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a b s t r a c t

The use of the conventional advection diffusion equation in many physical situations has
been questioned by many investigators in recent years and alternative diffusion models
have been proposed. Fractional space derivatives are used to model anomalous diffusion
or dispersion, where a particle plume spreads at a rate inconsistent with the classical
Brownian motion model. When a fractional derivative replaces the second derivative in a
diffusion or dispersion model, it leads to enhanced diffusion, also called superdiffusion.
We consider a one-dimensional advection–diffusion model, where the usual second-order
derivative gives place to a fractional derivative of order a, with 1 < a 6 2. We derive expli-
cit finite difference schemes which can be seen as generalizations of already existing
schemes in the literature for the advection–diffusion equation. We present the order of
accuracy of the schemes and in order to show its convergence we prove they are stable
under certain conditions. In the end we present a test problem.

� 2009 Elsevier Inc. All rights reserved.
1. Introduction

Fractional calculus is a useful mathematical tool for applied sciences and recently fractional differential equations have
found new applications in engineering, physics, chemistry, hydrology and other sciences. Some of the applications are given
in [1–6] to name just a few.

Fractional derivatives are used to model anomalous dispersion or diffusion. The physical experiments demonstrating the
anomalous diffusion have led to an intensive effort recently to find accurate and stable numerical methods that are also easy
to implement. Some numerical schemes have been developed for diffusion problems, [7–12] and for advection diffusion
problems [13,14]. However, the stability and convergence of numerical schemes for fractional partial differential equations
need further investigations. Finite difference schemes for fractional partial differential equations are more complex than the
usual finite difference schemes for partial differential equations since the fractional derivative of order a at a certain point x
is a local property only when a is an integer. Therefore it is expected that the theory involves information of the function
further out of the region close to the point at which we are computing the derivative. Additionally the approximations of
those fractional derivatives involve a number of points that changes according to how far we are from the boundary.

In this work, we derive finite difference schemes for a fractional advection diffusion equation proposed by Benson et al.
[15]. Benson et al. [15] use a fractional advection–dispersion equation to simulate transport processes with heavy tails and
demonstrate the equivalence between these heavy-tailed motions and transport equations that use fractional-order
derivatives.

The fractional advection diffusion equation proposed by Benson et al. [15], and used in several applications [2,5,6], can be
expressed as follows:
. All rights reserved.
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where u is the resident solute concentration, V is the average pore-water velocity, x is the spatial coordinate, t is the time, D is
the diffusion coefficient, a is the order of the fractional differentiation with 1 < a 6 2. The parameter b is the relative weight
of solute particle forward versus backward transition probability with �1 6 b 6 1. For �1 6 b 6 0, the transition probability
is skewed backward, while for 0 6 b 6 1 the transition probability is skewed forward.

If we define a fractional operator, ra
b , such as,
2ra
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; ð2Þ
Eq. (1) can be written in a simple form
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The Riemann–Liouville fractional derivatives of order a of a function uðx; tÞ, for x 2 ½a; b�;�1 6 a < b 61, are defined by
@au
@xa ðx; tÞ ¼

1
Cðn� aÞ

@n

@xn

Z x

a

uðn; tÞ
ðx� nÞa�nþ1 dn; n ¼ ½a� þ 1; x > a; ð4Þ

@au
@ð�xÞa

ðx; tÞ ¼ ð�1Þn

Cðn� aÞ
@n

@xn

Z b

x

uðn; tÞ
ðn� xÞa�nþ1 dn; n ¼ ½a� þ 1; x < b; ð5Þ
where Cð�Þ is the Gamma function. Another way to represent the fractional derivatives is by the Grünwald–Letnikov formula,
that is,
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where [a] denotes the integer part of a. Properties about the fractional derivatives can be found for instance in [16–18].
To determine our explicit schemes we use a variant of the Grünwald–Letnikov formula, in which the function evaluations

are shifted to the right or left and we obtain what is called the shifted Grünwald–Letnikov formula.The shift here corre-
sponds to replacing uðx� kDx; tÞ and uðxþ kDx; tÞ by uðx� kDxþ Dx; tÞ and uðxþ kDx� Dx; tÞ respectively, which does not
affect the limit as Dx! 0.

The reason to choose the shifted Grünwald–Letnikov formula is twofold. In one hand this is the way to obtain general-
isations of already existing schemes, that is, when a ¼ 2 we end up with schemes that are already known in literature for
the advection diffusion equation. The second reason is that the approximations of the derivatives obtained by using the clas-
sical Grünwald–Letnikov formula very frequently originate unstable numerical schemes, see for instance, [14].

