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Abstract
The Kramers equation for the phase-space function, which models the
dynamics of an underdamped Brownian particle, is the subject of our study.
Numerical solutions of this equation for natural boundaries (unconfined
geometries) have been well reported in the literature. But not much has been
done on the Kramers equation for finite (confining) geometries which require
a set of additional constraints imposed on the phase-space function at phy-
sical boundaries. In this paper we present numerical solutions for the Kra-
mers equation with a variety of potential fields—namely constant, linear,
harmonic and periodic—in the presence of fully absorbing and fully
reflecting boundary conditions (BCs). The choice of the numerical method
and its implementation take into consideration the type of BCs, in order to
avoid the use of ghost points or artificial conditions. We study and assess the
conditions under which the numerical method converges. Various aspects of
the solutions for the phase-space function are presented with figures and
discussed in detail.

Keywords: Kramers equation, absorbing boundaries, reflecting boundaries,
potential fields, numerical methods

(Some figures may appear in colour only in the online journal)

1. Introduction

Overdamped Brownian motion, modeled by the Fickian diffusion equation and for finite
geometries, has been extensively studied—both analytically and numerically [15]. The effect
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of finite geometries is taken into account through various boundary conditions (BCs), with
respect to one or more space variables, on the probability density function which is the
solution of the diffusion equation for the problem at hand. The diffusion equation may
describe a free Brownian particle (i.e. in the absence of a potential field) or may include a
potential field. Quite recently we have discussed numerical solution of the non-Fickian dif-
fusion equation. The reader is referred to [1] for details of this work.

In this work we shall consider underdamped Brownian motion which is modeled by the
Kramers equation [35]. This is a phase-space Fokker–Planck equation and from which the
usual Fickian diffusion equation and a somewhat unusual non-Fickian diffusion equation can
both be derived [17].

An equivalent modelling of underdamped Brownian motion is done through the Lan-
gevin equation which includes the intertial term. We refer to [14] for a detailed account of the
Langevin equation. In our work we shall focus on the Kramers equation. Underdamped
Brownian dynamics described by the Kramers equation in the x-p space and not in x-space
alone and in confined geometry have not been much studied.

The Kramers equation can describe short-time (inertial) as well as long-time (diffusive)
motion of the Brownian particle. If we consider infinite geometries then it is assumed and
physically anticipated that the probability density function will vanish at infinite distances
from the source. But the situation can be different if we consider finite geometries. We shall
deal with this situation in this paper.

Let us introduce the time-dependent Kramers equation for the single-particle distribution
function in position and momentum variables, and in the presence of an external (time-
independent but space-dependent) external potential field:
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where x is the position component, p is the momentum component of the Brownian particle,
t is the time, γ is a friction parameter, = × ×− −k K1.38 10 ergB

16 1 is the Boltzmann
constant, =T 300 K is the room temperature, = × −m 10 10 gm10 is the mass of a Brownian
particle and F is the force acting on the particle from the potential field V, that is
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For a numerical study of the Kramers equation, it is more convenient to introduce the
following scaled variables
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in order to obtain the Kramers equation in the form
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Analytic solutions of the Kramers equation (in phase-space) or even Fokker–Planck
equations (in x- or p-space alone) can be found only in some special cases (see for instance
[5, 35]). In general it is difficult to obtain exact analytical solutions of the Kramers equation.
Because few exact analytical solutions are available specially for finite geometries, numerical
methods have become a significant resource in the study of the behaviour of the solutions,
playing an important role in new explorations of phase-space stochastic processes.
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The difficulties of dealing with Kramers equation numerically come from several factors.
Firstly, this problem behaves like a parabolic equation in the p-direction, and behaves like a
hyperbolic equation in the x-direction. Secondly, we have different types of hyperbolic
equations in the x-directions, for >p 0 and <p 0, respectively. Consequently, the solution
may satisfy different kinds of BCs on different subdomains. Therefore, we have to use
domain decomposition and different approximations on different subdomains. This leads to
additional difficulties in actual computation and numerical analysis.

We briefly recall the theoretical and numerical approaches in the literature to solve the
Fokker–Planck and the Kramers equations. Motivated by the work due to Brinkman [4] and
also developed in [39], a class of analytical and numerical methods have been proposed, by
utilizing a set of orthogonal functions in velocity (or momentum) variables as a spectral basis.
The rationale behind this approach lies in the fact that the set of orthogonal functions, usually
Hermite polynomials, form a complete system and satisfy correct natural BCs in momentum
space. However, in the case of a phase-space equation like the Kramers equation, the sub-
sequent approximate route through orthogonal polynomials has been used only for the open
p-space but not for the bounded x-space. Once we impose BCs in x-space, this route is not
easily applicable anymore.

The analytical methods motivated by [4] consists essentially of expanding the distribu-
tion function in an appropriate set of orthogonal functions. If the variable p (or x) extend from
minus to plus infinity (natural BCs) we may use for instance Hermite functions and then
f x p t( , , ) can be expanded in terms of these set of functions or in the case of periodic BCs a
Fourier series can be used. By inserting this expansion in the Fokker–Planck equation or
Kramers equation we obtain an infinite system of coupled differential equations for the
coefficients. Reducing the infinite system to a finite system leads to approximate solutions.
Then the finite system can be solved by a matrix continued fraction method. This metho-
dology is developed in great detail in [35] and more recently in the context of the Langevin
equation in [14], where its many advantages are explored; it is useful to derive analytical
results, as can be seen for instance in [12, 13, 16, 24]. This approach can also be used to
obtain the solutions of the Kramers equation numerically, although for the purpose of
studying the numerical behaviour of the phase-space distribution it may not be the most direct
method. It is worth noting that according [35], for certain potentials the dimensions of the
matrices involved can become too large for an efficient computation. Therefore, alternative
numerical methods have been appearing in literature.

