the method is stable for l 6 1=2.

All the values obtained by these examples are in agree-
ment with Fig. 1, which was computed numerically.

Now, let us give necessary stability conditions for the
schemes obtained by the quartic and quintic interpolations,
that we call, respectively, the quartic scheme and the quin-
tic scheme.

Proposition 4. (a) If the Quartic scheme is stable then

0 6 2a2 þ 4a3 � 8a4 6 1;

where a2 ¼ ðm2 þ 2lÞ=2; a3 ¼ mð1� m� 6lÞ=6 and a4 ¼
ð12l2 � 2l� 12lmð1� mÞ þ mð1� m2Þð2� mÞÞ=24. (b) If the

Quintic scheme is stable then

0 6 2a2 þ 4a3 � 8a4 � 15a5 6 1;

where

a5 ¼ ½�4mþ 5ðm3 þ 6mlÞ � ðm5 þ 20m3lþ 60ml2Þ�=120.

Proof. Let h ¼ nDx. The amplification factor is given by

jðhÞ ¼ 1� a1ðeih � e�ihÞ þ a2ðeih � 2þ e�ihÞ þ a3ðeih � 3

þ 3e�ih � e�2ihÞ þ a4ðe2ih � 4eih þ 6� 4e�ih þ e�2ihÞ
þ cðe2ih � 5eih þ 10� 10e�ih þ 5e�2ih � e�3ihÞ;
where a1 ¼ m=2, c = 0 for the quartic and c ¼ a5 for the
quintic. We can write, jðhÞ ¼ RðhÞ þ iIðhÞ, where

RðhÞ ¼ 1� 2a2ð1� cos hÞ � 2a3ðcos h� 1Þ2

þ 4a4ðcos h� 1Þ2 þ cð4ð1� cos4 hÞ
þ 15 cos hðcos h� 1ÞÞ

IðhÞ ¼ 2a1 sin hþ a3ð2 sin hðcos h� 1Þ � sin hÞ
þ cð4 sin hðcos h� 1Þ2 þ sin hÞ

For h ¼ p, we have IðpÞ ¼ 0 and RðpÞ ¼ 1� 4a2 � 8a3þ
16a4 þ 30c. If the schemes are stable then jjðpÞj 6 1, that is

2a2 þ 4a3 � 8a4 � 15c P 0; 2a2 þ 4a3 � 8a4 � 15c 6 1:

(a) For the quartic we have c = 0 and then

2a2 þ 4a3 � 8a4 P 0; 2a2 þ 4a3 � 8a4 6 1:

(b) For the quintic we have 0 6 2a2 þ 4a3 � 8a4�
15a5 6 1. h

Although we have obtained only necessary analytical sta-
bility conditions for the quartic and quintic schemes, in
Fig. 2, we plot necessary and sufficient conditions com-
puted numerically. We observe from these calculations that
for the quartic scheme, the conditions:

0 6 2a2 þ 4a3 � 8a4 6 1

are necessary and sufficient for stability.

2.4. Test problem: periodic boundary conditions

Consider the convection–diffusion problems (1) and (2),
for x 2 ½0; 1� and the initial condition f ðxÞ given by

f ðxÞ ¼ e�ðx�0:5Þ2=L2

; x 2 ½0; 1�: ð24Þ
The exact solution of this problem can be obtained from
the eigenfunctions of the spatial differential operator which
are sines and cosines. Hence, the solution is given by means
of a Fourier expansion:
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Fig. 2. Fourier stability region for: (a) quartic and (b) quintic.
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uðx; tÞ ¼
Xþ1

k¼�1
bke�4p2k2Dte2pkðx�VtÞi; ð25Þ

with

bk ¼
Z 1

0

e�ðx�0:5Þ2=L2

e2pkxi dx:

Since we are assuming that the boundary conditions are
periodic, the stability region for the numerical methods
considered are given by the von Neumann stability analysis
studied in the previous section and stated in Figs. 1 and 2.

In Fig. 3, we display the exact solution (25) for L ¼ 0:05
and different instants of time t ¼ 0; 0:4; 0:8.