The structure of the paper is as follows. In Section 2, we describe the finite difference schemes. Some of the numerical
schemes presented in the literature for this type of problems are implicit, but explicit schemes can be more appropriate
for transient problems and are easier to implement. Our schemes are explicit and can be seen as generalisations of already
existing schemes for the advection diffusion equation. In Section 3 the matricial form of the numerical schemes is given. In
Section 4 the convergence of the numerical methods is presented. In order to prove the convergence we show the accuracy of
the numerical schemes and prove they are stable under certain conditions. In Section 5, we present a test problem and the
numerical solution is compared with an exact solution. Finally in Section 6 we write some conclusions.
2. Finite difference schemes

In this section we develop finite difference schemes for the fractional advection diffusion Eq. (1). To derive a finite differ-
ence scheme we suppose there are approximations Un :¼ fUn

j g to the values Uðxj; tnÞ at the mesh points
xj ¼ jDx; j ¼ �N; . . . ;�2;�1;0;1;2; . . . ;N and tn ¼ nDt; n P 0;
where Dx denotes the uniform space step and Dt the uniform time step. For the uniform space step Dx and time step Dt, let
m ¼ VDt
Dx

and la ¼
DDt
Dxa :
The quantity m is called the Courant (or CFL) number and la is associated with the diffusion coefficient.
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To describe the finite difference schemes, we use the upwind, central and second difference operators, given respectively
by
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A discrete approximation to the fractional derivative terms is defined from the shifted Grünwald–Letnikov formulae,
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The fractional operator ra
b , defined by (2), is approximated by da

b=2Dxa where da
b is given by
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A finite difference scheme to approximate (1) can therefore have the form
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Here, an upwind discretisation for the advective term is considered and henceforth we call this scheme the upwind scheme.
Another approximation can be obtained by replacing the upwind operator with the central operator, such as,
Unþ1
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j � mD0Un
j þ

1
2
lad

a
bUn

j : ð12Þ
We call this scheme the central scheme, according to the discretisation of the advective term.
The third scheme is derived in a similar way to the Lax–Wendroff scheme [19] and therefore we call this scheme

Lax–Wendroff scheme. Let us expand u around time level n to obtain
unþ1 ¼ un þ Dt
@un

@t
þ Dt2

2
@2un
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From (3),
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@t2 ’ V2 @
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where the generally small (being multiplied by D) aþ 1 and higher-spatial-derivative terms have been dropped from (14).
Note that for D ¼ 0,
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Inserting (3) and (14) into (13) gives
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Therefore, the Lax–Wendroff scheme is of the form
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3. Matricial form of the finite difference schemes

All our explicit methods can be written in the form of a matrix equation. Assume the nodal points are
Un

j ; j ¼ �N; . . . ;�1;0;1; . . . ;N and that the boundary conditions are given, that is, we know the function values Un
�N and

Un
N for n ¼ 0;1;2; . . ..
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Introducing the vector Un ¼ Un
�Nþ1; . . . ;Un

�1;U
n
0;U

n
1; . . . ;Un

N�1

� �T the schemes may be written as matrix equations
Unþ1 ¼ MUn þ vn; n ¼ 0;1;2; . . . ; ð18Þ
where M is the ð2N � 1Þ � ð2N � 1Þ matrix iteration and vn contains boundary values. In what follows, we write out the
matrix M and the vector vn, for the numerical methods of the previous section.

The matrix iteration M has the form
M ¼ Aþ 1
2
laB; ð19Þ
where A and B are matrices of dimension ð2N � 1Þ � ð2N � 1Þ and A is related with the advection discretisations and B with
the diffusion discretisations.

For all the three schemes the matrix B is the same and is given by
B ¼ ð1þ bÞLþ ð1� bÞLT ;
where
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The vector vn is composed of two parts
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For the upwind scheme the matrix A and the vector vn
A are given respectively by the matrix AU and the vector vn
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For the central scheme the matrix A and the vector vn
A are given respectively by the matrix AC and the vector vn
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For the Lax–Wendroff scheme the matrix A is given by the matrix ALW , where
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4. Convergence of the finite difference schemes

In this section we study the convergence of the finite difference schemes. We start to prove the schemes are consistent
with Eq. (1) and we determine under which conditions they are stable. The stability analysis is done by using two methods:
the von Neumann analysis and the analysis of the behaviour of the norm of the matrix iteration of each scheme.

4.1. Consistency

In this section we analyse the truncation error, Tn
j , for the numerical schemes presented.

Let u ¼ uðx; tÞ be the solution of our equation. The fractional operator, ra
b , in all the three schemes is approximated by

da
b=2Dxa. Meerschaert and Tadjeran [14] proved that for the case of homogeneous boundary conditions this operator is

first-order accurate, that is,
da
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Therefore the upwind scheme has an order of accuracy OðDtÞ þ OðDxÞ þ OðDxÞ. Similarly for the central scheme we have
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and the order of accuracy is OðDtÞ þ OðDx2Þ þ OðDxÞ. For the Lax–Wendroff scheme we have
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The order of accuracy is OðDtÞ þ OðDx2Þ þ OðDxÞ. For small D, from (15), it follows:
Tn
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and the Lax–Wendroff scheme has an order of accuracy close to OðDt2Þ þ OðDx2Þ þ OðDxÞ.