Among the numerical methods motivated by the use of orthogonal polynomials, a
common approach is based on the Hermite and Legendre approximations for the open space
p, see, e.g., [20, 21, 40, 42]. For instance, in [20] the authors proposed a Hermite expansion in
the phase space combined with finite differences in time and space. However, the finite
difference approximation in the x-direction limits the higher numerical accuracy that can be
reached in the p-direction. Additionally the Hermite expansion cannot produce a reasonable
approximation or with high numerical accuracy without carefully choosing a scaling factor
[43], which depends on the type of solutions we are approximating. In [20] the authors also
observe that the high order accuracy is reached more easily for large times or when we
approach a stationary solution. Stationary solutions for the Kramers equation can occur for
instance in the cases we have a non-pathological potential field and reflective BCs in a finite
geometry or for a periodic potential and natural BCs in an infinite geometry. However, many
cases of interest are not necessarilly related with stationary solutions, such as, if we have
absorbing boundaries and a potential field not abnormaly high or for mixed BCs (one
absorbing and one reflecting) in the absence of a potential field.
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Other type of numerical algorithms have been proposed for solving the Kramers
equation, such as [8–11, 19, 31]. In [8, 9, 11], numerical solutions of the Kramers equation for
a periodic potential and for natural boundaries i.e. for infinite geometries (−∞ < < ∞x )
have been reported. In [19] a numerical solution, for semi-infinite geometry, >x 0, is pre-
sented for the time-Laplace transform of the backward Kramers equation from which the
mean first-passage time can be obtained. In [10, 44] implicit finite difference schemes are
used and in [31] Galerkin methods are considered which approach does not seem easily
generalizable for certain BCs, namely mixed BCs.

In this paper we report on numerical solutions of the Kramers equation in finite geo-
metries which entail BCs that are imposed on theoretical considerations and implemented
numerically. In addition to considering finite geometries we include potential fields of various
types in the Kramers equation. This leads to a numerical study of an interplay between BCs
and potential fields.

The numerical method presented has the merit of being flexible and easily implemented
to obtain numerical approximations for the phase space distribution function as we change the
potential field and the BCs. It is an explicit method that efficiently deals with different types
of potential fields. Also the BCs are implemented without any artifitial approximation or
tecnhique. For instance, the way we implement the reflecting BCs is more natural and
efficient than the way the reflecting BCs are implemented in [10]. Many times explicit
methods are avoided because to take advantage of its full efficiency we need to know their
stability regions, usually not easy to find, although quite relevant. Therefore, we present a
theorem on the stability of the numerical method, which allows us to choose the step sizes in
time, space and phase space adequately, that is, in order to remain inside the convergence
region of the numerical method.

Two types of BCs are studied in this paper: absorbing and reflecting BCs. The BCs and
physical considerations associated with them are presented in section 2. And in that section
we refer to some previous works (analytical and numerical) which consider a semi-infinite
geometry and absorbing BCs. The numerical method we have used for the problem at hand
and its convergence are discussed in detail in section 3. Numerical results for the phase-space
function f x p t( , , ) for several potential fields and other quantities of interest are presented
and discussed in section 4. Section 5 contains some general discussion and outlook.

2. BCs: physical considerations

We consider the Kramers equation for the domain

Ω = < < −∞ < < ∞{ }x p x x x p( , ): ; . (5)L R

This means that we consider a finite domain in space but all values of momenta are included.
We assume an initial condition of the form

Ω= ∈f x p f x p x p( , , 0) ( , ), ( , ) . (6)0

This initial condition is specified by two narrow Gaussians, located in the middle of the
domain

Ω= ∈f x p g x g p x p( , , 0) ( ) ( ), ( , ) , (7)1 2
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where
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for = +c x x( ) 2R L and small values of ϵ.
Although we consider a variety of potentials V(x) and hence F(x), the initial condition is

assumed to be the same for all these cases. And for all these cases, when p goes to ±∞ we
assume that

= = < < >
→−∞ →∞

f x p t f x p t x x x tlim ( , , ) 0, lim ( , , ) 0, , 0, (9)
p p

L R

i.e., there is negligible probability of finding the Brownian particle with infinite momenta/
velocities (positive or negative).

We now come to one of the central themes of our work, the spatial BCs at =x xL and at
=x xR. These are absorbing and reflecting BCs first proposed by Wang and Uhlenbeck [41].

2.1. Absorbing BCs

The absorbing BCs are also considered in more recent works, such as, Bicout et al [2], and by
Singer and Schuss [36]. The absorbing BCs at =x xL and =x xR, illustrated in figure 1, are
given by

= > > = < >f x p t p t f x p t p t( , , ) 0, 0, 0, ( , , ) 0, 0, 0. (10)L R

As can be seen from (10), these BCs each affect one half range of pʼs.
In order to understand these BCs physically, let us assume that the Brownian particle is in

the domain whose interior is bounded by xL (on the left) and by the boundary at xR (on the
right). The momentum of the particle and hence the velocity =v p m( ) are assumed to be
positive from the boundary at xL into the interior, and negative from the boundary at xR into
the interior. Since the boundary at xL is absorbing, there is no particle flux from the boundary
at xL into the interior for positive momentum.

Figure 1. Absorbing boundary conditions. The heavy arrows show a non-zero flux Sx
defined by (11) at the left and right boundaries; the light arrows illustrate the conditions

> =S x p t( , 0, ) 0x L and < =S x p t( , 0, ) 0x R .
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The absorbing BCs can be illustrated through a consideration of particle flux Sx defined
as (see Risken [35], page 183)

=S x p t p m f x p t( , , ) ( ) ( , , ). (11)x

The flux from the interior toward the left boundary is non-zero (for <p 0), while the flux Sx
(for >p 0) from the left boundary toward the interior is vanishing. These fluxes are shown in
figure 1, as a heavy arrow and as a light arrow respectively. The reverse situation occurs for
the right boundary as also illustrated in figure 1. Since the flux Sx defined in (11) vanishes at
xL for >p 0, then f x p t( , , ) at xL vanishes for >p 0 which is the first BC in (10). An
opposite situation occurs at the boundary at xR , which leads to the second BC in (10).

This feature makes these BCs interesting in both analytical and numerical studies of
underdamped Brownian motion modeled by the Kramers equation. Discussions about the
existence of solution of the Kramers equation for absorbing BCs can be found, for example,
in [6, 7, 27]. In [27] the authors state that for a linear potential and for semi-infinite geometry

∞[0, ) the Kramers equation can be argued to possess a unique solution (with a delta-function
initial condition). There is some previous work [19] in which first passage times were studied
through a combination of power series expansion applied to the time-Laplace transformed
Kramers equation together with a numerical approximation of second-order difference. But in
that work, a full time-Laplace inversion was not reported.

