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1. Introduction

Hyperbolic diffusion models have been widely discussed in literature since they overcome the unphysical property of infi-
nite speed of propagation that is specific to parabolic models [10,14,15,24]. There are experimental evidences which prove
that diffusive processes take place with finite velocity inside matter [4,12,13]. In some applications, this issue can be ignored
but in many others it is necessary to take into account the wave nature of diffusive processes [22].

We consider a two dimensional hyperbolic transport equation that assumes that both convection and diffusion are
responsible for flow motion, which can be seen as a more general telegrapher’s equation [31]. Similar equations have been
appearing in several works for different applications, such as, diffusive processes in the presence of a potential field [2,3,6],
physical models with transport memory and nonlinear damping [21], hyperbolic models for convection-diffusion problems
in computational fluid dynamics [11] and various heat transfer models [1,16,18,19,26,27]. Despite its great relevance in prac-
tical applications, the incorporation of a convection term has not been exhaustively studied.

In this work we derive a two-level alternating direction implicit (ADI) scheme to solve the two-dimensional problem.
There are a great variety of applications of ADI methods based on the finite difference methods. When implicit methods
are applied in one dimension, usually extensions to two dimensions require approaches such as the ADI, since they reduce
the solution of a multidimensional problem to a set of independent one-dimensional problems and thus we obtain a more
efficient method than the implicit schemes. For these reasons special attention has been given to these type of methods,
when trying to solve multidimensional problems.
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Recently, some attention has been paid to the development and analysis of stable methods for numerical solutions for
hyperbolic diffusive equations in two dimensions, including different ADI methods, such as, for the wave equation, two level
ADI finite volume methods [30], two-level ADI Galerkin methods [33] and for the Sine-Gordon equation a three-level ADI
method can be found in [5]. For the damped wave equation or telegraph equation we can find a vast literature, namely,
three-level ADI methods combined with a Richardson extrapolation [7,8], three-level ADI finite difference methods
[9,20,23] and two-level ADI finite difference methods [25,32].

However, we are not aware of any work that considers an ADI method for a diffusive dominated second order hyperbolic
equation with convection, and as presented in this work, the inclusion of the convective term turns the stability analysis by
the energy method much more intricate. Additionally, the less restrictive stability conditions obtained for the ADI approach
are a great advantage for numerical implementation. Most of the numerical methods for the same type of equation are based
in hybrid methods which involve applications of the Laplace techniques with control-volume formulation or finite-difference
methods [2,3,18,19]. Stability conditions are not discussed theoretically in these works and this is one of the disadvantages
of such approaches, since the stability region of the numerical methods needs to be found experimentally.

We consider the following two-dimensional hyperbolic equation, which includes diffusion and constant convection,
defined in a rectangular domain Q c R?,

2 2 2
%JF%M%JF %ZZTL; 27‘;, xy)€Q, te(0,T, (1)
where P and Q are constants. It is also assumed that P and Q are less than one in absolute value, that is, less than the diffusion
coefficient. If P and Q are larger than the diffusion coefficient, asymptotic analysis of exact solutions shows that the Cauchy
problem of Eq. (1) can be unstable [31].
We consider the initial conditions given by

ux,y,0) =uo(x,y), (xy)€Q, 2)

Yy.0) =mxy), (£y)eo, 3)
and Dirichlet boundary conditions

ux,y,t) =f(x,y,t), (x,y)€0Q, te(0,T]. (4)

In Section 2, we start to describe the proposed method and also its truncation error. It consists first of deriving a scheme
based in the Crank-Nicolson method and then, to overcome the computational inefficiency of an implicit scheme in two
dimensions, we apply an ADI method. Then, in Section 3 we use the energy method for determining the stability of the finite
difference method. In Section 4 we present some numerical experiments and we end with final remarks.

2. The second-order ADI numerical method

In this section we describe the numerical method applied to solve the problem (1)-(4) and also give its truncation error.
Direct discretization of (1) leads to a finite difference scheme that is three-level in time. To avoid a three-level discretization
scheme we introduce an auxiliary function, following the idea in [34]:

ou

and change (1) into

aiw + P@ + % — 827u + 82711 (6)
ot ox dy 0x2 oy’

Let us consider the mesh points in Q =a,b] x [c,d] and 0<t<T given by
Xi=a+iAx, i=0,...,Ny, y;=c+jAy, j=0,...,N,, where Ax = (b — a)/Ny and Ay = (d — ¢)/N, . Let t, = nAt, with At being
the time increment and nAt < T. We denote the approximate solutions to u(x;,y;,t.) and w(x;,y;,t,) by Uj; and W
respectively.