4.2. Stability analysis of the finite difference schemes

In order to derive necessary stability conditions for the finite difference schemes, we apply the von Neumann analysis or
Fourier analysis. Moreover, we show sufficient stability conditions obtained by computing numerically the norm of the ma-
trix iteration of each scheme. These conditions allow to conclude that some of the analytical necessary conditions obtained
with the von Neumann analysis are necessary and sufficient conditions for stability.

Von Neumann analysis or Fourier analysis assumes that we have a solution defined in the whole real line. It is also applied
to problems with periodic boundary conditions since the solution is seen as a periodic function defined in R. Although von
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Neumann analysis gives necessary and sufficient stability conditions only when applied to pure initial value problems and to
problems with periodic boundary conditions, it is known that the von Neumann approach always yields necessary condi-
tions for stability even when we have problems with non-periodic boundary conditions.

The von Neumann analysis assumes that any finite mesh function, such as, the numerical solution Un
j will be decomposed

into a Fourier series as
Un
j ¼

XN

p¼�N

jn
peinpðjDxÞ; j ¼ �N; . . . ;N;
where jn
p is the amplitude of the pth harmonic and np ¼ pp=NDx. The product npDx is often called the phase angle h ¼ npDx

and covers the domain ½�p;p� in steps of p=N.
Considering a single mode jneijh, its time evolution is determined by the same numerical scheme as the complete numer-

ical solution Un
j . Hence inserting a representation of this form into a numerical scheme we obtain stability conditions. The

stability conditions will be satisfied if the amplitude factor j does not grow in time, that is, if we have jjðhÞj 6 1, for all h.
First we start to give some straightforward properties related to the coefficients gk; k ¼ 0; . . . ;2N.

Proposition 1. The coefficients gk; k ¼ 0; . . . ;2N satisfy

(i) g0 ¼ 1; g1 ¼ �a; g2 ¼ aða�1Þ
2!

and gk > 0; k P 3.
(ii)

P1
k¼2gk ¼ a� 1.
Proof

(i) We can write gk as
g0 ¼ 1 and gkþ1 ¼ �
ða� kÞ
kþ 1

gk; k P 1:

In particular, we have g1 ¼ �a and g2 ¼ aða� 1Þ=2 > 0. Since a� k < 0 for k P 3, by induction we can conclude that
gk > 0 for k P 3. P P
(ii) This result follows directly from 1
k¼0gk ¼ 0, since g0 þ g1 þ

1
k¼2gk ¼ 0 for g0 ¼ 1 and g1 ¼ �a. h

Let us start to consider the discretisation of the fractional diffusion equation, that is, of Eq. (1) with V ¼ 0. We have
Unþ1
j ¼ Un

j þ
1
2
lad

a
bUn

j : ð20Þ
To apply the von Neumann analysis we consider the problem defined in R and therefore the discrete operator da
b is given by
da
bUn

j ¼ ð1þ bÞ
X1
k¼0

gkUn
jþ1�k þ ð1� bÞ

X1
k¼0

gkUn
j�1þk: ð21Þ
Hence, the scheme (20) has the form
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j þ
1
2
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" #
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Note that for a ¼ 2, we have g0 ¼ 1; g1 ¼ �2; g2 ¼ 1 and gk ¼ 0 for all k P 3.
The following theorem concerns the stability of the numerical scheme (22).

Theorem 2. Let �1 6 b 6 1 and 1 < a 6 2. If the numerical scheme (22) is von Neumann stable, then la 6 21�a.

Proof. If we insert the mode jneijh into the scheme (22), we obtain the following amplification factor
jðhÞ ¼ 1þ 1
2
la ð1þ bÞ

X1
k¼0

gkeið1�kÞh þ ð1� bÞ
X1
k¼0

gke�ið1�kÞh

( )
:

Let us consider h ¼ 0 and h ¼ p. Note that the region around h ¼ 0 corresponds to the low frequencies while the region
around h ¼ p is associated with the high-frequencies. In particular, the value h ¼ p corresponds to the highest frequency
resolvable on the mesh, namely frequency of wavelength 2Dx.

For h ¼ 0 we have
jð0Þ ¼ 1þ 1
2
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X1
k¼0

gk þ ð1� bÞ
X1
k¼0

gk
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Since
P1

k¼0gk ¼ 0 then jð0Þ ¼ 1.
For h ¼ p, the amplification factor is given by
jðpÞ ¼ 1þ 1
2
la ð1þ bÞ

X1
k¼0

gk cosðð1� kÞpÞ þ ð1� bÞ
X1
k¼0

gk cosðð1� kÞpÞ
( )

:

Since cosðð1� kÞpÞ ¼ ð�1Þk�1 it follows:
jðpÞ ¼ 1þ 1
2
la �ð1þ bÞ

X1
k¼0

ak � ð1� bÞ
X1
k¼0

ak

( )
¼ 1� la

X1
k¼0

ak;
where ak ¼ ð
a
k Þ. The condition jjðpÞj 6 1 is equivalent to
la

X1
k¼0

ak 6 2:
Therefore, since
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6 2, that is, la 6 21�a. h

The following stability results are for the upwind and Lax–Wendroff schemes. The proofs are technically similar.