In our work we discretize the time-dependent Kramers equation for finite geometries,
directly in time, space and momentum variables. We consider boundaries (i) both absorbing,
(ii) both reflecting, (iii) one reflecting and the other absorbing boundaries. Also we consider a
variety of potential fields—the other central theme of our work.

2.2. Reflecting BCs

We turn now to the reflecting BCs. They read

= − = −f x p t f x p t f x p t f x p t( , , ) ( , , ) ( , , ) ( , , ). (12)L L R R

These conditions are illustrated in figure 2. These BCs indicate that the phase-space
distribution function f x p t( , , ) is assumed to be symmetric in p at =x xL and =x xR. But

Figure 2. Reflecting boundary conditions. The heavy arrows state a non-zero flux Sx
defined by (11) and also illustrates the condition = −S x p t S x p t( , , ) ( , , )x xL R .
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f x p t( , , )L and f x p t( , , )R themselves are otherwise unspecified or undetermined. On phy-
sical grounds, the reflecting BCs mean that no particle would be lost at the boundary and all
particles with p and −p will be reflected back into the interior.

In terms of the flux, introduced in section 2.1, defined by (11), for the reflecting BCs the
two fluxes going from the interior toward the boundaries and those from the boundaries going
toward the interior are both non-zero. These are shown as thick arrows in figure 2.

3. Numerical method and convergence

In this section we describe the numerical method used to derive approximate solutions for the
Kramers equation, giving special attention to how we incorporate the BCs. The numerical
method is an explicit method and therefore is conditionally stable. We provide details on the
convergence of the numerical method, which include the derivation of the stability conditions.
Although explicit methods are conditionally stable, as long as the stability conditions are not
very strict, they have the advantage of being computationally more efficient than implicit
numerical methods.

3.1. Numerical method

We can rewrite the differential equation (4) in the form

γ γ γ∂
∂

+ ∂
∂

+ − ∂
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= + ∂
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t
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f
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f
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f

f
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( ) . (13)

2

2

We consider the computational domain

Ω = ⩽ ⩽ ⩽ ⩽{ }x p x x x p p p( , ): , (14)L R L R

and the uniform grid in Ω defined by

Δ Δ= + − = + −{ }x p x x j x p p k p( , ): ( 1) , ( 1) , (15)j k j kL L
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R L R L

The discretization in time is defined in the interval T[0, ] at the points

Δ Δ= − =t n t t
T

N
( 1) , . (17)n

t

The approximate solution, defined in the discrete domain given by (15)–(17), which
approximates f x p t( , , )j k n , is denoted by f j k

n
, . Before presenting the numerical method, we

define the following discretization operators
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The numerical method considered to approximate (13) is given by
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where =F F x( )j j and the operator δ fx j k
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, is defined by taking into account the x-direction of

the flow, that is
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In order to compute the solution, we rewrite the previous system in a matrix form and our
goal is to determine a vector, in the instant +tn 1, of the form

= … … …

…

+ + +
+

+ + +
+

+

+
+
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x x

p p x p

that is

=+ MF F , (23)n n1

where M is the matrix iteration. To build the matrix M we need to take into account the BCs.
The vector Fn is built by organizing the grid points columnwise from the upper left to the
lower right and it has − × −N N( 1) ( 1)x p interior points.

3.2. Implementation of BCs

In this section, we give an overview of how to implement the boundary conditions. In the
direction p, the physical problem does not have boundaries; therefore, since the computational
domain needs to be bounded, we consider the computational domain large enough, so we can
assume the numerical BC

= =( ) ( )f x p t f x p t x t, , , , 0, for all , . (24)j n j n j nL R

Additionally, we consider = − =p p LR L for L large enough, that is, L is such that the
condition =f x p t( , , ) 0, for >p| | L, is a physical condition. In this way the numerical
boundary conditions do not interfere with the accuracy of the numerical solution.

In the x direction we consider two types of BCs: absorbing and reflecting. We start to
describe the implementation of the absorbing BCs. In this case we only have physical
boundaries defined at =x xL for >p 0 and at =x xR for <p 0, that is

= >( )f x p t p, , 0, for 0 (25)k n kL

= <( )f x p t p, , 0, for 0. (26)k n kR

The first derivative in the space variable x is approximated by the discretization operator δx

defined in (21) taking into consideration the type of boundaries we are assuming, in order to
avoid the use of ghost points or artificial conditions. When >p 0k , to compute the
approximation value of the derivative at x p t( , , )j k n we use the values f j k

n
, and −f j k

n
1, and

therefore we can compute the approximation value at the boundary point =x xR, denoted by

+fN k
n

1,x
, by an interpolation of the values +fN k

n
1,x

and fN k
n

,x
.
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Similarly, for <p 0k , the discretization of the derivative at x p t( , , )j k n uses the
approximation values f j k

n
, and +f j k

n
1, and therefore to compute the boundary value at =x xL,

denoted by f k
n

1, , we interpolate the values f k
n

1, and f k
n

2, .
For the case of reflecting BCs, we have the conditions

= −( ) ( )f x p t f x p t, , , , , (27)k n k nL L

= −( ) ( )f x p t f x p t, , , , . (28)k n k nR R

As we have described for the absorbing BCs for >p 0k , we only need to access
boundary values at =x xL and similarly for <p 0k we only need the boundary values at

=x xR. Therefore we proceed in the following way. For >p 0k , to compute the nearest point
to the boundary =x xL, which is denoted by f k

n
2, we need to interpolate the values f k

n
1, and

f k
n

2, , where f k
n

1, denotes the approximation value of f x p t( , , )k nL . To impose the reflecting
BC (27) we use the approximation point of −f x p t( , , )k nL instead of the approximation point
f k

n
1, of f x p t( , , )k nL . For <p 0k we proceed similarly, near the right boundary =x xR.

To have a better understanding about the implementation we describe below the matricial
structure.

