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1. Fractional advection diffusion equation

In many applications, an equation commonly used to describe transport diffusive problems is the classical advection
diffusion (or dispersion) equation. The classical advection diffusion equation uses second-order Fickian diffusion which is
based on the assumption that solute particles undergo an addition of successive increments that are independent, where
identically distributed random variables have finite variance and the distribution of the sum of such increments is a normal
distribution. Therefore, the fundamental solutions of the classical advection diffusion equation are Gaussian densities.

The anomalous diffusion [1,2] extends the capabilities of models built on the stochastic process of Brownian motion,
which can be described by Lévy motion which assumes that significant deviations from the mean can occur, where large
jumps are more frequent than in the Brownian motion.

The fractional advection diffusion equation was firstly proposed by Chaves [3] to investigate the mechanism of super-
diffusion and with the goal of having a model able to generate the Lévy distribution. It was given by

∂u
∂t

+ V
∂u
∂x

= D


∂αu
∂xα

+
∂αu

∂(−x)α


, (1)

where u is the concentration, V is the average velocity, x is the spatial coordinate, t is the time,D is the diffusion coefficient,α
is the order of the fractional differentiationwith 1 < α ≤ 2. The fractional advectiondiffusion equationwas later generalized
by Benson et al. [4,5], to include a parameter β , given by
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∂αu
∂xα
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1
2
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β
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∂αu

∂(−x)α
, (2)

where β is the relative weight of solute particle forward versus backward transition probability. For −1 ≤ β ≤ 0, the
transition probability is skewed backward, while for 0 ≤ β ≤ 1 the transition probability is skewed forward. For β = 0, we
obtain the model presented in [3], that is, the transition of the solute particles is symmetric.

We consider an equation with a source term, which can be expressed as follows

∂u
∂t

+ V
∂u
∂x

= D∇
α
β u + p(x, t), (3)
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where the fractional operator is given by

∇
α
β u =

1
2
(1 + β)

∂αu
∂xα

+
1
2
(1 − β)

∂αu
∂(−x)α

. (4)

The interest in numerical methods for problems involving advection and fractional diffusion has been increasing in the
last years. Different tools have been applied, such as finite difference methods [6–8], finite volume methods [9], spectral
methods [10] and finite elementmethods for linear and nonlinear diffusion problems [11–17], just to name a few. However,
concerning the use of finite differences the numerical methods presented in the literature, which are second order in
time and space are in general implicit methods. In this paper, we develop an explicit numerical method which is second
order in time and space for fractional advection diffusion problems with source terms in unbounded and bounded domains
with homogeneous boundary conditions, by using a Lax–Wendroff-type time discretization procedure. Since the numerical
method is explicit, it is a more cost effective method than the implicit schemes. Additionally explicit methods are better
tools for problems where advection plays an important role. The classical Lax–Wendroff method was derived for hyperbolic
equations [18] and afterwards was extended for advection diffusion equations. This method uses a small stencil in time
and also uses extensively the original differential equation, that is, the discretization procedure converts time derivatives in
space derivatives.

Let us consider the problem defined in a domain R with an initial condition

u(x, 0) = f (x), x ∈ R

and boundary conditions

lim
x→−∞

u(x, t) = 0 and lim
x→∞

u(x, t) = 0.

If we have a bounded domain we assume

u(a, t) = 0 u(b, t) = 0,

since the problem can equally be considered in the whole real line by taking an extension where we have u(x, t) = 0, for
x ≤ a and x ≥ b.

The usual way of representing the fractional derivatives is by the Riemann–Liouville formula. The Riemann–Liouville
fractional derivatives of order α, for x ∈ [a, b], −∞ ≤ a < b ≤ ∞, are defined by

∂αu
∂xα

(x, t) =
1

Γ (n − α)

∂n

∂xn

 x

a
u(ξ , t)(x − ξ)n−α−1dξ, n − 1 < α < n (5)

∂αu
∂(−x)α

(x, t) =
(−1)n

Γ (n − α)

∂n

∂xn

 b

x
u(ξ , t)(ξ − x)n−α−1dξ, n − 1 < α < n (6)

where Γ (·) is the Gamma function and n = [α] + 1, with [α] denoting the integer part of α. Properties about the fractional
derivatives can be found for instance in [19–24].