Numerical experiments were conducted for different val-
ues of V and D and consequently different Courant num-
bers m and Péclet numbers Pe,

m ¼ V Dt
Dx

; Pe ¼ V Dx
D

:
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Fig. 3. Exact solution for t ¼ 0; 0:4; 0:8; L ¼ 0:05, V ¼ 0:5, D ¼ 0:001.
We display in Tables 1 and 2 the global error results for
small values of the diffusive parameter D, D ¼ 0:0001 and
D ¼ 0:000001. The rate of convergence increases from the
cubic scheme to the quintic scheme, according to the fact
that the schemes are generated by increasing the degree
of interpolation.

In Tables 3 and 4, the diffusive parameter D is closer to
the convective parameter V and we consider two different
Courant numbers, m ¼ 0:01 in Table 3 and m ¼ 0:1 in Table
4. The order of accuracy improves in all methods compar-
atively to the examples in Tables 1 and 2. Additionally, we
observe that the order of accuracy improves as the Courant
number increases. Furthermore, the cubic and quartic
methods evidences dispersive oscillations that are less pres-
ent in the quintic scheme (see Fig. 4). These oscillations
diminishes as the Courant number increases and com-
pletely disappear around m ¼ 0:8.

Additionally, in Fig. 4 we observe that high-order
upwind differencing (quintic scheme) seems to be a better
Table 1
Global L2 error of time converged solution for two mesh resolutions at
t = 0.8 for m = 1, V = 1, D = 0.0001

Schemes Dx = 0.01
(l = 0.01)

Dx = 0.001
(l = 0.1)

Convergence
rate

Cubic 0.19531 · 10�2 0.26399 · 10�4 1.87
Quartic 0.10578 · 10�2 0.14908 · 10�5 2.85
Quintic 0.87713 · 10�4 0.12417 · 10�7 3.85

Pe = 1000Dx.

Table 2
Global L2 error of time converged solution for two mesh resolutions at
t = 0.8 for m = 1, V = 1, D = 0.000001

Schemes Dx = 0.01
(l = 0.00001)

Dx = 0.001
(l = 0.0001)

Convergence
rate

Cubic 0.26944 · 10�4 0.85748 · 10�6 1.50
Quartic 0.15432 · 10�4 0.53192 · 10�7 2.48
Quintic 0.13799 · 10�5 0.49726 · 10�9 3.44

Pe = 100,000Dx.



Table 4
Global L2 error of time converged solution for two mesh resolutions at
t = 0.8 for m = 0.1, V = 0.5, D = 0.001

Schemes Dx = 0.01
(l = 0.02)

Dx = 0.001
(l = 0.2)

Convergence
rate

Cubic 0.136805 · 10�1 0.176549 · 10�4 2.88
Quartic 0.285106 · 10�2 0.105165 · 10�6 4.43
Quintic 0.511304 · 10�3 0.694070 · 10�9 5.86

Pe = 500Dx.
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Fig. 4. Solutions for t ¼ 0:8, V ¼ 0:5, D ¼ 0:001. Exact �; Numerical
solutions: cubic (-Æ), quartic (- -), quintic (–); m ¼ 0:1; Dx ¼ 0:03 (N = 30, N

number of nodes).

Table 5
Global L2 error of time converged solution for two mesh resolutions at
t = 0.8 for m = 0.01, V = 0.5, D = 0.01

Schemes Dx = 0.01
(l = 0.02)

Dx = 0.001
(l = 0.2)

Convergence
rate

Cubic 0.33183 · 10�3 0.44909 · 10�5 1.87
Quartic 0.21144 · 10�4 0.76775 · 10�9 4.44
Quintic 0.65020 · 10�6 0.84342 · 10�10 3.89

Pe = 50Dx.

Table 6
Global L2 error of time converged solution for two mesh resolutions at
t = 0.8 for m = 0.005, V = 0.1, D = 0.01

Schemes Dx = 0.01
(l = 0.05)

Dx = 0.001
(l = 0.5)

Convergence
rate

Cubic 0.47138 · 10�4 0.46721 · 10�5 1.00
Quartic 0.37026 · 10�6 0.17707 · 10�9 3.32
Quintic 0.16133 · 10�6 0.89163 · 10�10 3.23

Pe = 10Dx.

