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Abstract: The fractional derivative of order a, with 1 < « < 2 appears in several diffusion
problems used in physical and engineering applications. Therefore to obtain highly accurate
approximations for this derivative is of great importance. Here, we describe and compare
different numerical approximations for the fractional derivative of order 1 < « < 2. These
approximations arise mainly from the Griinwald-Letnikov definition and the Caputo definition
and they are consistent of order one and two. In the end some numerical examples are given, to

compare their performance.
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1. INTRODUCTION

The fractional derivative of order a for 1 < a < 2 in
diffusion problems is related to the mechanism of su-
perdiffusion. There are many analytical techniques to solve
fractional equations. But in many cases the reasonable
approach is to use numerical methods since the problems
have initial conditions, boundary conditions and source
terms that turns difficult to find an analytical solution.

Different models using fractional derivatives have been
proposed and there has been significant interest in develop-
ing numerical schemes to find their approximated solution.
Some papers where the evidence of fractional diffusion is
discussed are for instance Benson et al. (2000), Pachepsky
et al. (2000), Zhou et al. (2003), Huang et al. (2006).

Many numerical methods involving the fractional deriva-
tive that describes diffusion differ essentially in the way the
fractional derivative is discretized, see for instance, Shen
et al. (2005), Tadjeran et al. (2006), Yuste et al. (2005),
Sousa (2009), Zhang et al. (2007).

Approximations of fractional derivatives have more com-
plex formulas than the integer derivatives, since the frac-
tional derivative is non-local, that is, the calculation at
certain point involves information of the function further
out of the region close to that point. Consequently the
finite difference approximations of the fractional derivative
involve a number of points that changes according to how
far we are from the boundary.

This paper considers the different approaches presented
in the literature and compare their truncation errors and
order of consistency.

2. FRACTIONAL DERIVATIVES

We start to introduce different definitions of the fractional
derivative. There are a number of interesting books de-
scribing the analytical properties of fractional derivatives,

such as, Kilbas et al. (2006), Oldham et al. (1974), Pod-
lubny (1999) and Samko et al. (1993).

The usual way of representing the fractional derivatives is
by the Riemann-Liouville formula. The Riemann-Liouville
fractional derivative of order «, for x € [a, b], is defined by

1 ar

Digpu(e) = L(n — a) dz"

/ u(€)(x — &mode, (1)

a

where T'(+) is the Gamma function, n — 1 < a < n and
n = [a] + 1, with [o] denoting the integer part of «a.
Another way to represent the fractional derivatives is by
the Griinwald-Letnikov formula, that is, for o > 0

=)

kz (—1)k (Z) u(z — kAz). (2)

The Griinwald-Letnikov definition is a generalization of
the ordinary discretization formulas for integer order
derivatives. If we consider the domain IR the sum in (2)
is a series. This series converges absolutely and uniformly
for each o > 0 and for every bounded function u(zx).

The discrete approximations derived from the Griinwald-
Letnikov fractional derivative present some limitations.
First, they frequently originate unstable numerical meth-
ods and henceforth many times a shifted Griinwald-
Letnikov formula is used instead, see for instance, Meer-
schaert et al. (2004). Another disadvantage is that the
order of accuracy of such approaches is never higher than
one.

A different representation of the fractional derivative was
proposed by Caputo,
xr
1 d"u
o n—a—1
=7 —/— — d 3
sule) = g | G @ - 0" @)
a
where n — 1 < @ < n and n = [o] + 1. The Caputo
representation has some advantages over the Riemann-
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Liouville representation. The most well known is related
with the fact that very frequently the Laplace transform
method is used for solving fractional differential equations.
The Laplace transform of the Riemann-Liouville derivative
leads to boundary conditions containing the limit values of
the Riemann-Liouville fractional derivatives at the lower
terminal z = a. In spite of the fact that mathematically
such problems can be solved, there is no physical inter-
pretation for such type of conditions. On the other hand
the Laplace transform of the Caputo derivative imposes
boundary conditions involving integer-order derivatives
at the lower point x = a which usually are acceptable
physical conditions. Another advantage is that the Caputo
derivative of a constant is zero, whereas for the Riemann-
Liouville is not.