Theorem 3. Let �1 6 b 6 1 and 1 < a 6 2. If the upwind scheme (11) is von Neumann stable, then mþ 2a�1la 6 1.

Proof. For the upwind scheme the amplification factor is given by
jUðhÞ ¼ 1� mð1� e�ihÞ þ 1
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Therefore to have jjUðpÞj 6 1 we must have
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ak 6 2:
Moreover
2mþ la
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ak ¼ 2mþ la2a
and 2mþ la2a
6 2 implies mþ la2a�1

6 1. h

Theorem 4. Let �1 6 b 6 1 and 1 < a 6 2. If the Lax–Wendroff scheme (17) is von Neumann stable, then m2 þ 2a�1la 6 1.

Proof. The amplification factor for the Lax–Wendroff scheme is of the form
jLWðhÞ ¼ 1� m
2
ðeih � e�ihÞ þ m2
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� 	
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Similarly to have jjLWðpÞj 6 1 we must have
2m2 þ la
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k¼0

ak 6 2:
Moreover
2m2 þ la
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k¼0

ak ¼ 2m2 þ la2a
and 2m2 þ la2a
6 2 implies m2 þ la2a�1

6 1. h
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The derivation of stability conditions for the central scheme is harder than for the previous schemes. For the central
scheme of the classical advection diffusion equation, that is, for a ¼ 2, it was also hard. In fact, the stability analysis for this
scheme was controversial for some years because of the apparent difficulty of obtaining stability conditions, see for instance
[20]. The following theorem concerning the central scheme sets out necessary stability conditions. These conditions are not
as strong as the necessary conditions of the previous theorems, in the sense that they are less close to the respective nec-
essary and sufficient stability conditions, as we will see later on.

Theorem 5. Let �1 6 b 6 1 and 1 < a 6 2. If the central scheme (12) is von Neumann stable, then 2a�1la 6 1.

Proof. For the central scheme the amplification factor is given by
jCðhÞ ¼ 1� m
2

eih � e�ih
� 	

þ 1
2
la ð1þ bÞ

X1
k¼0

gkeið1�kÞh þ ð1� bÞ
X1
k¼0

gke�ið1�kÞh

( )
:

For h ¼ p we have
jCðpÞ ¼ 1� 1
2
la ð1þ bÞ

X1
k¼0

ak þ ð1� bÞ
X1
k¼0

ak

( )
and from Theorem 2 we know that jjCðpÞj 6 1 implies la 6 21�a. h

The well-known similar results for the advection diffusion equation are the following.

Theorem 6. Let a ¼ 2.

(i) The upwind scheme is von Neumann stable if, and only if, mþ 2la 6 1.
(ii) The Lax–Wendroff scheme is von Neumann stable if, and only if, m2 þ 2la 6 1.

(iii) The central scheme is von Neumann stable if, and only if, m2
6 2la 6 1.

Proof. The proof of (i), (ii) and (iii) can be found in various works such as [21,22,20] respectively. h

We have derived stability conditions for our schemes by using the von Neumann analysis. In what follows, we shall pres-
ent stability conditions by computing numerically the 2-norm of the matrix iteration of each scheme.

Let us consider the matricial form of the numerical schemes discussed in Section 4. For the exact solution, we denote un

the set un :¼ fuðxj; tnÞg. Any errors in a calculation based on (18) will grow according to
Enþ1 ¼ MEn þ DtTn; n ¼ 0;1;2; . . . ; ð23Þ
where En is the error En ¼ un � Un for the set of nodal errors and Tn is the truncation error analysed previously. For any cho-
sen norm for the error, a practical stability requirement is the condition
kMk 6 1: ð24Þ
Therefore a global error bound is given by
kEnk 6 kE0k þ Dt
Xn�1

j¼0

kTjk 6 kE0k þ ðnDtÞ max
06j6n�1

kTjk:
Although there are cases for which the condition (24) is too restrictive, in some situations, such as, problems with periodic
boundary conditions and Dirichlet boundary conditions, the stability conditions derived by using condition (24) with the
2-norm, are equivalent to the stability conditions obtained with von Neumann analysis [23]. The conditions derived here,
using the property (24), allow to conclude that some of the analytical necessary conditions obtained with the von Neumann
analysis are necessary and sufficient conditions for stability.

In Figs. 1–6 we plot kMk 6 1, where k � k is the 2-norm, for different values of b and a.
Fig. 1 shows the stability regions for the upwind and Lax–Wendroff schemes when b ¼ 0. The results displayed were

obtained with condition (24) and they are the same as the stability regions defined by the conditions given in Theorem 3
and Theorem 4, respectively. In Fig. 2 we observe the regions given by property (24) verify more conditions additionally
to the necessary stability condition presented in Theorem 5. In Figs. 1, 2 the regions for larger a are smaller.