We define the following discretization operators. The first order forward and backward difference operators are given by

X Zij AX ’ y Ty Ay
and
S Ul = Ui = Ui, SoUN = Yij ~ Ui
X Ax A Ay '

The first order centered difference operators are given by



A. Aratijo et al./Applied Mathematics and Computation 239 (2014) 17-28 19

n 1 —1rm U} 1j U’?—l.'
oxUi; =5 [04 +6X]U,.J- = %,
cm 1 Ny U?,Hl - U?j*l
oUfy =5 [0+, UL = e
and the second order centered difference operators are defined by
LUt — ULJ - ZU?J + U?Hj LUt — U?Jq - 2U2j + U?jﬂ
X i Ax2 v YyVij Ay2 :

We discretize Eqgs. (5) and (6) using the Crank-Nicolson method:

2
1 1 1
Wi+ Wiy = Ul Uf 1 (U5 - U) (7)
and
Wi - wi __P [URY; - U, n Uiy, Uiy Q Ui - Ui n Uijn = Uijs
At 2 2Ax 2Ax 2 2Ay 2Ay
+1 U — 205 + UG, ULy =205 + Uy
2 A * AR
1 [up — 20 + U . Ujsq = 2Uf + Ufy 4 @
2 Ay? Ay? '

Using the discretization operators given above and by denoting the set of discretisations points U" = {U;fj} and
W" = {W{,} the numerical method (7), (8) can be written in the form

2
n+1 n __ ypm+1 n “ n+l _
W LW — gt 4 U +At(u U) 9)
and
PAt . At . At . At
R R ax(u"“ + u") - QTay(u”“ + U”) +59 (u"“ + U”> +59 (U"“ + u“). (10)

For our two-dimensional problem, it is computationally inefficient to obtain a direct solution of this scheme. Therefore an
ADI strategy is used to overcome this difficulty, since it is well known that ADI methods can change a multidimensional
problem into a series of independent one-dimensional problems and have the advantage of less computational cost. The
main idea of the ADI for the two dimensional problem is to split the computations in two steps. In the first step, we apply
an implicit method in the x-direction and an explicit method in the y-direction, producing an intermediate solution for time.
In the second step, we apply an implicit method in the y-direction and an explicit method in the x-direction. This is described
bellow.

If we replace the exact solution in the numerical method (9), (10), then

wHLwt =™ oyt é (U™ —u") + O(At?) (11)
and

wtl —wh = —géx(u"*l +u") - %5,,@”“ +u") + %cﬁ(u"“ +u") +%5§ W™ +u") + O(Atz + A2>, (12)
where A* = Ax? + Ay? and the method is O(Al‘2 + A2> accurate. Replacing (11) in (12) we have

2\ ni 2 At o 1 At o 1 2, A2 2
(1 +A7>u”+ + <1 - A7>u" =-5 (Pox+Qdy) (u™' +u") +3 (ax + ay) W™ +u") +2w" + O(At + A%+ AtA )
Let us define the operators
At . At
Lpzj(Pax—of) and LQ:7(Q5y—5§). (13)
Then, the previous equation can be re-written as

<<1+A%>+LP+LQ>u”“:<<1+A%>—LP—LQ>u” (14)

+2(w”—u”)+O<At2+A2+AtA2). (15)
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The accuracy of the numerical method is O( At? + A?), and therefore we can add to it any term of the same or higher order
without changing the accuracy of the scheme. With this in mind, let us consider the term

At

AHZL,,LQ( utt — ). (16)
Since
Ao & o 0*\ou
n+1 _ .n _ _ 3 A2
LeLo(u™" —u") = - <P o 8x2>< 5 5 +(’)(At A +At4)

A3 0 2\ &u 342 4
7T<P—a> (Q_ay) ax6y8t+o(At A +At)

the term (16) is O(At3A2 + At“) and can be added to (15) without changing its order of accuracy. Then we obtain