The remainder of this paper is organized as follows. In Section 2,wedescribe the numericalmethod, including itsmatricial
form and in Section 3 we study the convergence based in the consistency and the stability analysis. The fourth section
includes some numerical tests which confirm the second order convergence of the numerical method and we end with
some final remarks.

2. Construction and implementation of the scheme

2.1. Discretization of the fractional operator

In this section, a numerical approximation to the Riemann–Liouville derivative is presented. We describe shortly the
approximation, which is second order accurate [25,26].

Consider first the left derivative, that is,

∂αu
∂xα

(x, t) =
1

Γ (2 − α)

∂2

∂x2

 x

−∞

u(ξ , t)(x − ξ)1−αdξ, 1 < α < 2. (7)

We consider the discretization domain xj = j1x, j ∈ Z. Let

Il
α(x) =

 x

−∞

u(ξ , t)(x − ξ)1−αdξ . (8)

First, the following approximation at xj is done,

d2

dx2
Il

α(xj) ≃
1

1x2
[Il

α(xj−1) − 2Il
α(xj) + Il

α(xj+1)]. (9)
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Secondly, we compute these integrals by approximating the function u by a linear spline slj(ξ), whose nodes and knots are
chosen at xk, k ≤ j, that is, an approximation to (8) becomes

I lα(xj) =

 xj

−∞

sj l(ξ)(xj − ξ)1−αdξ, (10)

where the spline slj(ξ) interpolates {u(xj, t), k ≤ j} in the interval (−∞, x]. We obtain,

I lα(xj) =
1

(2 − α)(3 − α)
1x2−α

j
k=−∞

u(xk, t)alj,k, (11)

where the alj,k are defined by

alj,k =

( j − k + 1)3−α
− 2( j − k)3−α

+ ( j − k − 1)3−α, k ≤ j − 1

1, k = j.
(12)

Therefore, from (9)–(12), we have an approximation of (7) given by

d2

dx2
Il

α(xj) ≃
1

1x2
1

Γ (2 − α)
[I lα(xj−1) − 2I lα(xj) + I lα(xj+1)]

≃
1x2−α

1x2Γ (4 − α)


j−1

k=−∞

u(xk, t)alj−1,k − 2
j

k=−∞

u(xk, t)alj,k +

j+1
k=−∞

u(xk, t)alj+1,k


.

Finally, an approximation to (7) can be given by δα
l u(xj,t)
1xα , where

δα
l u(xj, t) =

1
Γ (4 − α)

j+1
k=−∞

qlj,ku(xk, t), (13)

for

qlj,k = alj−1,k − 2alj,k + alj+1,k, k ≤ j − 1

qlj,j = −2alj,j + alj+1,j

qlj,j+1 = alj+1,j+1. (14)

We can write it as,

δα
l u(xj, t) =

1
Γ (4 − α)

∞
m=−1

qlj,j−mu(xj−m, t). (15)

Let us know consider the right derivative

∂αu
∂(−x)α

(x, t) =
1

Γ (2 − α)

∂2

∂x2


∞

x
u(ξ , t)(ξ − x)1−αdξ, 1 < α < 2. (16)

Similarly for the right derivative, let

Ir
α(x) =


∞

x
u(ξ , t)(ξ − x)1−αdξ . (17)

First, we do the following approximation at xj,

d2

dx2
Ir

α(xj) ≃
1

1x2
[Ir

α(xj−1) − 2Ir
α(xj) + Ir

α(xj+1)]. (18)

Similarly we approximate (17) by considering a linear spline, sdj (ξ), which interpolates {u(xk, t), k ≥ j} in the interval
[x, ∞). We obtain

Irα(xj) =


∞

xj
srj (ξ)(ξ − xj)1−αdξ =

1x2−α

(2 − α)(3 − α)

∞
k=j

u(xk, t)arj,k, (19)
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where

arj,k =

(k − j + 1)3−α
− 2(k − j)3−α

+ (k − j − 1)3−α, j + 1 ≤ k

1, k = j.
(20)

Therefore, from (18)–(20), we have an approximation given by

d2

dx2
Ir

α(xj) ≃
1

1x2
1

Γ (2 − α)
[Irα(xj−1) − 2Irα(xj) + Irα(xj+1)]

≃
1x2−α

1x2Γ (4 − α)


∞

k=j−1

u(xk, t)arj−1,k − 2
∞
k=j

u(xk, t)arj,k +

∞
k=j+1

u(xk, t)arj+1,k


.