Table 3
Global L2 error of time converged solution for two mesh resolutions at
t = 0.8 for m = 0.01, V = 0.5, D = 0.001

Schemes Dx = 0.01
(l = 0.002)

Dx = 0.001
(l = 0.02)

Convergence
rate

Cubic 0.16248 · 10�1 0.59929 · 10�4 2.43
Quartic 0.33158 · 10�2 0.92258 · 10�6 3.56
Quintic 0.61252 · 10�3 0.68233 · 10�8 4.95

Pe = 500Dx.
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alternative than high-order central differencing (quartic
scheme). Although the smooth region accuracy of the
fourth-order scheme is good the downstream oscillation
problem is actually worse than the third-order. The quintic
scheme seems to be almost free of those oscillations. This is
due to the fact that we used an upstream differencing that
was adjusted to conform to the flow direction. This is better
understood if we consider l = 0 in (12) and (18).

The cases where the diffusive parameter D is more dom-
inant are shown in Tables 5 and 6. The order of accuracy of
the cubic and quintic seems to decrease considerably, spe-
cially in Table 6, where the convective parameter is even
smaller than in Table 5. The quartic in these cases seems
to be a good option. Note that in Table 6 the Courant
number was chosen to be m ¼ 0:005 in order that we can
run all schemes inside their stability regions.
In conclusion, the quartic is a good option for the cases
where the convective parameter is less dominant, that is,
small Péclet numbers and the quintic is by far the best
option for big Péclet numbers. These includes small values
of D, which is the case the convection–diffusion equation
approaches the non-diffusive hyperbolic equation.

3. In the presence of an inflow boundary condition

Consider the initial boundary condition problem with
the convection–diffusion equation (1) defined on the half-
line, x > 0, with the initial condition:

uðx; 0Þ ¼ f ðxÞ; x > 0 ð26Þ
and the boundary conditions

uð0; tÞ ¼ gðtÞ; t > 0 uðx; tÞ ! 0; x!1: ð27Þ
We are going to apply the high-order schemes studied ear-
lier to this problem. Therefore we need to consider numer-
ical boundary conditions. In this section we study which
numerical boundary conditions are more adequate for the
quartic and the quintic approximations.

3.1. Numerical boundary conditions

For the quintic approximation we need to consider
numerical boundaries at the first two nodes, j = 1 and
j = 2.

The first idea is to preserve the same degree of interpola-

tion. We derive numerical boundary conditions at j = 1
and j = 2 as follows: for j = 1 we interpolate the mesh
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points Uj�1; . . . ;U jþ4 and for j = 2 we interpolate the mesh
points U j�2; . . . ;Ujþ3. For j = 1 we get

Unþ1
j ¼ 1� mD0 þ

1

2
ðm2 þ 2lÞd2 þ 1

6
mð1� m2 � 6lÞd2Dþ

�

þ 1

24
½�ðm2 þ 2lÞ � 2mþ 2mðm2 þ 6lÞ

þðm4 þ 12m2lþ 12l2Þ�d2D2
þ

þ 1

120
½6mþ 5ðm2 þ 2lÞ � 5ðm3 þ 6mlÞ

�5ðm4 þ 12m2lþ 12l2Þ

�ðm5 þ 20m3lþ 60ml2Þ�d2D3
þ

�
U n

j : ð28Þ

For j = 2 we have

Unþ1
j ¼ 1� mD0 þ

1

2
ðm2 þ 2lÞd2 þ m

6
ð1� m2 � 6lÞd2D�

�

þ 1

24
½�ðm2 þ 2lÞ þ 2m� 2mðm2 þ 6lÞ

þðm4 þ 12m2lþ 12l2Þ�d4þ 1

120
½�4mþ 5ðm3 þ 6mlÞ

�ðm5 þ 20m3lþ 60ml2Þ�d2D3
�

�
Un

j : ð29Þ

At the first and second nodes, we can also choose lower de-
grees of interpolation: quadratic, cubic and quartic.