In the case of the upwind for any b, we obtain the same stability conditions as for b ¼ 0.
For the Lax–Wendroff scheme when 3=2 6 a 6 2 the stability regions for all b are the same as for b ¼ 0, given in Theorem

4 as m2 þ 2a�1la 6 1 and shown in Fig. 1(b).
When 1 < a < 3=2 we have conditions slightly different for some negative values of b. For positive values of b they are

still the same as b ¼ 0. In Figs. 3 and 4 we plot the stability conditions for the Lax–Wendroff scheme when a ¼ 1:1;1:2;
1:3;1:4 to see the effect of changing b on the stability of the scheme.
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Fig. 1. Stability regions obtained with condition (24) for b ¼ 0 and a ¼ 2;1:8;1:6;1:4;1:2 (left to right). (a) Upwind scheme (11): these regions are defined
by mþ 2a�1la 6 1 also given in Theorem 3; For different values of b the stability regions are the same. (b) Lax–Wendroff scheme (17): these regions are
defined by m2 þ 2a�1la 6 1 also given in Theorem 4. For values of b such as �0:5 6 b 6 1 the stability regions are the same.
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Fig. 2. Stability regions obtained with condition (24) for the central scheme (12), with b ¼ 0 and a ¼ 2;1:8;1:6;1:4;1:2 (left to right). One of the conditions
that helps to define these regions is 2a�1la 6 1 given in Theorem 5.

μ
α

ν

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

ν

0

0.2

0.4

0.6

0.8

1

μ
α

0 0.2 0.4 0.6 0.8 1

Fig. 3. Stability regions obtained with condition (24) for the Lax–Wendroff scheme (17): (a) a ¼ 1:1 – The curves are plotted for b ¼ �1;�0:6 (left to right).
For �0:6 6 b 6 1 the stability regions are the same as for b ¼ �0:6; (b) a ¼ 1:2 – The curves are plotted for b ¼ �1;�0:7 (left to right). For �0:7 6 b 6 1 the
stability regions are the same as for b ¼ �0:7.
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For a ¼ 1:1, when�0:6 6 b 6 1 the stability regions are the same as for b ¼ �0:6, plotted in Fig. 3(a). In this figure we plot
the stability curve for b ¼ �1 and b ¼ �0:6. The curves that define the stability conditions for �1 < b < �0:6 fit between the
two curves plotted. Moreover, for b ¼ �1 the stability regions are smaller than for the rest of the b values, that is, as b in-
creases the regions become bigger. A similar behaviour is observed in the examples that follow.
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Fig. 4. Stability regions obtained with condition (24) for the Lax–Wendroff scheme (17): (a) a ¼ 1:3 – The curves are plotted for b ¼ �1;�0:8 (left to right).
For �0:8 6 b 6 1 the stability regions are the same as for b ¼ �0:8; (b) a ¼ 1:4 – The curves are plotted for b ¼ �1;�0:9 (left to right). For �0:9 6 b 6 1 the
stability regions are the same as for b ¼ �0:9.
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For a ¼ 1:2 and �0:7 6 b 6 1 the stability regions are the same as for b ¼ �0:7, shown in Fig. 3(b). Similarly, for a ¼ 1:3
and �0:8 6 b 6 1 the stability regions are the same as for b ¼ �0:8, plotted in Fig. 4(a). Finally, for a ¼ 1:4, when
�0:9 6 b 6 1, the stability regions are the same as for b ¼ �0:9. The curves for b ¼ �1 and b ¼ �0:9 are mainly the same
as can be seen in Fig. 4(b).

For the central scheme we obtain different regions for different values of b and a as can be seen in Figs. 5 and 6. As for the
previous cases the stability regions are bigger for larger values of b, that is, for b ¼ �1 we have the smallest region and for
b ¼ 1 the biggest region. For this scheme, according to Theorem 5, we know that 2a�1la 6 1. This condition is clearly dis-
played in Figs. 5 and 6, additionally to other conditions that we were unable to determine analytically.
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In general and for all the three schemes, for smaller a the stability regions are bigger, see Figs. 1–6. In practical compu-
tations this represents an advantage. Additionally, as Dx! 0, Dxa is larger for smaller a’s and la is smaller for smaller a’s and
therefore it is easier to be inside the stability region when running the numerical tests.

We close this section, by remarking that the stability region of the Lax–Wendroff scheme presents more advantages than
the stability region of the central scheme, since it is less restrictive. More in particular, for the central scheme, when la is
small, the Courant number m needs to be small for all a and b.

5. Numerical example

In this section we start to derive an exact solution for a fractional advection diffusion problem. We include the details on
how to obtain the exact solution since we believe this is of interest to the reader. Next, we present the numerical solution of
the problem by running experiments with the three numerical methods discussed previously and the errors are measured by
comparing the numerical solution with the exact solution.