2 At n+l _ 2 At n n n
<<1+At)+LP>(1+At+2L )u 1+At —Lp 1—mLQ u" 4+ 2(w" —u")
+ O(At2 + A2+ AtA? + At3A2). 17)
Therefore, we have the following numerical method

((1 + Azt) + Lp> (1 + MA+ ZLQ) U = ((1 + A2t> Lp> (1 AtAj 2LQ> U+ 2W" - U"). (18)

To implement the previous method, and following the Peaceman-Rachford strategy we can split the previous equation in
two, by introducing an intermediate variable U, which represents a solution computed at an intermediate time. Therefore we
obtain a type of Peaceman-Rachford ADI,

2 ~ At At n n
<<1+A—t>+LP>U_(1 AtJrzLQ>U At+2(W -uh, (19)
At n+l 2 7 At n n
<1+r+2LQ>U =((1+ At —Lp U+r+2(w —-un. (20)
When solving the previous equations we need to pay attention to the boundary values of the intermediate variable U,
since in order to solve Eq. (19) for Uu i=1,...,Ny—1,j=1,...,N, — 1, we need the values Up; and Uy, ;. Note that the

boundary values U,O and U, N, are not needed to solve Eq (20)
A convenient way to find the boundary values UOJ and UNK‘J is to write Eqgs. (19) and (20) in the equivalent form

2 At At n n
<<1+At>+LP)U (1 At+2LQ>U a2z W U

2 At n+1 At n n
<<1 At) LP>U <1+At+2LQ>U _At+2(W —UD

By adding these equations we obtain, at each point (x;,y;),

. At At At .
Vi=3ar+2) (1 At+2° )U a2 (HAHzLQ)U"J ‘

This equation does not contain the operator L, and we can now obtain easily the intermediate values flo_j and GNXJ.
yielding

A At . At At ot
Uoi =54t 2) <1 At+ 2LQ> Uoi +3tac+2) (1 R 2LQ> Uoj
At At At
T2(At+2) (1 At+2LQ)f(a’yf’t") T2t 2) (1 +At+2LQ>f(a’yj’t"“) @1

and

= At At . At At -
Unij = 2(At +2) (1 T At+2 LQ) Ui 2(At +2) (1 tAt zLQ> Unj
At At At At
:Z(At+2)< At+2 ¢ >f(b Y ta) + 2(At +2) (1 +At+2 )f(b Vi tus1). (22)
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3. Stability analysis

To prove the stability of the finite difference scheme (18) with respect to the initial values we use the discrete energy
method. To this end, let us define the set of discrete values with homogeneous boundary conditions.

Assume that G = {U\ U ={U;}, and Uy = Uy,j = Uip = Uin, = O}. For U,V € G, we define the inner product and norm
respectively as

Ny—1Ny—1

=MxAyY Y UiV, UI° = (U, U). (23)

i=1 j=1

Additionally, we also need to define other inner products that involve the first and second order discretization operators
of U,V € g, since they will be used in the next lemmas and in the main theorem.
For U,V € G, let us define,

Ny—1Ny—1
(07U,0;V) o = AxAy> "> " 5rUyo Vig, 10, U2, = (6,U.6,U)
i=0 j=1

*X)

Ny—1Ny—1
(5;U,5;v> — Ay N6 UiV, (67U, = (50, a*u)*y,

i=1 j=0

Ny—1Ny—1

(5+5+U,o;5;v) = AxAY> Y 6567 U6 6 Vg, 116565 U2 = (5+5+U,5;5;U)
i=0 j=0 *
Lemma 1. For any W € G,
[EWI <10 Wil oW < [0y WLy, [0y WI < [|6, 0y WIL..

Proof. We only prove the first inequality. The other inequalities follow in a similar way. We have

2 _NX A NX A 1+1,/ 1,} NX A Wi,/ WI 1j
3WI2 =3 AxAy(5,W;)* < Z > AxAy +5 Z > AxAy

i=1 j=1 :1}1 i=1 j=1

1Ny 1 N 2Ny—1
<3S (M) S ey (MY < i iz, o
i=l 10]1

The following lemma is the well-known property of summation by parts.

Lemma 2. Forany U,V € G,
(FUV) = ~(5U,8:V) . (§UV) = ~(5;U,5;V)
=y
The next lemma can be seen, for instance in [25,28].