The quadratic interpolation at the first node, j = 1, leads
to the Lax–Wendroff scheme (9).

A cubic downwind interpolation at j = 1, that interpo-
lates the mesh points Un

j�1, Un
j , Un

jþ1 and Un
jþ2, is given by

Unþ1
j ¼ 1� mD0þ

1

2
m2þl

� �
d2þ1

6
mð1� m2�6lÞd2Dþ

� �
U n

j :

ð30Þ

A quartic interpolation at j = 1, that interpolates the points
Un

j�1, Un
j , Un

jþ1 and U n
jþ2 and U n

jþ3, is given by
Unþ1
j ¼ 1� mD� þ

1

2
ðm2 þ 2l� mÞd2 þ 1

6
mð1� m2 � 6lÞd2Dþ

�

þ 1

24
½�ðm2 þ 2lÞ � 2mþ 2mðm2 þ 6lÞ

þðm4 þ 12m2lþ 12l2Þ�d2D2
þ

�
: ð31Þ

At the second node, j = 2, we can consider the quadratic
interpolation (9), the cubic interpolation (10) and also the
quartic interpolation (11), derived previously.

Let us now describe in detail the schemes we are going to
study.

We consider the Quickest scheme (cubic interpolation)
with the third-order numerical boundary condition (30)
for a self contained study. Note that in [18] it is shown that
the Quickest scheme with the third-order numerical bound-
ary condition (30) or with the second-order boundary con-
dition (9) at j = 1 gives similar accuracy results.

We proceed as follows. We denote cubic3 the cubic
approximation with the numerical boundary condition
(30). For the quartic approximation we use the notation:

quarticj1
; j1 ¼ 2; 3; 4:

The value of j1 denotes the numerical boundary condition
considered at j = 1, according to its order of accuracy, that
is, j1 ¼ 2 denotes the scheme (9), j1 ¼ 3 denotes the scheme
(30) and j1 ¼ 4 denotes the scheme (31).

Similarly, for the quintic approximation we use the
notation

quinticj1j2
; j1; j2 ¼ 2; 3; 4; 5:

Now, we have an additional numerical boundary condi-
tion. The value j1 still denotes the boundary condition at
the first node, j = 1, and j2 denotes the numerical boundary
condition at the second node, j = 2. For the first node,
j1 ¼ 2; 3; 4 denotes the same as in the quartic scheme and
j1 ¼ 5 denotes the scheme (28). For the second node,
j2 ¼ 2 denotes the scheme (9), j2 ¼ 3 denotes the scheme
(10), j2 ¼ 4 denotes the scheme (11) and j2 ¼ 5 denotes
the scheme (29).

3.2. Global error and stability analysis

The numerical schemes studied, with the numerical
boundary conditions presented, can still be written in the
matricial form (13), although the matrix A is now different,
taking into account the numerical boundary conditions.
Furthermore, we still have the global error given by (14).

In this section, it is very likely that A is a non-normal
matrix and therefore the condition jjAjj 6 1, is not
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anymore an adequate stability condition as in Section 2.2.
We have

Enþ1 ¼ Anþ1E0 þ Dt
Xn

j¼0

AjT n�j:

Then a global error bound is given by

jjEnþ1jj 6 jjAnþ1jjjjE0jj þ ðnþ 1ÞDt max
06j6n

jjAjjjjjT n�jjj:

Furthermore, if jjAjj is a matrix such that jjAnjj 6 K, for
0 < nDt 6 T , then we say that we have Lax stability and

jjEnjj 6 KjjE0jj þ nDtKjjT n�1�jjj:

For A non-normal, there is usually a transient behaviour of
powers before they start to decay exponentially.

For our methods if qðAÞ > 1 the scheme is unstable. We
plot the regions where the schemes are unstable Figs. 5–7.
Note that outside the von Neumann stability region, shown
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Fig. 6. Quintic approximation with different numerical boundary conditions: (a
quintic44 (- Æ-); quintic43 (– –); quintic42 (� � �).
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Fig. 5. Quartic approximation with different numerical boundary condi-
tions: quartic4 (-Æ-); quartic3 (– –); quartic2 (� � �).
in Figs. 1 and 2, for the interior scheme, the numerical
methods with the numerical boundary conditions are still
unstable. Therefore, the small part, on the top left of Figs.
5–7, that is, for small l and m P 1, is unstable according to
the von Neumann analysis.