5.1. Exact solution

Let us consider the problem when the transition of the solute particle is symmetric, that is, b ¼ 0. We have
@u
@t
þ V

@u
@x
¼ Drau; ð25Þ
for
2rau ¼ @
au
@xa þ

@au
@ð�xÞa

:

We define a problem on the whole line, x 2 R, and t > 0: The initial condition is defined as
uðx;0Þ ¼
u0; x 6 0;
0; x > 0;



ð26Þ
where u0 is a constant. The boundary conditions are given by
lim
x!�1

uðx; tÞ ¼ u0 and lim
x!1

uðx; tÞ ¼ 0: ð27Þ
In the following proposition, we derive the exact solution by using Fourier transforms.

Theorem 7. The exact solution for the fractional advection diffusion Eq. (25) subject to the initial condition (26) and with
boundary conditions (27) is of the form
uðx; tÞ ¼ u0 1� Fa
x� Vt

ðRDtÞ1=a

 !" #
; ð28Þ
where Fa is the cumulative probability function and R ¼ j cosðpa
2 Þj. For a–1 and x P 0 the cumulative probability function is de-

fined by
FaðxÞ ¼ 1� 1
2

Z 1

0
exp �xa=ða�1ÞUað/Þ

� �
d/; ð29Þ
where
Uað/Þ ¼
sinðpa/=2Þ
cosðp/=2Þ

� � a
1�a sinðpða� 1Þ/=2Þ

cosðp/=2Þ :
The function FaðxÞ for a–0 and x < 0 is computed using the identity
Fað�xÞ ¼ 1� FaðxÞ:
Note that Fað�1Þ ¼ 0 and Fað1Þ ¼ 1.

Proof. Applying the Fourier transform at (25) we obtain
d
dt

ûðk; tÞ ¼ ikVûðk; tÞ þ 1
2

Dð�ikÞaûðk; tÞ þ 1
2

DðikÞaûðk; tÞ; ð30Þ
where the well-known Fourier transforms for integer derivatives F½ðdn
=dxnÞf ðxÞ� ¼ ðikÞnf ðxÞ are extended to rational order
F @au
@ðxÞa
� �

¼ ðikÞa f̂ ðkÞ; F @au
@ð�xÞa
� �

¼ ð�ikÞa f̂ ðkÞ:
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This is an ordinary differential equation which solution is given by
ûðk; tÞ ¼ A exp
1
2
ð�ikÞaDt þ 1

2
ðikÞaDt þ ikVt

� �
; ð31Þ
where the constant A is determined using the initial condition, that is, A ¼ ûðk;0Þ. After some algebra we can write
ûðk; tÞ ¼ ûðk; 0Þ exp j cosðpa=2ÞjDtjkja þ ikVt
� 	

: ð32Þ
Therefore
ûðk; tÞ ¼ ûðk; 0ÞwðkÞ; ð33Þ
where
wðkÞ ¼ exp j cosðpa=2ÞjDtjkja þ ikVt
� 	

: ð34Þ
We note that wðkÞ is a characteristic function. The cumulative probability function determined by the characteristic function
and the density which is the differentiation of the cumulative probability will be denoted by FaðxÞ and faðxÞ respectively.
They are given by McCulloh et al. [24], where
F�1½wðkÞ� ¼ fa
x� Vt

ðRDtÞ1=a

 !
and F 0aðxÞ ¼ faðxÞ; for FaðxÞ defined by (29). Consequently, using the convolution property for Fourier transforms the inversion
of (33) is given by
uðx; tÞ ¼
Z 1

�1
uðs; 0Þfaðy� sÞds;
where
y ¼ x� Vt

ðRDtÞ1=a
and R ¼ j cosðpa

2
Þj:
Since uðx;0Þ ¼ 0 for x > 0 and uðx;0Þ ¼ u0 for x 6 0 we have
uðx; tÞ ¼
Z 0

�1
u0faðy� sÞds ¼ u0

Z 1

y
faðnÞdn:
Therefore
uðx; tÞ ¼ u0 lim
n!1

FaðnÞ � FaðyÞ
� �

¼ u0 1� FaðyÞ½ �:
Finally,
uðx; tÞ ¼ u0 1� Fa
x� Vt

ðRDtÞ1=a

 !" #
: � ð35Þ
Consider now the definition of a a-stable error function, Serfa
SerfaðzÞ ¼ 2
Z z

0
faðxÞdx:
Note that
SerfaðzÞ ¼ 2
Z z

0
faðxÞdx ¼ 2

Z z

�1
faðxÞdx� 1

2

� �
:

Therefore, we can also write the solution (28) in the form
uðx; tÞ ¼ u0

2
1� Serfa

x� Vt

ðRDtÞ1=a

 !" #
:

For a ¼ 2, which is the case Eq. (25) turns to be the conventional advection–diffusion equation, the solution is given by
uðx; tÞ ¼ u0

2
1� Erf

x� Vt

2
ffiffiffiffiffiffi
Dt
p

� �� �
; ð36Þ
where Erf is the error function.
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A similar solution to this one is the named Ogata and Banks solution [25]
Table 1
Global

Scheme

Upwind
Lax–W
Central
uðx; tÞ ¼ u0

2
1� Erf

x� Vt

2
ffiffiffiffiffiffi
Dt
p

� �
þ eVx=DErfc

xþ Vt

2
ffiffiffiffiffiffi
Dt
p

� �� �
; ð37Þ
where Erfc is the complementary error function. This is a solution of a slightly different problem which is defined in half-line,
that is, x P 0 with initial condition
uðx; 0Þ ¼ 0
and boundary conditions
uð0; tÞ ¼ u0 and uð1; tÞ ¼ 0:
We note that for very small diffusion the solutions are basically the same. Ogata and Banks [25] show that when the Peclet
number Vx=D is less than 500 we can neglect the second term of (37) and therefore we obtain the same solution as (36).