Finally, an approximation of (16) can be given by δα
r u(xj,t)
1xα , where

δα
r u(xj, t) =

1
Γ (4 − α)

∞
k=j−1

qrj,ku(xk, t), (21)

for

qrj,k = arj−1,k − 2arj,k + arj+1,k, k ≥ j + 1

qrj,j = −2arj,j + arj−1,j

qrj,j−1 = arj−1,j−1. (22)

We can write it as,

δα
r u(xj, t) =

1
Γ (4 − α)

−1
m=−∞

qrj,j−mu(xj−m, t). (23)

Let us re-write the previous fractional operators. For that, let us define,

am =

(m + 1)3−α
− 2m3−α

+ (m − 1)3−α, m ≥ 1

1, m = 0
(24)

and

qm =

am−1 − 2am + am+1, m ≥ 1
−2a0 + a1, m = 0
a0, m = −1.

(25)

We can rewrite the fractional operators in the following way,

δα
l u(xj, t) =

1
Γ (4 − α)

∞
m=−1

qmu(xj−m, t), (26)

δα
r u(xj, t) =

1
Γ (4 − α)

∞
m=−1

qmu(xj+m, t). (27)

Note that we can extend easily all of these results to a bounded domain for which u(a, t) = u(b, t) = 0. In this case, we
consider an extension to the whole real line by assuming u(x, t) = 0 for x ≤ a and x ≥ b.

2.2. Numerical method

To derive a finite difference scheme we suppose there are approximations Un
:= {Un

j } to the values u(xj, tn) at the mesh
points

xj = j1x, j ∈ Z and tn = n1t, n ≥ 0,

where 1x denotes the uniform space step and 1t the uniform time step. Let

ν =
V1t
1x

and µα =
D1t
1xα

.

The quantity ν is called the Courant (or CFL) number and µα is associated with the diffusion coefficient.
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We derive a finite difference scheme using Taylor expansions. Let us expand u about time level n, that is, t = n1t , to
obtain

u(x, tn+1) − u(x, tn) = 1t
∂u
∂t

(x, tn) +
1t2

2
∂2u
∂t2

(x, tn) + O(1t3). (28)

Then, from (3),

∂2u
∂t2

(x, t) = −V
∂2u
∂x∂t

(x, t) + D∇
α
β


∂u
∂t

(x, t)


+ pt(x, t) (29)

∂2u
∂x∂t

(x, t) = −V
∂2u
∂x2

(x, t) + D
∂

∂x
[∇

α
β u(x, t)] + px(x, t). (30)

Therefore, a spatial finite-difference approximation can be obtained by dropping out the α+1 and higher-spatial-derivative
terms, from the previous equalities, holding

∂2u
∂t2

(x, t) ≃ V 2 ∂2u
∂x2

(x, t) − Vpx(x, t) + pt(x, t). (31)

Inserting (3) and (31) into (28) gives

u(x, tn+1) ≃ u(x, tn) + 1t


−V
∂u
∂x

(x, tn) + D∇
α
β u(x, tn) + p(x, tn)


+

1
2
1t2


V 2 ∂2u

∂x2
(x, tn) − Vpx(x, t) + pt(x, t)


. (32)

Therefore (32) can be written in the form

u(x, tn+1) ≃ u(x, tn) − V1t
∂u
∂x

(x, tn) + 1tD∇
α
β u(x, tn) +

1
2
∆t2V 2 ∂2u

∂x2
(x, tn) + 1tp̃(x, t), (33)

where

p̃(x, t) = p(x, t) +
1
2
1t(−Vpx(x, t) + pt(x, t)).