In the next propositions we state that by requiring a rea-
sonable behavior of the function u(x) and its derivatives,
we can relate the three definitions. These results can be
found respectively in Podlubny (1999) and Kilbas et al.
(2006).

Proposition 1. Let us assume that the function u(x) is
(n — 1) times differentiable in [a,b] and that the n-th
derivative of u(x) is integrable in [a,b]. Then, for every
n—1<a<n we have

D¢ u(x) = Depu(z), a <z <b.

Proposition 2. Let us assume that the function wu(z) is
a function for which the Caputo fractional derivative
Dgu(x) exists together with the Riemman-Liouville frac-
tional derivative D% u(x) in [a,b]. Then, for every n —
1 < a < n we have, fora <z <b,

2 dky (z

7a)7oz+k
o VT Car it )

Dgu(x) = Dipu(r) —
k=0

A modified definition of the Riemann-Liouville derivative
was introduced recently by Jumarie (2006). Although this
formulation may not have advantages compared with the
Caputo derivative in what concern numerical discretiza-
tions, we think it is worth mention. Forn — 1 < a < n is
given by

Fu(z) = ﬁ
X% (Zx;lf (©) - zsz <a)) (w — )"~ 2de. (4)

The main difference is that this definition does not require
the existence of the derivative of order n as is required by
the Caputo derivative.

3. DISCRETIZATION OF THE FRACTIONAL
DERIVATIVES

In this section, we describe different ways of discretizing
the fractional derivative.

3.1 Grinwald-Letnikov approximations

Let us define the mesh points
zj=a+jAzx, j=0,1...,N
where Az denotes the uniform space step.

The Griunwald-Letnikov formulae can lead immediately to
the approximation

L'k —a)

T T(—a)l(k+1) (6)

To implement the fractional difference method it is nec-
essary to compute the coefficients w,(f)7 where « is the
order of fractional differentiation. For that we can use the

recurrence relationships

(o3 [ 1
W) — 1 w}<€>:(1_a+

)w,(j‘)l, k=1,2,3,... (7)

This approach is suitable for a fixed value of a. In some
problems where a must be found, various values of «
need to be considered and this may be not the most
appropriated way. Instead of that relation we can use the
fast Fourier transform method.

When discretizing fractional differential equations we ob-
serve that in the literature the shifted Griinwald-Letnikov
formula is exhaustively used, since, as already mentioned,
the numerical approximations based in the unshifted for-
mula very frequently originates unstable numerical meth-
ods.

The shifted Grinwald-Letnikov formula is given by

1 - @
Dgﬁgu(ajj) = N Zwl(ﬂ )U(xj-&-l—k)- (8)
k=0

In the next result we give the leading term of the trunca-
tion error for both approaches and observe that although
they have the same order of consistency, O(Az), they are
slightly different.

Assuming that u(z) is a function that can be written in
the form of a power series

u(z) = Z amz™,

m=0
we can compare their truncation errors by observing the
behavior for each function of the form w,,(z) = ™.

Proposition 3. Let u,(xz) = ™. Then
(m—1—a)

a,Azx o i
Dgrp “um(zj) = D&pum(xy) + Afﬂw x

Page 2 of 6



+ O(Az?)

[ (145
5 )

zm:(—nr <T> (—a—r+1)

F(m + ]-) x(m—l—a)
Tim—a)’

(m—a) m (r—1)
Az x; m oy
= § 1) _or
+xj—i—A:cl“(—a) L_( ) <r>r—1—a

+ O(Az?)

= D¢ um(z;) + Az

(10)

3.2 Lubich approximations

The coefficients w,S ) on the equations (5) and (8) can be

considered as the coefficients of the power series for the
function (1 — 2)©

(1-2) Z w(a) k
as noted by Lubich (1986). We can say, for instance, that

n (5) the weights w,(f) assigned to the values u(xz — kAz),
are the first order N + 1 coefficients of the Taylor series
expansion of the function

ff(z) =1 -2)%

Lubich (1986) obtained approximations up to the six-th
order in the form

Aagwkuxjk

(11)

(12)

aAz
Dy ™ u(xy)

A . Zw(a)Uk 13)

The coefficients wl(f) are respectively the coefficients of the

Taylor series expansions of the corresponding generating
functions, f,(z), being p the order of consistency. For
p = 2, the function is given by

f3e) = (5 - 224 5"

Technically all the coeflicients w,(ca) can be computed using

any implementation of the fast Fourier transform.
For the coefficients w;z)

the coefficients w§z)

(14)

we can consider s = 0. For s # 0,
can be constructed such that
D%y (z)? = D%’Aw(:ﬂj)q, for all integer 0<g¢g<p-—1,
which results in the following system of equations

S @ L+ . ()
;;w]k T(catq+1)’ Zw] b

It is easy to see that in this case it makeb sense to choose
s=p.