Lemma 3. For any U € G, the following inequalities hold

163 UII%, < 5y Ul

sz o, <Ay ZHUH ;

2
[EAEMURES A7 H5+UII

*X7

4
10:55UI < 5510 UIE,
Before proving the main result, note that the ADI method can be written in the form
2 n+1 2 n n At n+1 ny\ __ n+1 n
(1 +A7)U +(1-)u-2w +At+2LpLQ<U —u ) - f(Lp+LQ)(U +U ) (24)

Taking into account (7) we have
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Wn+] _ Wn At — 2LPLQ (UTHr] Un) _ 7(LP + LQ) (UTH~1 + Uﬂ) (25)

Theorem 4. Suppose that {U];, W};} and {V}},Y};} are solutions of the finite difference scheme (25) which satisfy the boundary
condition (4), and have dlﬂerent initial valies {UD, Wi} and {V);, Y]} respectively. Let ol = Wi, — Y}, € = U}; — Vi For
At < 1, such that, At < ¢, Ax, At < cqAy, with constants cp, ¢q, then {@];, €]} satisfy

2 2 2 2 2 2
@™+ 165 € 2, + 110y €117, < (1 -+ CAG) (1l | + 1oy €1, + llog €1 ), (26)

where C denotes a constant independent of Ax, Ay, At.

Proof. We consider {Uj;, W};} and {V};, Y{;} which are solutions of the finite difference scheme (25) and satisfy the same

boundary condition (4). Therefore for o" = {w];} and €" = {€];}, we have {®", €"} € G, that is, these discrete points at the
boundary are zero. From (25) they also satisfy

At
wn+1 _ CO" +At+ ZLPLQ( n+1 _ 6n) — *(LP +LQ)(€”+1 + 6”). (27)
Multiplying both sides of (27) by w™' + @w" with respect to the inner product (23) we obtain, using (13),
AL . . A
B vy ((PQowy — P8,3} — Qo%0, + 3307 ) (€ =€), "1 4 ")
At
+5 ((Péx 07 +Q0y - oj) (€ 1 €)™ + a)"> =0. (28)
By (9) and summation by parts we have
(5)%0)2/ (En+1 _ 6n)7 COn+1 + wn) H5+6+ 11+1 H H5+5+E ”f + ||b+b+( n+1 _ 6n)”f7
. 2 .
(B (e + ), 0"+ 0) = —o (€ + €)%, — o (v e % — lloge" %)
and
n n n n n n 2 n n
(et e o) = oy (! + eI, - 5 (191, — 1oy el ).

We can re-write (28) as
3

\ICU”“IIZerH(WS+ T e R L
n 2 AP 5+5+ 2 s+ 12 s+ .12 At S+ ( n+1 ny (2 5H(emt! ny|2
= 10" + gy 19 €I + 1€+ 105 €1y =5 (165 (€7 + €+ 135 (e + €)1 )
At? . At
_m‘|é+é+( n+1 _Gn)H _7((POX+Q5y)(€n+1 +6n)760n+1 +wn)
At3 S 2 2 n+1 n n+1 n
_m<<PQ()X6y—P5x6y—Q5X5y>(6 ), 0" o). (29)

Let us now discuss the terms with P or Q. We first consider the terms

7(P5x(6n+1 4 6“),())““ + wn) and _ (Qéy(enﬂ 4 6"),60”“ 4 wn).
Using the Cauchy-Schwarz inequality, Lemma 1 and the inequality ab < na? + b /4y, for n > 0, we have

*(P(Sx(ﬁnﬂ + 6"),60““ + wn) < ”P(;X(Enﬂ + 6n)H”a)nH + CO”” < |||P|(3;r (enﬂ + en)H*wanH + wnH

1
<P (€77 + €+ gl + o
1

Using the inequality (a + b)2 < 2a? + 2b*, we conclude that

—(Poy (€M + €)™+ ") <y PP 05 (€7 + €)1 +217] (o™ 1 + ") . (30)

Similarly
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—(Qoy (€ + €)M+ 0") <HIQP 0y (" + €, +—(|\w"*1u +llo"|P). (31)
Let us now consider the term

—(PQdy (€™ — €"), ™! + ™).
Using the Cauchy-Schwarz inequality, Lemma 1 and the inequalities used previously we have

1

_(PQ(sxéy(EnH _ 6”),60”“ +w ) 713|PQ| H5+5+( n+1 )” + ’/I

(™11 + fj")?). (32)
Finally, we consider the terms
(Péxéf (€ —€v), ™! + w”) and (Qd,0; (™! — €"), ™! + ™).