Concerning the boundary points related to =p pL they are +f f f[ , ,..., ]n n
N
n T

1,1 2,1 1,1x
which,

on the vector (22), corresponds to the entries = +r NF , 1 ,..., 1r
n

x and the boundary points
related to =p pR are + + + +f f f[ , ,..., ]N

n
N

n
N N
n T

1, 1 2, 1 1, 1p p x p
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to the entries = … ++ + r NF , 1, , 1.
N N r
n

x( 1)p x*

Similarly, the boundary points related to =x xL are +f f f[ , ,..., ]n n
N

n T
1,1 1,2 1, 1p

which, on the

vector (22), corresponds to the entries = … ++ − r NF , 1, , 1r N N
n

p( 1)x x
and the boundary
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n

N
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N N
n T

1,1 1,2 1, 1x x x p
which, on the vector (22), cor-

responds to the entries = … ++ r NF , 1, , 1.r N
n

p( 1)x

Therefore, the BCs for the absorbing boundary case are implemented by imposing

= = = … ++ +( ) r NF F 0, 1, , 1, (29)r
n

N N r
n

x1p x

= = …+ −( ) r
N

F 0, 2, ,
2

, (30)r N N
n p

1x x

= = + …+( ) r
N

NF 0
2

2, , . (31)r N
n p

p1x

For the reflecting BCs we have

= = = … ++ +( ) r NF F 0, 1, , 1, (32)r
n

N N r
n

x1p x

= = …+ − + − + −( ) r
N

F F , 2, ,
2

, (33)r N N
n

Np r Nx Nx
n p

1 ( 2 )( 1)x x

= = + …+ + − + r
N

NF F ,
2

2, , . (34)r Nx
n

Np r Nx
n p

p( 1) ( 2 )( 1)

For physical problems at hand, whose results will be presented in section 4, we have also
considered = −x xL R. And in order to include discrete points corresponding to p = 0, we need
to assume Np to be even.
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3.3. Convergence of the method

From the way we have derived the numerical method it is straightforward to obtain the
truncation error of the numerical method to conclude that the numerical method has first order
accuracy regarding the time variable and the space variable and second order accuracy
regarding the momentum variable, that is, Δ Δ Δ+ +O x p t( )2 .

Next we are interested in analyzing the stability of the numerical method for the Kramers
equation, which has variable coefficients. Results for linear equations with variable coeffi-
cients were initially given by Lax [25, 26] for a hyperbolic one dimensional problem.
Generalizations to parabolic equations, multidimensional problems and systems of equations
can be found in [32, 34, 37]. To analyze the stability of our method we can apply the
following result, that can be found in [34, 37].

Consider the finite difference method for equation (4), of the form

=+f Q f , (35)j k
n

j k
n

,
1

,

with

∑ ∑=
=− =−

+Q c x p S( , ) ,
l l

l

m m

m

l m
l m

,

1

2

1

2

where the coefficients c x p( , )l m, are functions of x and p and +Sl m represents the forward and
backward shift operators, that is

=+
− −S f f .l m

j k
n

j l k m
n

, ,

A consistent method is stable if the function

∑ ∑ρ ξ ξ ξ ξ= =ξ ξ

=− =−

− − ( )x p c x p( , , ) ( , )e e , , , (36)
l l

l

m m

m

l m
l l

x p,
i ix p

1

2

1

2

satisfies

(a) it is Lipschitz continuous in (x, p);
(b) for ξ ≠ 0 and ξ ξ π⩽max {| |, | |}x p , we have

ρ ξ Δ< +x p O t x p( , , ) 1 ( ) for all ( , );

(c) for ξ ξ π⩽max {| |, | |}x p , Δt less than some τ > 0 and δ >x p( , ) 0, for all (x,p),we have

ρ ξ Δ δ ξ⩽ + −x p O t x p( , , ) 1 ( ) ( , ) ,q2

where >q 0 and ξ ξ ξ= +| | x p
2 2 2.

The following result concerns the stability of the method (20) and the proof follows some
ideas presented in [23, 37]. The von Neumann method can be applied to Cauchy problems or
bounded domains assuming the boundaries are periodic. Nevertheless, for many types of
boundaries the stability conditions obtained through the von Neumann analysis are very close
to the necessary and sufficient condition for practical stability [22, 38].
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Theorem 1. Let

ν μ ν γ
ν
μ

= ∥ ∥ + = ∥ ∥ + ∥ − ∥∞ ∞ ∞C p C p F p2 and
2

, (37)x x
p

1 2
2

2

where ∥ ∥ =∞p pmax {| |}k k , γ γ∥ − ∥ = −∞F p F pmax | |j k j k, and

ν Δ
Δ

ν Δ
Δ

μ γ Δ
Δ

= = =t

x

t

p

t

p
, , . (38)x p 2

If

⩽ ⩽C C1 and 1, (39)1 2

then the amplification factor for the numerical method (20) satisfies the conditions (a)–(c)
stated previously.

Proof. (a) We assume the function F, defined by (2), is smooth and therefore the Lipschitz
continuous condition is trivially satisfied. (b) Now, we will derive the amplification factor,
when ⩾p 0. If <p 0, the operator δx is given by the upwind approximation and the
expression of the amplification factor changes slightly. However, it is easy to see that the
result follows in a similar way.