The implementation of the fast Fourier transform consist
of the following. If f(z) is an analytic function in the closed

q=0,...,s—1.

unit disk, then its Taylor series converges there, and the
Taylor coefficients can be computed by Cauchy integrals:

> 1
_ E k _
- apz -, ap = -
27
k=0

27 * 1 f(2)dz, (15)

|z|=1

where the contour of integration is the unit circle traversed
once counterclockwise.

Setting z = €*?, with dz = izd$ shows that an equivalent
expression for ay is
2m

%/e_ik‘bf(ew)dd).

0

ap — (16)

These coefficients can be evaluated by the fast Fourier
transform.

In our particular case the analytic function f;'(2) is

fE?) =3 wMe, p=12, (17)
k=0
with the coefficients given by
27
(o) 1 —ik$ pay ig
wp =5 fe [y (e")do. (18)

0

Note that for a = 2 the coeflicients w,(f) can be easily
obtained. For instance, for p = 1

w(()g) =1, wf) = -2, w§2) =1, w,(f) =0, k>3

and for p =2

9 11

w((f) = -, wgz) = —6, wég) = —, wéz) = -2,
4 2
1
wf) = w,(f) =0, k>5

According to Lubich (1986), we have the following result.

Proposition 4. For any function u(z) sufficiently differen-
tiable, the approximation Dg’AIu(xj), satisfies

a,Ax «a
Dy ™ u(xj) — Dypu(z;) = O(AzP).
uniformly for z € [a,b], 0 < a < b < cc.

8.8 Caputo approzimations

In this section we derive numerical approximations based
on the Caputo derivative definition,

Diule) = ey | O =9 e

a

(19)

For each z;, we have that

Jj—1
2704Z

-'Ek+1
/ d§2

An usual way of approximating the Caputo derivative
Dgu(x;) is by

— &)1 de. (20)

D¢wu(zj) =
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a,Azx 1
D¢y u(z;) = m X

Tk+4+1

JRCRER:

Tk

j—1
w(wpr2) — 2u(zpsr) + ulzk)
x> A2

k=0

_ 1 w(xpro) — 2u(Tpyr) + ulay) Az i
Ax? 2—q OF

= dj i (u(Thy2) — 2u(@pyr) + u(zr))

>
Il
<)

for

djge=(j = k)" = (j —k—1)*7"
This is a first order approximation as stated in the next
result.

Proposition 5. Let u(x) be a function in C?[a,b] and 1 <
a < 2. Then
D%Zleu(wj) = Dgﬁu(%‘) + EC,l(xj)
with
2(x; — a)*™*

|Ec,(z))] < TG a)

O(Ax).
Let us now derive a second order approximation.

For z;, j=1,...,N — 1 we need to calculate

L5

s | B -9

a

(21)

We compute these integrals by approximating the second
order derivative by a linear spline s;(§), whose nodes and
knots are chosen at z, k =0,1,2,...,j. The spline s;(§)
is of the form

GEDY =2 (@k)s5.k(8),

e (22)

with s x(€), in each interval [x_1, xp41], for 1 <k < j—1,
given by

— T
M, Tp—1 < E LTy
Tp — Tp—1
S = Th41 *f
54 (8) LS < E<app
Tk41 — Tk
0 otherwise.
For k=0 and k = j, s;1(§) is of the form
T —
128 <<
s50(6) =4 10
0 otherwise
E—x5 1
ﬁv zj1 <<z
sig(§) =4 "7 Tt
0 otherwise.