Using summation by parts, Lemma 1 and the inequalities used previously, we obtain

(Poh (e =€), ) < PRS0 07+ )

Using Lemma 3 and the inequalities,

2
(P(SX(S; (6n+1 _ 6n),a)nﬂ + wn) 1,’4‘13' ||(3+(S+( el _ 6“) 3 174Ay2 (HwnﬂHZ + ”wnHZ) (33)
Similarly
- 2
(Qéyéi (enﬂ _ En)ﬁwnﬂ +wn) < ”5‘Q|2”5;b; (EnH _ en) 3 v e (HwnHHZ + ”wnHZ) (34)
5
From (29) and the inequalities (30)-(34), we obtain
le’HlHZ 4 At3 H6+6+6n+1” + H5+6n+1”2 + ||5+6n+1||2
4(At +2) x > 8 4
<1+ 52 azag e+ e+ 105 e1E, — AL (16 (€1 + @2+ 65 (€1 + )
= 4(At+2) * X *X y *Y 2 X *X y *y
Atz + o+ n+1 ny |2
*mwfs (€ —en]s
At - _
5 (MlPP1S (€ €) s mlQP0; €+ €Iy 5 (15" 1) (Jo P+ o )
A3 st (el _ en) |2 1 1 Ap-2 A py2 12 n2
+aiat sz (PRS- 1PPmy 10 ) 10705 (€1 = )2 45 (05" + dnglay 2+ g 2)(Jo P+ ') )
(35)
Reorganizing the terms and using the conditions At < ¢,Ax and At < ¢;Ay, we obtain
AHwn+1H 4y At3 H5+6+ n+1”2_'_H5+6n+1”2 +H5+6n+1”2
(Af+2) * X *X y %y
<BIOM 4 g 50 €+ 65 + 185 €, + o 165 (€ + €Ny PE -~ 1)
(Af+2) y ® X *#X y *y 2 X =X\
l + (n+1 ny (12 2 Atz + s+ n+17n 2 2 2 2 _
o 10 (€7 € 0mIQP = 1)+ gy 1940 (€171 — eI (Ae (PP + PP + QP Ns) —2), (36)
where A and B are given by,
Cq At gt Gst TG ARy
A‘1_7< 2 T At+2  Taac+2) (37)
and
At (gt 4y st gt Ayt
B”z( 2 T At+2  Taac+2)) (38)

Let us choose 1, =1, =13 =1, =5 = n with
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11 2
nSminy o T L o2 (39)
PT Q" (PQ)"+P +Q
Then, from (36) we have
A”wnH” 4y At3 H5+5+6n+1H + H5+€n+lH2 + H5+€n+1”2
(Af+2) X *X y =y
< BJlo"|? +A7t3\\0*0*6 "2+ (165 €15 + 119y €1 (40)
= 4(At +2) . X >
with
LAt LG APy
A‘]‘7<’7 N AT T2 T AR D) (41
and
At (G APy
B=1+ (’7 A2 TRy ) (42)
Using Lemma 3 and At < ¢,Ay, from (40) we obtain
Alloo™ 112 S5+emt1? stem™ 12 < Blleoo™I? 1+ CZAt 5+ 5t 43
™" + l105 € I3 + 110, €15y < Bll"||” + At+2 155 €712 + 15, €713, (43)

If we choose 7 such that

1 B Co+cs 4cp+ca)+1
11>§(1+M), forMmax{ 7 P ,

we can easily check that 0 < A < 1. Additionally if we choose 7 such that
1 +¢c
c 2c2

we have B > 1+ czAt/(At + 2). Therefore by choosing # such that

2+ +c
1(]_,_1\/1) <1 < min 127%7 . 22 - p2 al (44)
2 P (PQ P+ QT 2
it follows
Al + oy €M%+ lloy € %, ) < Bl + 10 €I + 10y € ). (45)

Consequently, by noting that

lc +c A2y

B T4 14
Ezl""At n n- Ar+f+f4Ar+Azt; : <1+CAt,
Al - 7
1_7t<’7 tnt A[+2+4Ar7+2>>

where C denotes a constant independent of Ax, Ay, At, we obtain the main result. O
From the previous theorem we get the following result.