For the numerical method (20), the amplification factor for ⩾p 0k is given by

ρ ξ γΔ ν

γ ν μ

= + − −

− − − + − +

ξ

ξ ξ ξ ξ

−

− −

( )
( ) ( )

( )
( )

x p t p

F p

, , (1 ) 1 e

1

2
e e e 2 e , (40)

j k k x

j k p

i

i i i i

x

p p p p

where ξ ξ ξ= ( , )x p .
For clarity, we denote

ν ν β γ ν= = −( )p F pand .k k x j k j k p,

We can write

ρ ξ γΔ ν ξ μ ξ ν ξ β ξ= + − − − − + +( ) ( )( )x p t i i, , (1 ) 1 cos 2 1 cos sin sin ,j k k x p k x j k p,

and therefore

ρ γΔ ν ξ μ ξ ν ξ β ξ= + − − − − + +⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦( )( )t(1 ) 1 cos 2 1 cos sin sin .k x p k x j k p
2 2

,

2

Applying the Cauchy–Schwartz inequality we obtain

ν ξ β ξ
ν
ν

ν ξ
β

μ
μ ξ

ν
ν

β

μ
ν ξ μ ξ

ν ξ μ ξ

+ = +

⩽ + +

⩽ +

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

( )

( )

sin sin sin
2

2 sin

2
sin 2 sin

sin 2 sin ,

k x j k p
k

k
k x

j k
p

k

k

j k
k x p

k x p

,

2 ,
2

2
,
2

2 2

2 2
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since, from (39), ν β μ+ ⩽2 1k j k,
2 . Let ξ= −s 1 cosx x and ξ= −s 1 cosp p, we can write

ρ γΔ ν μ ν μ

γΔ γΔ ν μ ν μ

ν μ

γΔ γΔ ν μ ν μ ν μ

⩽ + − − + − + −

= + − + + + +

+ − + −

= + − + + + − −

⎡⎣ ⎤⎦ ( )
( ) ( )

( )
( ) ( )

( )

( )

t s s s s s s

t t s s s s

s s s s

t t s s s s s s

(1 ) 2 2 2 2

(1 ) 2(1 ) 2 2

2 2 2

(1 ) 2 2 2 2 .

k x p k x x p p

k x p k x p

k x x p p

k x p k x p k x p

2 2

2 2

2 2 2 2

Using again Cauchy–Schwartz

ν μ ν μ ν μ

ν μ

+ ⩽ + +

⩽ +

( )( ) ( )s s s s

s s

2 2 2

2 ,

k x p k k x p

k x p

2 2 2

2 2

since, from (39), ν μ+ ⩽2 1k . Therefore

ρ γΔ γΔ ν μ⩽ + − +( )t t s s(1 ) 2 2 .k x p
2 2

We can then conclude that for ξ ≠ 0x and ξ ≠ 0p

ρ γΔ< + t(1 ) .2 2

Then

ρ γΔ< + t1 .

(c) We have ρ γΔ= + t| | 1 at ξ = 0 and for the other values of ξ, by (b) we can conclude that
the value decreases having its minimum for some ξ > 0 and less than π. For small values of ξ,
we replace sin and cos by the first terms of the Taylor expansion about ξ = 0. We obtain

ρ γΔ ν
ξ

μ
ξ

ν ξ β ξ

γΔ γΔ ν
ξ

μ
ξ

ν ξ β ξ

= + − − + +

= + − + + + +

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎡⎣ ⎤⎦
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )

t

t t

1
2

2
2

(1 ) 2(1 )
2

2
2

,

k
x p

k x j k p

k
x p

k x j k p

2
2 2 2

,

2

2
2 2

,

2

for small values of ξ ξ ξ= ( , )x p and therefore we ignore the the values of ξ| | p for ⩾p 4. We
also have that

ξ ξ

ρ γΔ ν
ξ

μ
ξ

ν ξ β ξ

γΔ

⩽ + − + + +

= + −

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ ( )t

t M

(1 ) 2
2

2
2

(1 ) ,

k
x p

k x j k p

T

2 2
2 2

,

2

2

where

ξ ξ ξ
ν

μ

ν ν β

ν β β
= = −⎡⎣ ⎤⎦

⎡
⎣⎢

⎤
⎦⎥

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥M

0
0 2

.x p
T k k k j k

k j k j k

2
,

, ,
2

It is easy to check that the eigenvalues of the matrix M are both positive under the assumption
of conditions (39) and therefore the matrix is symmetric positive definite and ξ ξ >M 0T . We
have
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ξ ξ

ξ ξ

ρ γΔ

γΔ
γΔ

⩽ + −

= + −
+

t M

t
M

t

(1 )

(1 ) 1
(1 )

.

T

T

2

2

Now we replace − z1 by the first terms of the Taylor expansion about z = 0. We obtain

ξ ξρ γΔ
γΔ

⩽ + −
+

t
M

t
1

(1 )
.

T

Since Δ τ⩽t , then

ξ ξρ γΔ
γτ

⩽ + −
+

t
M

1
(1 )

.
T

By the Rayleigh–Ritz theorem, for real symmetric matrices

ξ ξ λ ξ⩾M ,T
min

2

where λmin is the smallest eigenvalue of M. It follows that

ρ γΔ δ ξ⩽ + −t1 ,2

where δ λ γτ= +(1 )min . □
From condition (24), we can infer f is periodic in p. In the x direction we are considering

two types of boundaries: absorbing and reflecting.
For the absorbing boundaries, although they are not periodic, the resulting iterative

matrices can be formulated as circulant matrices and therefore they have the same structure as
when we assume periodic BCs [18, 38].

Regarding the reflecting boundaries, we can check numerically that the conditions
obtained define sharp stability regions. For instance, in table 1, we present the case when
F = 2, where we describe the behaviour of the numerical method, when we consider dis-
cretization steps that lead to different values of C1 and C2. When the conditions in (37) are
violated, the method blows up, that is, it does not converge. A similar result is obtained, if we
consider other type of functions F.

3.4. Test problem

In this section we consider a problem to test the accuracy of the numerical method. We use
the test problem presented in [42]. The numerical method presented in section 3.1 is used to
solve equation (13), defined in the space domain ∈ −x [ 1, 1] with =F x x( ) , γ = 1 and a
non-homogeneous source term s x p t( , , ) on the right hand side. We assume absorbing BCs,
whose implementation is described in section 3.2. The addition of the source term do not
interfer with the implementation of the numerical method and therefore its efficiency can be
equally tested for homogeneous or non-homogeneous equations. The main reason for
choosing this test example is that its analytic solution can be found exactly. The test solution
as reported in [42] for absorbing boundaries, is

= + −− − + + −( )( )f x p t t x( , , ) 2 ( 2) 1 e e . (41)t x p p p p1 2 1 2 2 ( 1) 21
10

2 2
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The numerical errors are measured by the discrete norm

∑∑Δ Δ= −
= =

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( )( )E t x p f x p t f( ) , , , (42)n

j

N

k

N

j k n j k
n

1 1
,

2
1 2

x p

where f x p t( , , )j k n represents the exact solution at the point x p t( , , )j k n and f j k
n
, the

respective numerical solution.
In table 2 we plot the the convergence rate errors for Δ Δ=x p. The step sizes in the t

direction are chosen to be small in order to analyse the order of convergence in the x direction.
In table 3 we plot the erros and the convergence rate for the approximation in the p direction.
The step sizes both in t and x directions are chosen to be very small in order to observe the
second order convergence rate in the p direction. These numerical results are in agreement
with the theoretical analysis of the preceding sub-sections.