Therefore, an approximation for (21) is of the form

1 7
m/sy‘(f)(l‘j—f)l_adf
1 J d%u 7

- F(2—a)kz_0d§2(m’“)/(xj —&) s k(§)dE,

a
and after some calculations we obtain
1 7
l—«
) L d
F(270&) /3]<£)(‘T] 5) 3

a

Ag?—@ J d*u
=0 —(Tr)a; k, 23
I'(4-a) ~ d§2( k) (23)
where

aje=(j—k+1)°"" =20 = k)" + (j -k —1)°77,
1<k<j-—-1
ajr=1Fk=7j.
For the mesh points x,k = 1,..., N — 1 the second order
derivative of (23) can be approximated by §?u;/Az? where
62 is the central second order differential operator
82uj = u(wj1) — 2u(z;) +u(rj-1).
Additionally, we also need to know the value of the second

order derivative at the boundary point zy. If we have a
physical boundary condition of the type
d*u

—— (@0) = bo

72 (27)

we can consider the given value. If this value is not
available at * = zg the second order derivative can be
approximated by 6oUy/Ax? where §y is the operator

50Uj = 2’UJ(£€]) — 5u(xj+1) + 4’U,(£L'j+2) — U(l’j+3). (28)

Finally, an approximation for D (x;) can be written as

a, Az Az~ d 2
DC” ’LL(,TJ) = m aj}050u0 + Zaj,ké Uk ¢ -
k=1

We have the following:

Proposition 6. Let u(x) be a function in C3[a,b] and 1 <
o < 2. Then

D™ u(x;) = Dgu(x;) + Ec(x;)

with ) _—
[Botey)] < X o)
Note that
a . oot . - dki (xia)iaJrk
D¢u(z) = Dypu(w) kZ:O ok (a)—l"(—a—i—k—i— 1)

that is
D u(z) = D2 +u(a) LDy Em O

RL C P(—a+1) D(—a+2)
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If we want a first order approximation for the derivative
D% u(x), we can use a first order approximation to
determine u'(a) by using the forward operator

Aju(zy) = u(wjs1) — u(w;)

At u(z;)
Ax
On the other hand if we want a second order approxima-

tion for the Riemman-Liouville derivative we can use the
second order approximation for the first derivative such as

—u(@jt2) + 4u(w;41) — 3u(z;)
2Ax

4. NUMERICAL TESTS

and

u(z;) = + O(Ax).

u(zj) = +0(Az?).

In this section, we present some numerical results. The
magnitude of the truncation error is compared for the
approximations discussed previously and their order of
consistency is confirmed.

4.1 Boundary conditions are zero

Consider the function u(r) = z* We have that, for
l<a<?2
«a a a 24 4—a
Déu(z) = Dypu(z) = Dgpu(z) = mx

Consider the vectors Uypp = (U(20),...,U(zn)), where U
is the approximated solution and ue, = (u(xo),...,u(zy)),
where u is the exact solution. The error is defined by

[t (AT) — Ugpp(AZ)|| o0, (29)

where || - || is the I, norm.

In Table 1 we compare the first order approximations and
in Table 2 we compare the second order approximations
for @ = 1.8. We observe in Table 1, that the approximation
based in the shifted Grinwald-Letnikov formula gives the
smaller error. In Table 2, the approximation based in the
Caputo derivative performs better.

Table 1. I, error (29) fora =1.8,0<z2 <1

Az Dg” D& D"

1/50 0.3778 x 100 0.4335 x 10~ T 0.1327 x 10°
1/500  0.3903 x 10! 0.4385 x 1072 0.1648 x 10~!
1/5000 0.3919 x 1072 0.4356 x 10=3  0.1845 x 10~2

Table 2. l, error (29) fora =1.8,0<z <1

Az Da,Am Da,Az

L C
1/50 0.6229 x 102 0.1496 x 10~2
1/500  0.5421 x 10~%  0.1602 x 104
1/5000 0.2511 x 1072 0.1678 x 10~6

Additionally, the approximation D%’Amu(x) starts to per-
form well for values of Az = 1/50 and Az = 1/500
but for quite small Az, such as, Az = 1/5000 we have
accuracy problems. Numerical problems related to this
approximation are also reported, for instance, in Diethelm
et al. (2004).

Note that for this approximation we have considered s = 0
in (13), since there was no significant differences in the
precision if we consider s = 1.

In Table 3 and 4, we do similar tests to the ones that
were done in Table 1 and 2, but now for @ = 1.2. The
conclusions are the same.