Corollary 5. Suppose that {U};, W[;} and {V{}, Y}, } are solutlons of the finite difference scheme (25) which satlsfy the boundary
condition (4), and have different lmtlal values {Ul i1 } and {V?J,YO} respectively. Let =W, - Y[, e =Uj; -V}, For
At < 1, such that, At < cpAX, At < cqAy, with constants Cp, Cq, then {w]}, €]} satisfy

2 2 2 2 2 2
oo™+l €, + 165 €712, < K (1l + 1135 €12 + 155 €1, ), (46)

where K denotes a constant independent of Ax, Ay, At.

Remark 1. The previous results require that the maximum time step size is directly proportional to the space mesh sizes.
Usually optimal results are obtained when time-step and space-steps are comparable and therefore this is a natural condi-
tion. Similar conditions can be seen in literature for ADI numerical methods for hyperbolic problems, that usually do not
include the first order derivatives in space [7,8,17,29,33].
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Remark 2. The choice of constants ¢, and c; mentioned in the previous theorem can depend on the values of P and Q as can
be concluded by observing the condition (44). For the case when P = 0 or Q = 0, this condition can be easily adjusted and do
not depend on P or Q respectively. A practical choice could be to consider c§ + cg < 2/3, for all P, Q.

4. Numerical experiments

In this section we present numerical tests for two dimensional problems. We compare the numerical results with exact
solutions, and we also illustrate the behavior of some of the solutions. Let

€y =uj — Uy oy =wi — Wiy, (47)

where u is the exact solution, w is defined by (5) and U and W are the approximate solutions, respectively. To measure the
error and the convergence rate we consider the norms of ||€|| and ||w|| defined by (23).

We present two problems for which we are able to determine the exact solution in order to compute the errors and the
convergence rate. The third problem shows how the solution behaves, when we have an initial Gaussian condition and
homogeneous boundary conditions. We start with a problem with P = Q = 0 and then we consider a more general problem.

Problem 1. Consider the problem

ou ou_ du du

E-‘-w—m-‘ra—yz, XE}OA/{;TC[, y6}07\/§75[, t>07

with initial conditions

u(x,y,0) = sin <%> sin (\%), (x,y) € [O, \/§n] x [0, \/§7t], (48)

%(X, v,0) = f% sin (%) sin <%> (x.y) € [0,v8r] x [0, V8], (49)
and boundary conditions

u(0,y,t) =0, u(x/gn,y, t) =0, (50)

u(x,0,t) =0, u(x, V8, t) =0. (51)

The exact solution is given by

u(x,y,t) =e%sin (%) sin (%) (52)

In Table 1, we present the errors ||€|| and ||w|| defined by (23), at the instant of time t = 1. We consider Ay = Ax and At = Ax.
We observe the convergence rate is second order as expected.

Problem 2. Let us now consider the problem

ou du ou _ou du du

&4’?4’ &‘l’ @_WJFZ?TIT (X7y)€(0,1)X(O,1), t>0?

with initial conditions

u(x,y,0) = e™/2t@2 sinh(x\/ (4 + P?)/2) sinh(y\/ (4 + Q%)/2),
2 2
ou (x,y,0) = — Tryl7+P+Q eP/2+ /2 sinh(xy/ (4 + P?)/2) sinh(y\/ (4 + Q%)/2),

ot 2

Table 1

Errors ||€|| and ||w|| defined by (23) for t =1, 0 < x,y < V87, Ay = Ax and At = Ax.
Ax Error ||€|| Rate Error ||w| Rate
V8m/50 7.361e — 04 1.468e — 04
V/81/100 1.916e — 04 1.94 3.924e - 05 1.90
V87/300 2.134e - 05 2.00 4.516e — 06 1.97

VB7/500 7.737¢ — 06 1.99 1.643e — 06 1.98
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Table 2

Errors ||€|| and ||w|| defined by (23) for P=0.5, Q =04, t =1, 0<x,y <1, Ay = Ax and At = Ax.
Ax Error ||€]] Rate Error ||o|| Rate
1/50 5.653e — 05 2.689e — 04
1/100 1.413e-05 2.00 6.832e — 05 1.98
1/300 1.570e — 06 2.00 7.728e — 06 1.98
1/500 5.653e — 07 2.00 2.799e — 06 1.99

and boundary conditions

u(O,% t) = u(x707 t) = 07

u(1,y,t) = e +V17+PQ0265F sinh(y/(4 + P?)/2) sinh(yy/ (4 + Q)/2),

u(x, 1,t) = eV 40126545 sinh(x1/ (4 + P*)/2) sinh(1/ (4 + Q2)/2).