The difference (un+1
− un) becomes

u(x, tn+1) − u(x, tn) = Un+1
j − Un

j . (34)

Let us define the following operators,

∆0Un
j =

1
2
(Un

j+1 − Un
j−1), δ2Un

j = Un
j+1 − 2Un

j + Un
j−1 (35)

and the fractional operator

δα
βu(xj, tn) =

1
2
(1 + β)δα

l u(xj, tn) +
1
2
(1 − β)δα

r u(xj, tn). (36)

If we discretize the first derivative with the central difference operator, the second order derivative with second order
difference operator and the fractional derivative with the respective fractional difference operator, from (33), we have

Un+1
j = Un

j − ν∆0Un
j + µαδα

βU
n
j +

1
2
ν2δ2Un

j + 1tp̃nj , (37)

where p̃nj = p̃(xj, tn).
If we do not know the source term and only know a discrete set of values, we need to approximate the values of the

partial derivatives. Therefore we can use the forward difference in time to approximate pt(x, t) and the central difference
in space to approximate px(x, t). In this case we obtain

p̃(xj, tn) ≈ pnj +
1
2
1t


−V

pnj+1 − pnj−1

21x
+

pn+1
j − pnj

1t



=
1
2
(pn+1

j + pnj ) −
ν

4
(pnj+1 − pnj−1),

where pnj = p(xj, tn).
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2.3. Matricial form

For a better understanding on how to implement the numerical method we give the matricial form of the method. We
have the numerical scheme

Un+1
j = Un

j − ν∆0Un
j +

1
2
ν2δ2Un

j + µαδα
βU

n
j + 1tp̃nj ,

where

δα
βU

n
j =

1
2
(1 + β)δα

l U
n
j +

1
2
(1 − β)δα

r U
n
j . (38)

To build the matricial form we assume our solution has compact support. Therefore, the numerical method can be written
in the matricial form

Un+1
= MUn

+ bn
+ pn (39)

where Un
= [Un

1 · · ·Un
N−1]

T , pn
= [1tp̃n1 · · · 1tp̃nN−1]

T , bn contains the boundary values, and M is an (N − 1) × (N − 1)
matrix given by

M = A +
1

2Γ (4 − α)
µαB

where A and B are (N − 1) × (N − 1) matrices. The matrix A is related with the advection and the matrix B with diffusion.
The matrix B is given by

B = (1 + β)Q + (1 − β)Q T

where

Q =



q0 q−1 0 · · · 0
q1

. . .
...

...
. . . 0

q−1
qN−2 . . . q1 q0


.

The vector bn is composed of two parts bn
= bn

A + bn
B, where the vector bn

A contains the boundary values related to the
matrix A and the vector bn

B contains the boundary values related to the matrix B. We have bn
= 0, since we are assuming

Un
0 = Un

N = 0. The matrix A is given by

A =


1 − ν2 ν(ν − 1)/2

ν(ν + 1)/2
. . .

. . . ν(ν − 1)/2

ν(ν + 1)/2 1 − ν2

 .

3. Convergence analysis

In this sectionwe analyze the convergence of the numericalmethod using the framework of consistency and stability.We
have the global error given by En

= un
− Un, where un and Un are respectively exact and approximate solutions. Therefore,

En+1
= MEn

+ 1tT n,

where the matrixM contains the coefficients of the difference formulas and T n is the truncation error. Then

En+1
= Mn+1E0 + 1t

n
k=0

T kMn−k.

We have

∥En+1
∥ ≤ ∥Mn+1

∥ ∥E0∥ + 1t
n

k=0

∥T k
∥ ∥Mn−k

∥.

If ∥Mk
∥ ≤ C, for all 0 ≤ k ≤ n + 1, it follows,

∥En+1
∥ ≤ C∥E0∥ + (n + 1)1tC max

0≤k≤n
∥T k

∥.
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Regarding the consistency, let u = u(x, t) be the exact solution and let us assume p(x, t) = 0. The truncation error at each
discrete point xj, is given by

T n
j =

un+1
j − un

j

1t
+ V

un
j+1 − un

j−1

1t
− V 2 1t

2

un
j+1 − 2un

j + un
j−1

1x2
−

D
21xα

δα
βu

n
j

=


∂u
∂t

n

j
+

1t
2


∂2u
∂t2

n

j
+ O(1t2) + V


∂u
∂x

n

j
+ O(1x2)