3.3. Test problem: an inflow boundary condition

If we consider the convection–diffusion problem (1), (26)
and (27), then an exact solution of this system on the half
line x P 0 is given by

uðx; tÞ ¼ 1ffiffiffi
p
p

Z t

0

gðt � sÞG�ðx; sÞds

þ 1ffiffiffi
p
p

Z þ1

Vt�x
2
ffiffiffi
Dt
p

f ðx� Vt þ 2
ffiffiffiffiffi
Dt
p

nÞe�n2

dn

� 1ffiffiffi
p
p

Z þ1

Vtþx
2
ffiffiffi
Dt
p

f ð�x� Vt þ 2
ffiffiffiffiffi
Dt
p

nÞeVx=De�n2

dn

ð32Þ

where the function G�ðx; sÞ is given by

G�ðx; sÞ ¼ x

2
ffiffiffiffi
D
p

s2=3
e�ðx�V sÞ2=4Ds:

Consider the initial data

uðx; 0Þ ¼ e�x2

; x > 0; uð0; tÞ ¼ 0; t P 0:

Our reason for considering this test case is that it is
straightforward to calculate an exact solution for this ini-
tial profile:

uðx; tÞ ¼ 1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4Dt þ 1
p e�

ðx�VtÞ2
4Dtþ1 Erfc � ðx� VtÞ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dtð4Dt þ 1Þ

p
 !"

�e�
ðxþVtÞ2
4Dtþ1 þ Vx

D
Erfc

ðxþ VtÞ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dtð4Dt þ 1Þ

p
 !#

; ð33Þ
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) quintic55 (–); quintic54 (-Æ-); quintic53 (– –); quintic52 (� � �). (b) quintic45 (–);
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Fig. 8. Exact solution defined by (33) at the times t ¼ 0; 5; 10; 20, for
V ¼ 0:5 and D ¼ 0:001.
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Fig. 7. Quintic approximation with different numerical boundary conditions: (a) quintic35 (–); quintic34 (- Æ-); quintic33 (– –); quintic32 (� � �). (b) quintic25 (–);
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where ErfcðxÞ ¼ 2ffiffi
p
p
R1

x e�s2
ds. The time evolution of the

solution is shown in Fig. 8, at the times t ¼ 0; 5; 10; 20
and for V ¼ 0:5 and D ¼ 0:001.

In what follows, for the initial solution uðx; 0Þ ¼ e�x2
, we

compute the approximate solutions for a finite domain
0 6 x 6 6 at t = 5.

Tables 7 and 8 show the global L2 error for the cubic,
quartic and quintic with different numerical boundary con-
ditions. In Table 7, we assume V ¼ 0:5, D ¼ 0:001 and in
Table 8 V ¼ 0:5, D ¼ 0:0001. The convergence in the sec-
ond case is slower, that is, for the same space step, the error
is smaller for D ¼ 0:001 (Table 7) than for D ¼ 0:0001
(Table 8). In the later case we have a steepest gradient, as
we can see in Fig. 10, and therefore to remove the oscilla-
tions is more difficult. Also the differences between Tables 7
and 8 confirms what was observed for the periodic case: the
quintic approximation shows to be considerably advanta-
geous over the quartic scheme for small values of D.
For the quartic, all the numerical boundary conditions
chosen seems to give good results. Note that the quartic2

performs quite well.
Concerning the quintic, if we take into account both

cases, D ¼ 0:001 (Table 7) and D ¼ 0:0001 (Table 8), the
best results seems to be given by quintic54, quintic44

(although similar to quintic45), and quintic35 (although sim-
ilar to quintic34).

In Figs. 9 and 10, we plot results for the cubic3, quartic4,
quintic54 and quintic35. The quintic presents smaller oscilla-
tions and they disappear more quickly as we refine the mesh.