Finally in figures 3(a) and (b) we plot the exact solution f x p t( , , ) and the numerical
solution respectively, showing that the numerical solution fits the exact solution very well.

Table 1. Behaviour of the numerical method (20) in the presence of reflecting boundary
conditions when different discretization steps are considered in order to obtain different
values for the stability conditions (37).

C1 C2 State of convergence

1.5656 1.2800 Diverges
1.2809 1.0473 Diverges
0.9394 0.7680 Converges

Table 2. Errors defined by (42) for tn = 1, Δ Δ=x p and small step size in the t direction
Δ = −t e1.7 04.

Δx Error Rate

2 17 −e6.452 02
2 33 −e4.229 02 0.64
2 65 −e2.456 02 0.80

2 129 −e1.321 02 0.90
2 257 −e6.851 03 0.95

Table 3. Errors defined by (42) for tn = 1 as Δp changes, for small space step
Δ =x 2 2050 and small time step Δ = −t e4.4 05.

Δp Error Rate

10 17 −e6.862 02
10 33 −e1.671 02 2.13
10 65 −e4.045 03 2.09

10 129 −e8.912 04 2.21
10 257 −e1.450 04 2.63
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4. Numerical solutions

Using the numerical method presented in section 3, we have obtained solutions of the Kra-
mers equation in the presence of absorbing and reflecting BCs, and with the initial condition
specified in (7) and (8). Let us recall that our initial distribution is symmetrically located
around =x p( , ) (0, 0). With the scaled variables introduced in (3), the Kramers equation as
given by (4) has one input parameter γ and an input function = −F x V x x( ) d ( ) d . To obtain
the numerical solutions we assume γ = 1 and the spatial domain is taken to be − ⩽ ⩽x5 5.

In this section we present some representative results from a detailed numerical study of
solutions of the Kramers equation subject to absorbing and reflecting BCs (for finite geo-
metries) and also in the presence of a variety of potential fields. The latter can affect the
dynamics of the Brownian particle in addition to the BCs. We present results that show an
interplay between BCs and potential fields. On general terms, the types of potential fields we
consider are constant, attractive (confining), repulsive (de-confining) and periodic. Specific
forms of potential fields are dealt with in the next sub-sections. For each type of potential we
present figures for one particular instant of time. For each case we have selected the instant of
time which we have found to be more illustrative of the effects of boundaries: absorbing and
reflecting. It will be noted that the same instant of time is chosen for the same potential, first
with absorbing BCs and then with reflecting BCs.

4.1. Absorbing BCs

We note that for the spatial domain we have chosen, the absorbing BCs are given by

− = > = <f p t p f p t p( 5, , ) 0, for 0 and (5, , ) 0 for 0. (43)

This equation indicates that −f p t( 5, , ) for <p 0 and f p t(5, , ) for >p 0 are not affected
by absorbing BCs. Interestingly, our computational results for f x p t( , , ) in the presence of
certain potentials suggest that there is a symmetry relation between these two quantities. This
is an empirical relation and is expressed as

− < = >f p t f p t t( 5, 0, ) (5, 0, ) for all . (44)

We shall invoke this relation to study an interplay between absorbing BCs and the type of
potential fields. To explore this interplay we consider six potentials some of which lead
to (44).

Figure 3. (a) Surface of the exact solution with absorbing boundary conditions; (b)
surface of the numerical solution with absorbing boundary conditions. Solution at t = 5.
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We start with the case of a free Brownian particle, that is, for V(x) constant, which
implies =F x( ) 0. In figure 4(a) we show a plot of f x p t( , , ), at the instant of time t = 6, and
also the corresponding contour lines, since these two quantities together provide a good
picture of how the dynamics of the Brownian particle evolves. The effect of absorbing BCs
may be more clearly seen from the contour lines. For this case we also observe that (44) is
verified.

The case of the linear potential = −V x x( ) 2 i.e. =F x( ) 2 is presented in figure 4(b), for
the instant t = 4. The f x p t( , , ) profile and the contour lines are now asymmetric (shifted to
the right boundary) and the particle is not going to return to the domain. The escape from the
domain is due to absorbing BCs. As one would expect, although we do not plot it here, for

=V x x( ) 2 that is for = −F x( ) 2, f x p t( , , ) and the contour lines will be shifted to the left
boundary. For the linear potential, the equality (44) does not hold.

We briefly mention the case of a harmonic potential =V x x( ) 22 that is for = −F x x( ) .
This is a symmetric (about x = 0) and attractive (confining) potential. We do not show any
figure for this case because the numerical solution vanishes before it reaches the boundaries.
The particle is confined in the central part of the domain. A contrasting case is a harmonic
potential = −V x x( ) 22 for which =F x x( ) . This is a symmetric repulsive (de-confining)
potential. The results for this potential are shown in figure 5(a), for t = 5. We now expect the
particle to be symmetrically pushed away from the interior of the domain both to the left and
to the right. A combined effect of this potential and absorbing BCs is that the particle will be
symmetrically absorbed in both boundaries and (44) is satisfied.

The Kramers equation for a periodic potential has been considered in the literature (see,
for example [8, 9]). We have solved the Kramers equation for three periodic potentials and for
finite geometries.