− V 2 1t
2


∂2u
∂x2

n

j
+ O(1x2) − D(∇α

β u)
n
j + O(1x2),

since the fractional operator is O(1x2) [25,26]. From (31), it follows that

T n
j =


∂u
∂t

n

j
+ O(1t2) + V


∂u
∂x

n

j
+ O(1x2) + O(1x2) − D(∇α

β u)
n
j + O(1x2),

and the numerical method has an order of accuracy close to O(1t2) + O(1x2).
In order to derive stability conditions for the finite difference schemes, we apply the von Neumann analysis or Fourier

analysis. Note that if the scheme is von Neumann stable then the finite difference method is Lax stable in the 2-norm, which
means ∥Mn

∥2 is bounded for all n [27]. Fourier analysis assumes that we have a solution defined in the whole real line. If un
j

is the exact solution u(xj, tn), let Un
j be a perturbation of un

j . The perturbation error

enj = Un
j − un

j (40)

will be propagated forward in time according to the equation

en+1
j = enj − ν∆0enj +

1
2
ν2δ2enj + µαδα

β e
n
j . (41)

The von Neumann analysis assumes that any finite mesh function, such as, the error enj will be decomposed into a Fourier
series with terms given by κn

p e
iξp( j1x), where κn

p is the amplitude of the p-th harmonic. The product ξp1x is often called the
phase angle θ = ξp1x and covers the domain [−π, π].

Considering a single mode κneijθ , its time evolution is determined by the same numerical scheme as the error enj . Hence
inserting a representation of this form into a numerical scheme we obtain stability conditions. The stability conditions will
be satisfied if the amplitude factor κ does not grow in time, that is, if we have |κ(θ)| ≤ 1, for all θ .

The next lemma characterizes the coefficients qm, defined by (25), and it follows straightforward from some of the
properties presented in [26].

Lemma 1. Consider the coefficients qm defined by (25). Then, for 1 < α ≤ 2,

(a) We have q−1 = 1, q0 = 23−α
− 4 ≤ 0, q1 = 33−α

− 4 × 23−α
+ 6, which can be positive or negative depending on the

value of α, that is, q1 ≤ 0 for α ≤ 1.5545 and q1 ≥ 0 otherwise. Also

qm = (m + 2)3−α
− 4(m + 1)3−α

+ 6m3−α
− 4(m − 1)3−α

+ (m − 2)3−α
≥ 0, m ≥ 2.

(b) limm→∞ qm = 0 , q−1 + q1 ≥ 0 and qm+1 ≤ qm ≤ q2.
(c)


∞

m=2 qm = −q−1 − q0 − q1 = −3 + 3 × 23−α
− 33−α and


∞

m=−1 qm = 0.

First we consider the case β = 0.

Theorem 2. For β = 0, the numerical method is von Neumann stable if, and only if,

ν2
− µα

1
2Γ (4 − α)

∞
m=−1

(−1)mqm ≤ 1, 1 < α ≤ 2. (42)

Proof. For β = 0 we have,

κ(θ) = 1 − iν sin θ + ν2(cos θ − 1) +
µα

Γ (4 − α)

∞
m=−1

qm cos(mθ),

that is,

|κ(θ)|2 =


1 + ν2(cos θ − 1) +

µα

Γ (4 − α)

∞
m=−1

qm cos(mθ)

2

+ [ν sin θ ]
2.
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Let us consider θ = π , which corresponds to the highest frequency resolvable on themesh, namely frequency ofwavelength
21x. We have

κ(π) = 1 − 2ν2
+

µα

Γ (4 − α)

∞
m=−1

(−1)mqm.

Therefore |κ(π)| ≤ 1 gives

0 ≤ ν2
− µα

1
2Γ (4 − α)

∞
m=−1

(−1)mqm ≤ 1,

and it is proved condition (42) is a necessary condition.
Let us now turn to the sufficient condition, that is, if we have condition (42) then |κ(θ)| ≤ 1, for all θ . We have that

∞
m=−1

qm cos(mθ) = (q−1 + q1) cos(θ) + q0 +

∞
m=2

qm cos(mθ)

and since q−1 + q1 ≥ 0 and qm ≥ 0, m ≥ 2 we get
∞

m=−1

qm cos(mθ) ≤ (q−1 + q1) cos θ + q0 +

∞
m=2

qm = (q−1 + q1)(cos θ − 1).