Table 3. I error (29) fora =1.2,0<z <1

Ao D D% D4

1/50 0.1633 x 10° 0.1118 x 10° 0.1379 x 10°
1/500  0.1697 x 10~Y  0.1142 x 1071 0.1425 x 10~!
1/5000 0.1717 x 1072 0.1145 x 1072 0.1431 x 10~2

Table 4. I error (29) fora =1.2,0<z <1

A A

Az D2 Dge

1/50 0.4006 x 102 0.1606 x 10~ 2
1/500  0.8689 x 10~%  0.1707 x 10~4
1/5000 0.4160 x 10=2  0.1716 x 106

4.2 Nonzero boundary conditions

Let us now consider for 0 < z < 1, the function
T

U(JU) = (1 _ J})5/2’
and a = 3/2. We have that

o _ 3z + 18z +3
) = T ) el = a)t

Note that
243z 20 + 15z
! _ " _
o) =sa—ymm Y@= qa e
and therefore
w0)=0 J'(0)=1  «"(0)=5.

The solution, D%, u(1/4), at * = 1/4, and considering six-
teen digits, is given by D%, u(1/4) = 9.138478192773535.

In Table 5 and Table 6 we compare the two approximations
based in the Griinwald-Letnikov definition and again its
confirmed the shifted formula gives smaller errors.

Table 5. First order error for « = 1.5 at
x=1/4
Ax DgLA’gu(l/4) error
1/60 9.372416532513057  0.2339 x 10°
1/600 9.160930732981797  0.2245 x 101
1/6000  9.140714295237558  0.2236 x 10—2
Table 6. First order error for « = 1.5 at
r=1/4
Az Dg’LAzu(l/4) error
1/60 8.504256221012128  0.6342 x 100
1/600 9.071845197716357  0.6663 x 10~1
1/6000 9.138478192773535  0.6701 x 10—2

Since the first order derivative at the left boundary is
not zero, the Caputo derivative and the Riemann-Liouville
derivative are different. In the next tables we present the
Riemman-Liouville derivative values based in the Caputo
approximations.

The approximations of the first order and second order
derivatives at the boundary point must be considered
as described in the previous section, that is, to obtain
a first order approximation for the Riemman-Liouville
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derivative, and assuming u(0) = 0 we need to consider
the approximation,

u(e) —u(zg) x; M

Ax IN—a+2)’
and to obtain a second order approximation,

Dyt u(ry) = DL u(y) +

Dy u(x;) = D u(x;)
o) ey = Su) ot
2Ax [(—a+2)

In Table 7 and Table 8 we show the performance of the

derivatives D;’LA_T’U(I) and D%’LAmu(x) and see that the

approximation D%LAIU(:C) is quite accurate.

Table 7. First order error for « = 1.5 at
x=1/4
Ax D?{’LA’fu(l/él) error
1/60 9.557038359800762  0.4186 x 100
1/600 9.183034203064997  0.4456 x 101
1/6000  9.143066643085710  0.4588 X 102
Table 8. Second order error for « = 1.5 at
x=1/4
Ax D;‘z’LAzu(l/4) error
1/60 9.151374640108251 0.1290 x 101
1/600 9.138618733987558  0.1405 x 103
1/6000  9.138479620502642  0.1428 x 105

Finally we present the results for the derivative based in
the second order Lubich approximation and it is again con-
firmed that for quite small space steps we have precision
problems.

Table 9. Second order error for a« = 1.5 at

x=1/4
Az Dg’Axu(l/Zl) error
1/60 9.087659189694477  0.5082 x 10~1
1/600 9.137964592304343  0.5136 x 1073
1/6000  9.140670631721150  0.2192 x 10~2

We conclude the second order approximation based in the
Caputo definition is a very good option.

5. CONCLUSION

We have presented and compared different numerical ap-
proximations for the fractional derivative. The approxima-
tion based in the shifted Griinwald-Letnikov definition is
the best option when considering first order approxima-
tions. For second order approximations, the approxima-
tion obtained from the Caputo definition performs better.
Additionally precision problems related with the Lubich
approximation are reported. These problems may be a
consequence of the fact that we are unable to compute
the weights with high accuracy.
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