We first deal with two periodic potentials for which figures are plotted for t = 6. We show
f x p t( , , ) and the contour lines for π=V x x( ) sin ( 10) that is for

π π= −F x x( ) ( 10) cos ( 10) in figure 5(b). In this case the force remains negative throughout

Figure 4. Surfaces and contour lines of the numerical solution f x p t( , , ) with absorbing
boundary conditions (43); (a) homogeneous potential field V(x), that is, =F x( ) 0.
Solution at t = 6; (b) linear potential field = −V x x( ) 2 , that is, =F x( ) 2. Solution
at t = 4.
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the spatial domain − ⩽ ⩽x5 5 as in the case of = −F x( ) 2 mentioned earlier; f x p t( , , ) for
this case shows a leftward shift. The particle now escapes asymmetrically from the domain.
For the second periodic potential, shown in figure 6(a), π=V x x( ) cos ( 10) that is for

π π=F x x( ) ( 10) sin ( 10), we note that V(x) is symmetric in x and, as in the cases of
symmetric potentials considered in within this section, f x p t( , , ) is expected to undergo a

Figure 5. Surfaces and contour lines of the numerical solution f x p t( , , ) with absorbing
boundary conditions (43); (a) harmonic potential field = −V x x( ) 22 , that is, =F x x( ) .
Solution at t = 5; (b) periodic potential field π=V x x( ) sin ( 10), that is,

π π= −F x x( ) ( 10) cos ( 10). Solution at t = 6.

Figure 6. Surfaces and contour lines of the numerical solution of f x p t( , , ) with
absorbing boundary conditions (43); (a) periodic potential field π=V x x( ) cos ( 10),
that is, π π=F x x( ) ( 10) sin ( 10). Solution at t = 6; (b) periodic potential field

π=V x x( ) cos (8 10), that is, π π=F x x( ) (8 10) sin (8 10). Solution at t = 30.
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symmetric evolution. In this case the particle escapes symmetrically from the domain and
satisfies (44).

The third periodic potential is shown in figure 6(b), where π=V x x( ) cos (8 10) i.e.
π π=F x x( ) (8 10) sin (8 10). This potential is chosen to have a shorter period, and the time

t = 30 provides a longtime profile of f x p t( , , ).
In the next section we do a similar study, now assuming reflecting BCs.

4.2. Reflecting BCs

Unlike the absorbing BCs discussed in the previous section, the reflecting BCs do not allow
the Brownian particle to escape from the domain and the particle is now confined within the
domain. We have looked at these BCs in section 2, from the perspective of particle flux
conservation. The reflecting BCs for our domain are specified by

− = − − = −f p t f p t f p t f p t p( 5, , ) ( 5, , ) and (5, , ) (5, , ) for all . (45)

We have studied these BCs for the same potential fields as in the case of two absorbing BCs.
From numerical solutions we have found that for symmetric (even in x) potentials and hence
for antisymmetric (odd in x) forces, there are additional symmetry relations

− =f p t f p t p( 5, , ) (5, , ) for all . (46)

Like (44), the relation (46) is empirical and is established through a study of numerical
solutions. In the cases for which (46) is valid, f x p t( , , ) behaves as if it has a periodicity in x
seen from one end of the domain to the other with end points satisfying (46). This additional
symmetry of f x p t( , , ) results from a combination of the reflecting BCs given by (45) and the
type of potential field. For the other cases in which the potentials are odd in x and hence the
forces are even in x, the numerical solutions show that the Brownian particle is asymme-
trically confined within the domain with the peaking of f x p t( , , ) at one boundary. These
cases are illustrated in figures 7(b) and 8(b), for the forces =F x( ) 2 and

π π= −F x x( ) ( 10) cos ( 10) respectively.

Figure 7. Surfaces and contour lines of the numerical solution f x p t( , , ) with reflecting
boundary conditions (45). (a) Homogeneous potential field, that is, =F x( ) 0. Solution
at t = 6; (b) potential field = −V x x( ) 2 , that is, =F x( ) 2. Solution at t = 4.
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The free Brownian particle case i.e. =F x( ) 0 is illustrated in figure 7(a) for t = 6. In this
case condition (46) is verified.

The case = −V x x( ) 2 , that is, for =F x( ) 2 is shown in Figure 7(b), for t = 4, where we
see that f x p t( , , ) peaks at the right boundary. From this figure it is easy to predict that for

=V x x( ) 2 i.e. for = −F x( ) 2, f x p t( , , ) will peak at the left boundary.
The numerical solution f x p t( , , ) and its contour lines for = −V x x( ) 22 i.e. =F x x( ) is

shown in figure 8(a) for t = 5, and we observe condition (46) is satisfied.
We now present the same periodic potential cases as in the previous sub-section, for the

instant of time t = 6. Figure 8(b) is shown for the case π=V x x( ) sin ( 10) which is odd in x
and hence π π= −F x x( ) ( 10) cos ( 10) is even in x. Note that in this case the force remains
negative throughout the domain. It thus acts like a directed force similar to = −F x( ) 2
mentioned earlier, and f x p t( , , ) peaks predominantly at the left boundary. The situation is
reverse for π=V x x( ) cos ( 10) i.e. π π=F x x( ) ( 10) sin ( 10). Now the force, like =F x x( ) ,
changes sign with respect to x = 0 and does not act like a directed force throughout the
domain. As in the case of =F x x( ) , a combination of the reflecting BCs and the type of force
leads to the relation (46). This situation is illustrated in figure 9(a).

As with absorbing BCs, we consider the third periodic potential given by
π=V x x( ) cos (8 10) that is π π=F x x( ) (8 10) sin (8 10), shown in figure 9(b) for a long

time profile of f x p t( , , ), that is, t = 30. The contour lines for f x p t( , , ) for the third periodic
potential are not shown because the profiles of f x p t( , , ) for absorbing and reflecting BCs
well illustrate the longtime behaviour. If we compare figure 9(b) with the absorbing case,
plotted in figure 6(b), we can see the figures are different and the two peaks near the left and
right boundaries are lower for the absorbing case.