From the fact that
∞

m=−1

qm cos(mθ) ≤ 0

we have

|κ(θ)|2 ≤


1 + ν2(cos θ − 1) +

µα

2Γ (4 − α)

∞
m=−1

qm cos(mθ)

2

+ [ν sin θ ]
2.

Therefore

|κ(θ)|2 ≤


1 − ν2(1 − cos θ) −

µα

2Γ (4 − α)
(q−1 + q1)(1 − cos θ)

2
+ [ν sin θ ]

2,

For

C = ν2
+

µα

2Γ (4 − α)
(q−1 + q1),

it follows

|κ(θ)|2 ≤ [1 − C(1 − cos θ)]2 + [ν sin θ ]2

= [1 − 2C sin2(θ/2)]2 + ν2 sin2 θ

= 1 − 4C sin2(θ/2) + 4C2 sin4(θ/2) + 2ν2 sin2(θ/2) − 2ν2 sin4(θ/2).

Let s = sin(θ/2). Then

|κ(θ)|2 ≤ 1 − [4C − 2ν2
]s2 + [4C2

− 2ν2
]s4

≤ 1 − [4C − 4C2
]s4,

since s2 ≤ s4. By hypothesis C ≤ 1, since by (42),

ν2
+

µα

2Γ (4 − α)
(q−1 + q1) ≤ 1 +

µα

2Γ (4 − α)


∞

m=2

(−1)mqm + q0


≤ 1.

Note that
∞

m=2

(−1)mqm + q0 ≤ 0

since
∞

m=2

(−1)mqm + q0 ≤

∞
m=2

qm + q0 = −(q1 + q−1) − q0 + q0 = −(q1 + q−1).

Therefore, for C ≤ 1, we have |κ(θ)|2 ≤ 1, for all θ . �
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Fig. 1. Stability Fourier conditions (42). Plotted α changing. Necessary and sufficient conditions for β = 0. Necessary conditions for all −1 ≤ β ≤ 1.

The next theorem gives a necessary stability condition for all −1 ≤ β ≤ 1.

Theorem 3. For −1 ≤ β ≤ 1, a necessary von Neumann stability condition for the numerical scheme is given by

ν2
− µα

1
2Γ (4 − α)

∞
m=−1

(−1)mqm ≤ 1, 1 < α ≤ 2. (43)

Proof. If we insert the mode eijθ into (41) we obtain the amplification factor

κ(θ) = 1 −
ν

2
(eiθ − e−iθ ) +

ν2

2
(eiθ − 2 + e−iθ )

+
µα

2Γ (4 − α)


(1 + β)

∞
m=−1

qme−imθ
+ (1 − β)

∞
m=−1

qmeimθ


that is,

κ(θ) = 1 − iν sin θ + ν2(cos θ − 1) +
µα

Γ (4 − α)


∞

m=−1

qm cos(mθ) − iβ
∞

m=−1

qm sin(mθ)


.

For θ = π we have

κ(π) = 1 − 2ν2
+

µα

2Γ (4 − α)

∞
m=−1

qm cos(mθ) (44)

and therefore1 − 2ν2
+

µα

Γ (4 − α)

∞
m=−1

qm cos(mθ)

 ≤ 1

and then we get the necessary condition (43). �

In Fig. 1, we plot the necessary and sufficient stability condition, for β = 0, and given by (42), which is also a necessary
condition for −1 ≤ β ≤ 1.

In Figs. 2–5, we show the sufficient conditions for stability computed numerically through the calculus of ∥M∥2 ≤ 1.
We observe that for α ≥ 1.6 the conditions are very similar to the condition (42) plotted in Fig. 1. Therefore the necessary
condition (43) is very sharp for α ≥ 1.6 and −1 ≤ β ≤ 1. However, for α ≤ 1.6 the stability condition (43) is not sharp
when β ≠ 0. Note that ν ≤ 1 is a necessary condition for all the cases.