The exact solution is given by

U(x,y,t) = e~ (FVI7+PQ0268+% sinh(x1/ (4 + P*)/2) sinh(y\/ (4 + Q2)/2).

In the next tables we present the errors and convergence rates for different velocity fields, such as, in Table 2, for
P=0.5, Q=04,in Table 3, for P=0.5, Q = —0.4, and in Table 4, for P =0, Q = 0.5. For all the cases we observe the con-
vergence rate is second order.

Table 3

Errors ||€|| and ||w|| defined by (23) for P=0.5, Q = -04, t=1, 0<x,y < 1, Ay = Ax and At = Ax.
Ax Error ||€|| Rate Error ||w|| Rate
1/50 4.861e — 05 2.298e — 04
1/100 1.216e — 05 2.00 5.888e — 05 1.96
1/300 1.352e — 06 2.00 6.702e — 06 1.98
1/500 4.866e — 07 2.00 2.431e — 06 1.99

Table 4

Errors ||€|| and ||w|| defined by (23) for P=0, Q =0.5, t=1, 0 <x,y <1, Ay = Ax and At = Ax.
Ax Error ||€|| Rate Error [|w]| Rate
1/50 5.072e — 05 2.384e — 04
1/100 1.268e — 05 2.00 6.080e — 05 1.97
1/300 1.409e — 06 2.00 6.897e — 06 1.98
1/500 5.074e — 07 2.00 2.500e — 06 1.99

0.8- : 0.1~

y 10 -10 10 -10
(a) (b)

Fig. 1. (a) Initial condition; (b) approximate solution for t = 3 and P = 0.5, Q = 0. Computed with At = Ax = Ay = 0.02.
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410 -10

(a) (b)

Fig. 2. Approximate solution for t = 3 computed with At = Ax = Ay =0.02: (a) P=0.5, Q = -0.5; (b) P=0.5, Q =0.5.

For this case the boundaries on the x direction are not zero, namely at x = 1, and therefore it indicates the formulation at
the boundary values for the intermediate point, defined in (21), (22) does not affect the accuracy of the method.

Note also that for the tests presented, the step sizes satisfy the stability restrictions of Theorem 4. This reassures the
restrictions are very reasonable, since we do not need to impose very small time steps.

Problem 3. This example gives an insight on the physical behavior of the solutions associated with this type of problems.
We consider

ou du ou _ou_ du du

—+—+P—= —_— =t — R*>, t>0
oo Pty ot WYER, >0
with initial conditions
1 2,02 ou
— ey - _
u(x.y0) = Zze 9, Shxy.0) =0,

and boundary conditions

‘l‘im u(x,y,t) =0, Illim u(x,y,t) =0.
X|—00 y|—o0

Since we consider an infinite physical domain and the computational domain needs to be finite, for numerical implemen-
tation purposes we assume the computational domain is large enough, that is, until the solution is zero at those numerical
boundaries (or very close to zero), in order to avoid the influence of the numerical boundaries in the computation and con-
sequently on the accuracy of the numerical method. The examples presented are for the instant of time t = 3 and we have
considered the spatial computational domain [—10, 10] x [-10, 10].

In Figs. 1,2 we display those approximate solutions and observe how the solution changes with the direction of the
velocity field.

5. Final remarks

We have derived a second order accurate ADI finite difference method to solve a two dimensional hyperbolic equation,
with Dirichlet boundary conditions. The stability of the method has been shown by the discrete energy method in Theorem
4, Although it presents sufficient conditions for stability, they are not very restrictive in practice, allowing the choice of large
time steps. Numerical results demonstrate the second order accuracy and efficiency of the numerical method and the results
are in agreement with the theoretical analysis presented.
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