We observe that in Table 7 the quintic with second-
order boundary condition at the first node becomes quite
good as we refine the mesh, although this is not an advan-
tage when using high-order schemes, since the main advan-
tage of considering an higher-order scheme is to get more
accuracy with less refined meshes.

The extension of this work to higher dimensions is easily
achievable. If we consider the two-dimensional convection–
diffusion problem:

ou
ot
þ V

ou
ox
þ W

ou
oy
¼ D

o2u
ox2
þ o2u

oy2

� �
ð34Þ

subject to the initial condition

uðx; y; 0Þ ¼ u0ðx; yÞ ð35Þ
we obtain the two-dimensional evolution operator

uðx; y; tnþ1Þ ¼
1

p

Z þ1

�1

Z þ1

�1
uðx� V Dt þ 2

ffiffiffiffiffiffiffiffiffi
DDt
p

n; y

� W Dt þ 2
ffiffiffiffiffiffiffiffiffi
DDt
p

s; tnÞe�n2�s2

dnds: ð36Þ
Therefore, by approximating uðx; y; tnÞ in (36) by a local
polynomial of degree K around the point ðxj; ykÞ, namely

pjkðx; yÞ ¼
XK

r;s¼0;rþs6K

brsðx� xjÞrðy � ykÞ
s
;

we can generate finite difference schemes in two dimensions
from the approximation:



Table 8
Global L2 error of time converged solution for three mesh resolutions: t = 5, x 2 ½0; 6�, D = 0.0001, V = 0.5, m = 0.01

Schemes Error L2 Convergence

Dx = 0.05 Dx = 0.025 Dx = 0.005 p

cubic cubic3 0.4225E�00 0.3222E�00 0.3845E�01 1.04

quartic quartic4 0.5304E�00 0.3160E�00 0.5252E�02 2.00
quartic3 0.4741E�00 0.3121E�00 0.5376E�02 1.95
quartic2 0.4348E�00 0.2955E�00 0.6430E�02 1.83

quintic5n quintic55 0.6185E�00 0.2728E�00 0.1373E�02 2.65
quintic54 0.2524E�00 0.1289E�00 0.1360E�02 2.27
quintic53 0.2708E�00 0.1397E�00 0.1298E�02 2.32
quintic52 0.5027E�00 0.2429E�00 0.3330E�02 2.18

quintic4n quintic45 0.2566E�00 0.1249E�00 0.1360E�02 2.28
quintic44 0.2589E�00 0.1277E�00 0.1350E�02 2.28
quintic43 0.2699E�00 0.1376E�00 0.1307E�02 2.31
quintic42 0.4298E�00 0.2071E�00 0.2401E�02 2.25

quintic3n quintic35 0.2672E�00 0.1328E�00 0.1246E�02 2.33
quintic34 0.2743E�00 0.1358E�00 0.1241E�02 2.34
quintic33 0.2791E�00 0.1420E�00 0.1236E�02 2.35
quintic32 0.3606E�00 0.1809E�00 0.1472E�02 2.39

quintic2n quintic25 0.2857E�00 0.1512E�00 0.1648E�02 2.24
quintic24 0.2901E�00 0.1532E�00 0.1650E�02 2.25
quintic23 0.2942E�00 0.1567E�00 0.1702E�02 2.24
quintic22 0.2280E�00 0.1724E�00 0.1964E�02 2.06

Convergence rate p: between Dx = 0.05 and Dx = 0.005.

Table 7
Global L2 error of time converged solution for three mesh resolutions: t = 5, x 2 ½0; 6�, D = 0.001, V = 0.5, m = 0.01

Schemes Error L2 Convergence

Dx = 0.1 Dx = 0.05 Dx = 0.01 p

cubic cubic3 0.2402E�00 0.1177E�00 0.3802E�02 1.80

quartic quartic4 0.2768E�00 0.7074E�01 0.8088E�03 2.53
quartic3 0.2529E�00 0.7733E�01 0.8099E�03 2.49
quartic2 0.2317E�00 0.7978E�01 0.8026E�03 2.46