4. Numerical results

In this section we present some numerical tests to show the second order convergence of the numerical method by
considering the l∞ error, for an instant of time t = n1t , given by

max
j

|u(xj, t) − Un
j |. (45)

For the first example we assume β = 1 in Eq. (3), that is, we have the equation
∂u
∂t

+ V
∂u
∂x

= D
∂αu
∂xα

+ p(x, t),
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Fig. 2. Stability condition ∥M∥2 ≤ 1. Plotted α changing for β = −1.

Fig. 3. Stability condition ∥M∥2 ≤ 1. Plotted α changing for β = 1.

Fig. 4. Stability condition ∥M∥2 ≤ 1. Plotted α changing for β = −0.5.

in the domain 0 ≤ x ≤ 1. We assume the problem has initial condition u(x, 0) = x4 and boundary conditions u(0, t) = 0,
u(1, t) = e−t . Let

V = 0.2, D =
Γ (5 − α)

24
and p(x, t) = e−tx3(4V − x − x1−α).

The exact solution is given by u(x, t) = e−tx4.
For this problem the scheme has the form

Un+1
j = Un

j − ν∆0Un
j +

1
2
ν2δ2Un

j + µαδα
l U

n
j + 1tp̃nj . (46)

In Table 1 we present the l∞ error, for the instant of time t = 1, which shows the numerical method has second order
convergence.

The second example considers Eq. (3) for β = 0, that is, we have the equation

∂u
∂t

+ V
∂u
∂x

=
D
2


∂αu
∂xα

+
∂αu

∂(−x)α


+ p(x, t),
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Fig. 5. Stability condition ∥M∥2 ≤ 1. Plotted α changing for β = 0.5.

Table 1
l∞ error (45) at t = 1, for the numerical method (46).

1x α = 1.2 α = 1.4 α = 1.6 α = 1.8 α = 2

1/10 0.4603 × 10−3 0.3703 × 10−3 0.4453 × 10−3 0.7477 × 10−3 0.1239 × 10−2

1/100 0.5667 × 10−5 0.4444 × 10−5 0.3561 × 10−5 0.4848 × 10−5 0.1095 × 10−4

Rate 1.90 1.92 2.09 2.19 2.05

Table 2
l∞ error (45) at t = 1 for the numerical method (47).

1x α = 1.2 α = 1.4 α = 1.6 α = 1.8 α = 2

2/10 0.5738 × 10−1 0.6981 × 10−1 0.7739 × 10−1 0.8086 × 10−1 0.7621 × 10−1

2/100 0.5693 × 10−3 0.5729 × 10−3 0.6748 × 10−3 0.7701 × 10−3 0.7289 × 10−3

Rate 2.0 2.09 2.06 2.02 2.02

in the domain 0 ≤ x ≤ 2. We assume the initial condition is u(x, 0) = 4x2(2 − x)2 and the boundary conditions are
u(0, t) = 0, u(2, t) = 0. Let

V = 0.05, D =
Γ (5 − α)

2
and

p(x, t) = 4e−t(−x2(2 − x)2 + 4Vx(x2 − 3x + 2) − x2−αA(x, α) − (2 − x)2−αB(x, α))

where

A(x, α) = 2α(α − 1) − 6α(2 − x) + 6(2 − x)2

B(x, α) = 2α(α − 1) − 6αx + 6x2.

The exact solution is given by u(x, t) = 4e−tx2(2 − x)2.
For this problem the numerical method has the form

Un+1
j = Un

j − ν∆0Un
j +

1
2
ν2δ2Un

j +
1
2
µα(δα

l U
n
j + δα

r U
n
j ) + 1tp̃nj . (47)

We observe both examples present second order convergence (see Table 2).

5. Final remarks

We have derived a second order numerical method for the fractional advection diffusion equation which is explicit. The
convergence of the numerical method was analyzed through the consistency and the stability. For the stability analysis
we have used Fourier analysis. Note that, in general, explicit numerical methods are more cost effective methods than the
implicit methods. Additionally explicit methods are better tools for problems where advection plays an important role.
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