5.2. Test problem

Consider the fractional differential Eq. (25), for x defined in the interval ½�L; L�; t > 0 and subject to the initial condition
uðx;0Þ ¼
1; x 6 0;
0; x > 0:



ð38Þ
We consider L sufficiently large such that the boundary conditions are given by
uð�L; tÞ ¼ 1 and uðL; tÞ ¼ 0:
In Fig. 7, we plot the exact solution (28) for V ¼ 0:5;D ¼ 0:2 at t ¼ 1. We consider a ¼ 1:8;1:6;1:4;1:2.
Consider the vector uex ¼ ðuðx�N; tÞ; . . . ;uðx0; tÞ; . . . ;uðxN; tÞÞ, where u is the exact solution (28) and the vector

Uapp ¼ ðUðx�N; tÞ; . . . ;Uðx0; tÞ; . . . ;UðxN; tÞÞ, where U is the approximated solution given by the respective numerical method.
The error is defined by
ErrorðDxÞ ¼ kuexðDxÞ � UappðDxÞk1; ð39Þ
where k � k1 is the L1 norm.
We display in Tables 1–5 the global error results for V ¼ 0:5 and D ¼ 0:2 at t ¼ 1. In Table 1 we show the results for a ¼ 2.

For a ¼ 2, Eq. (1) becomes the advection–diffusion equation and the schemes upwind, central and Lax–Wendroff are well-
known schemes in the literature [26,21,27].

From Table 1–5, we observe that the rate of convergence is around one for the three schemes and for 1 < a 6 2, as should
be expected according to the analysis of Section 4.1.

The error of the central and Lax–Wendroff schemes is smaller than the error of the upwind scheme. This is illustrated
clearly, for instance, in Table 3. Since we saw the Lax–Wendroff scheme has better stability conditions than the central
scheme, we can infer the Lax–Wendroff scheme in general presents more advantages than the other two schemes.
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Fig. 7. Exact solution (28) for V ¼ 0:5;D ¼ 0:2 at t ¼ 1: a = 1.8 (–); a = 1.6 (– �–); a = 1.4 (� � �); a = 1.2 (––).

L1 error (39) of time converged solution for three mesh resolutions at t ¼ 1 for a ¼ 2.

s Dx ¼ 0:2 Dx ¼ 0:02 Dx ¼ 0:002 Convergence rate

0:6671� 10�1 0:7662� 10�2 0:7772� 10�3 0.97
endroff 0:5848� 10�1 0:6262� 10�2 0:6617� 10�3 0.97

0:5849� 10�1 0:6262� 10�2 0:6617� 10�3 0.97



Table 2
Global L1 error (39) of time converged solution for three mesh resolutions at t ¼ 1 for a ¼ 1:8.

Schemes Dx ¼ 0:2 Dx ¼ 0:02 Dx ¼ 0:002 Convergence rate

Upwind 0:7675� 10�1 0:9193� 10�2 0:8666� 10�3 0.97
Lax–Wendroff 0:6289� 10�1 0:6989� 10�2 0:6930� 10�3 0.98
Central 0:6297� 10�1 0:6988� 10�2 0:6931� 10�3 0.98

Table 3
Global L1 error (39) of time converged solution for three mesh resolutions at t ¼ 1 for a ¼ 1:6.

Schemes Dx ¼ 0:2 Dx ¼ 0:02 Dx ¼ 0:002 Convergence rate

Upwind 0:1016� 100 0:1340� 10�1 0:1191� 10�2 0.97
Lax–Wendroff 0:7156� 10�1 0:8808� 10�2 0:7364� 10�3 0.99
Central 0:7150� 10�1 0:8798� 10�2 0:7365� 10�3 0.99

Table 4
Global L1 error (39) of time converged solution for three mesh resolutions at t ¼ 1 for a ¼ 1:4.

Schemes Dx ¼ 0:2 Dx ¼ 0:02 Dx ¼ 0:002 Convergence rate

Upwind 0:1553� 100 0:2684� 10�1 0:2632� 10�2 0.89
Lax–Wendroff 0:1005� 100 0:1531� 10�1 0:1267� 10�2 0.95
Central 0:1002� 100 0:1527� 10�1 0:1262� 10�2 0.95

Table 5
Global L1 error (39) of time converged solution for three mesh resolutions at t ¼ 1 for a ¼ 1:2.