quintic5n quintic55 0.2825E�00 0.2690E�01 0.8415E�03 2.53
quintic54 0.1174E�00 0.2195E�01 0.8417E�03 2.14
quintic53 0.1276E�00 0.2860E�01 0.8386E�03 2.18
quintic52 0.3817E�00 0.9638E�01 0.1091E�02 2.54

quintic4n quintic45 0.1506E�00 0.1956E�01 0.8429E�03 2.25
quintic44 0.1279E�00 0.2089E�01 0.8430E�03 2.18
quintic43 0.1283E�00 0.2687E�01 0.8407E�03 2.18
quintic42 0.3134E�00 0.7683E�01 0.9384E�03 2.52

quintic3n quintic35 0.1331E�00 0.2425E�01 0.8378E�03 2.20
quintic34 0.1396E�00 0.2638E�01 0.8378E�03 2.22
quintic33 0.1407E�00 0.3021E�01 0.8367E�03 2.23
quintic32 0.2396E�00 0.6033E�01 0.8034E�03 2.47

quintic2n quintic25 0.1474E�00 0.3870E�01 0.6957E�03 2.33
quintic24 0.1531E�00 0.4007E�01 0.6946E�03 2.34
quintic23 0.1580E�00 0.4270E�01 0.6939E�03 2.36
quintic22 0.1927E�00 0.5496E�01 0.6906E�03 2.45

Convergence rate p: between Dx = 0.1 and Dx = 0.01.
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U nþ1
jk ¼

1

p

XK

r;s¼0;rþs6K

brs

Z
R2

ð�V Dt þ 2
ffiffiffiffiffiffiffiffiffi
DDt
p

nÞr

� ð�W Dt þ 2
ffiffiffiffiffiffiffiffiffi
DDt
p

sÞse�n2�s2

dnds: ð37Þ
Un
jk denotes the approximations to the values uðxj; yk; tnÞ at

the mesh points ðxj; ykÞ ¼ ðjDx; kDyÞ; j; k ¼ 0;�1;�2; . . ..
We can proceed in a similar manner for a three-dimen-
sional problem.
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Fig. 10. Solutions for V ¼ 0:5 and D ¼ 0:0001. Exact solution ðþ þ þÞ; cubic3 (� � �); quartic2 (– Æ–); quintic54 (– –); quintic35 (–). (a) Dx ¼ 0:05; (b)
Dx ¼ 0:025.
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Fig. 9. Solutions for V ¼ 0:5 and D ¼ 0:001. Exact solution ðþ þ þÞ; cubic3 (ÆÆÆ); quartic2 (–Æ–); quintic54 (– –); quintic35 (–). (a) Dx ¼ 0:1; (b) Dx ¼ 0:05.
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4. Conclusion

Schemes of high-order have been developed for the dis-
cretisation of the convection–diffusion equation. Firstly, we
have derived the schemes for an infinite space domain and
have analysed its stability and numerical performance for
different values of the convective parameter V and the dif-
fusive parameter D and therefore different Courant num-
bers and Péclet numbers. The quintic scheme seems to be
good in general and, comparatively to the quartic scheme,
its best performance is for large Péclet numbers. We also
observe that to use a higher-order upstream differencing
(the quintic scheme) is a better alternative to a higher-order
central scheme (the quartic scheme). The smooth region
accuracy for the quartic scheme is good, but the down-
stream oscillation problem is actually worse than the cubic
scheme.
The second part of the paper is devoted to the presence
of an inflow boundary. Implementation of boundary con-
ditions can be problematic with such higher-order schemes.
Therefore, we present a number of numerical boundary
conditions that can be used in order to still benefit from
using a higher-order scheme at the interior. According to
the numerical results, it seems the quartic scheme performs
reasonable well with the numerical boundary conditions of
order OðDx2Þ, OðDx3Þ and OðDx4Þ. For the quintic at the
first node, next to the boundary, we can choose a numerical
scheme of order at least OðDx3Þ and at the second node we
are advised to choose an order not less than OðDx4Þ.

This lead us to conjecture that if we have a scheme of
higher-order, that is, OðDxnÞ, we are advised to choose at
the first node, next to the boundary, a scheme of order at
least OðDxn�2Þ and on the second node a scheme of order
at least OðDxn�1Þ.
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