Schemes Dx ¼ 0:2 Dx ¼ 0:02 Dx ¼ 0:002 Convergence rate

Upwind 0:2364� 100 0:8397� 10�1 0:1321� 10�1 0.63
Lax–Wendroff 0:1935� 100 0:4868� 10�1 0:5992� 10�2 0.75
Central 0:1931� 100 0:4850� 10�1 0:5962� 10�2 0.76
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As a becomes closer to one the rate of convergence is slightly smaller and the error is larger, see Table 5. This is partly
related to the behaviour of the solution for smaller a, since for smaller a the solution is less smoother, as can be seen in
Fig. 7, what makes the exact solution harder to approximate accurately.

In Fig. 8 we display the numerical solution obtained by applying the Lax–Wendroff scheme with a large space step,
Dx ¼ 0:2, and a ¼ 1:2 and a ¼ 1:8. For a ¼ 1:2 the numerical solution suffers from oscillations which are typical of some
schemes and many times this phenomenon is related with fast changes on the solution or discontinuities. This symptom
disappears soon as we refine the mesh. For a ¼ 1:8 and the same mesh values the numerical solution does not present those
oscillations.

To check if the value of a is also related to the smaller convergence rate shown in Table 5, we present some more numer-
ical results for a larger time t and a larger value of the diffusive parameter D, since the solution is smoother (see Fig. 9).

In Tables 6 and 7 we show the global error results obtained by applying the Lax–Wendroff scheme with a ¼ 1:2 and
a ¼ 1:8. In Table 6 we present the results for a larger time, t ¼ 10. The convergence rate for a ¼ 1:2 has increased when com-
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Fig. 8. Exact solution (28) for V ¼ 0:5; D ¼ 0:2 at t ¼ 1 (–) and numerical solution (– �–): (a) a ¼ 1:2 and (b) a ¼ 1:8.
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Fig. 9. Exact solution (28) for a ¼ 1:2: (a) V ¼ 0:5; D ¼ 0:2 at t = 1 (– �–) and t = 10 (–); (b) V ¼ 0:5;D ¼ 0:3 at t ¼ 10.

Table 6
Global L1 error (39) of time converged solution at t ¼ 10 for V ¼ 0:5;D ¼ 0:2.

a Dx ¼ 0:3 Dx ¼ 0:03 Convergence rate

a ¼ 1:2 0:8347� 10�1 0:1226� 10�1 0.83
a ¼ 1:8 0:2559� 10�1 0:2837� 10�2 0.96

Table 7
Global L1 error (39) of time converged solution at t ¼ 10 for V ¼ 0:5;D ¼ 0:3.

a Dx ¼ 0:3 Dx ¼ 0:03 Convergence rate

a ¼ 1:2 0:6645� 10�1 0:8029� 10�2 0.92
a ¼ 1:8 0:2153� 10�1 0:2197� 10�2 0.99
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Fig. 10. Solution of (1) for V ¼ 0:5; D ¼ 0:2 at t ¼ 1 and for b = �1 (– �–), b = 1 (–): (a) a ¼ 1:8; and (b) a ¼ 1:6.
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Fig. 11. Solution of (1) for V ¼ 0:5; D ¼ 0:2 at t ¼ 1 and for b = �1 (– �–), b = 1 (–): (a) a ¼ 1:4; and (b) a ¼ 1:2.
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Fig. 12. Solution of (1) for V ¼ 0:5, D ¼ 0:2 at t ¼ 1 and for a = 1.8 (–); a = 1.6 (– �–); a=1.4 (� � �); a=1.2 (–): (a) b ¼ �1 and (b) b ¼ 1.
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pared with the results in Table 5. Therefore the smoothness of the solution influences in some way the rate of convergence.
When at time t ¼ 10 we consider a larger diffusive parameter, D ¼ 0:3, we have even better results, see Table 7. We also ob-
serve that in both tables for a ¼ 1:2 the rate of convergence is close to one, but smaller than the rate of convergence for
a ¼ 1:8. Therefore for values of a closer to 1, we have smaller rates of convergence.

To conclude this section we display a number of figures, Figs. 10–12, to give an idea of the effect of parameters a and b.
Note that when a ¼ 2 the Eq. (1) for b ¼ �1 is the same as for b ¼ 1. To compute the approximated solutions displayed in
Figs. 10–12 we have used the Lax–Wendroff scheme.
6. Conclusion

Finite difference methods for solving fractional advection–diffusion problems are given and named respectively as up-
wind, central and Lax–Wendroff schemes. These numerical schemes can be seen as generalisations of existing schemes
for the advection diffusion equation. The numerical methods are proved to be consistent and the order of convergence is
one. Since they are consistent its convergence is proved by showing they are stable under certain conditions. The central
and Lax–Wendroff schemes present smaller errors than the upwind scheme, although the rate of convergence is the same.
Additionally the stability region of the Lax–Wendroff scheme is more adequate than the stability region of the central
scheme since for small diffusive parameters la and larger Courant numbers m, the latter can be unstable.
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