In concluding this section, we briefly consider a scenario of mixed BCs, namely one (left)
reflecting BC and one (right) absorbing BC. For our domain we have the conditions

Figure 8. Surfaces and contour lines of the numerical solution f x p t( , , ) with reflecting
boundary conditions (45). (a) Potential field = −V x x( ) 22 , that is, =F x x( ) . Solution
at t = 5; (b) potential field π=V x x( ) sin ( 10), that is, π π= −F x x( ) ( 10) cos ( 10).
Solution at t = 6.
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− = − − = <f p t f p t f p t p( 5, , ) ( 5, , ), (5, , ) 0, for 0. (47)

This scenario is of physical relevance e.g. in connection with studies of first passage times
[33]; for a recent review, see [3]. In order to illustrate the behaviour of solutions for BCs (47)
we have considered only two potential fields: V(x) constant i.e. =F x( ) 0, and = −V x x( ) 22

Figure 9. Surfaces and contour lines of the numerical solution f x p t( , , ) with reflecting
boundary conditions (45). (a) Potential field π=V x x( ) cos ( 10), that is,

π π=F x x( ) ( 10) sin ( 10). Solution at t = 6; (b) potential field π=V x x( ) cos (8 10),
that is, π π=F x x( ) (8 10) sin (8 10). Solution at t = 30.

Figure 10. Surfaces and contour lines of the numerical solution f x p t( , , ) with left
reflecting boundary conditions and right absorbing boundary conditions (47). (a)
Homogeneous potential field, that is, =F x( ) 0. Solution at t = 5; (b) potential field

= −V x x( ) 22 , that is, =F x x( ) . Solution at t = 5.

J. Phys. A: Math. Theor. 48 (2015) 045202 A Araújo et al

20



i.e. =F x x( ) . The results for f x p t( , , ) and contour lines are shown in figure 10 for both
cases at t = 5. Figure 10(a) can be compared with figures 4(a) and 7(a); figure 10(b) can be
compared with figures 5(a) and 8(a). This comparison shows how a combination of one
reflecting BC and one absorbing BC affects the spatio-temporal dynamics of the Brownian
particle. We note that for one or both absorbing BCs, the probability distribution f x p t( , , )
will decay in time. Hence for these cases the survival probability of the Brownian particle is
of theoretical and practical interest. This leads us to the next section.

4.3. Spatial density n x ; tð Þ and survival probability N(t)

In this section we use numerical solutions for f x p t( , , ) to calculate two quantities which
complement our studies of the Kramers equation for finite geometries. These two quantities
are defined as

∫=
−∞

∞
n x t f x p t p( , ) ( , , )d (48)

and

∫=N t n x t x( ) ( , )d . (49)
x

x

L

R

The function N(t) which we refer to as global density becomes the survival probability in the
case of one or both absorbing BCs. The number density n x t( , ) illustrates an unusual feature
of the Kramers equation with absorbing BCs. This feature is more clearly seen at the level of
n x t( , ) than with f x p t( , , ) itself. In order to see this let us recall the Fickian diffusion
equation (without a potential field, for simplicity)

∂
∂

=
∂
∂

= >
n

t
x t D

n

x
x t x x x t( , ) ( , ); [ , ], 0,F

2
F

2 L R

for two absorbing BCs at =x xL and at =x xR. These two BCs are usually assumed to be (on
physical ground)

= = >n x t n x t t( , ) 0; ( , ) 0, 0. (50)F L F R

For this case we are denoting the density by n x t( , )F (F for Fickian). Next let us calculate
n x t( , ) and N(t) from our numerical solutions of the Kramers equation, according to (48) and
(49) respectively. As expected, the value of N(t) will decrease in the case of absorbing BCs
whereas for the reflecting BCs it is still the same. We may expect that n x t( , ), which at long
times tend to n x t( , )F , will also vanish at the absorbing boundaries as in (50). In fact n x t( , )
does not vanish exactly at =x xL and =x xR. This feature of n x t( , ) is illustrated for the
following cases: figure 11(a) for =F x( ) 0, figure 12(a) for =F x( ) 2, figure 13(a) for

=F x x( ) , figure 14(a) for π π=F x x( ) ( 10) sin ( 10) and figure 15(a) for
π π= −F x x( ) ( 10) cos ( 10). Note that n x t( , ) in these figures refers to the number density

obtained through the Kramers equation and (48).
The difference between n x t( , )F and n x t( , ) at the absorbing boundaries can be under-

stood in this way. On physical ground we expect that n x t( , )F vanishes at the absorbing
boundaries. However if we recall the absorbing BCs on f x p t( , , ) at the same boundaries, we
note that f x p t( , , ) is assumed to vanish for only one half range of pʼs at each boundary. The
other half range of pʼs makes a non-zero contribution to n x t( , ) after the integration over pʼs
according to (48). Hence n x t( , ) remains non-zero at absorbing boundaries even at long
times. This feature has been discussed in the literature and we refer to [6, 7] as an example.In
[6, 7] a semi-infinite geometry is considered and the analysis is based on only stationary
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solution of the Kramers equation without a potential field. If we consider our numerical
results at long time for the density profile near the absorbing boundary at x = 0, then our
results and theirs are consistent with each other. Both indicate that the density profile n x t( , ),
for long times, does not vanish at x = 0; it vanishes a little away from x = 0. We observe from
figures 12(a) to 15(a) that n x t( , ) can be noticeably different from zero at the absorbing
boundaries, due to potential fields.

Figure 11. Plots of n x t( , ) for = ⋯t 0( ), = − −t 2( · ), = − −t 4( ), = −t 6( ) for
=F x( ) 0 with: (a) absorbing boundary conditions (43). The values of N(t) are

respectively =N (0) 1, =N (2) 0.9980, =N (4) 0.9508, =N (6) 0.8634; (b) reflecting
boundary conditions (45). The values of N(t) are respectively =N (0) 1,

=N (2) 0.9998, =N (4) 0.9973, =N (6) 0.9952.

Figure 12. Plots of n x t( , ) for = − −t 2( · ) , = − −t 4( ), = −t 6( ) for =F x( ) 2 with:
(a) absorbing boundary conditions (43). The values of N(t) are respectively =N (0) 1,

=N (2) 0.9589, =N (4) 0.3383, =N (6) 0.05687; (b) reflecting boundary conditions
(45). The values of N(t) are respectively =N (0) 1, =N (2) 0.9989, =N (4) 0.9921,

=N (6) 0.9857.
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For the reflecting BCs, n x t( , ) can be significantly affected by non-zero potential fields,
as can be seen in figures 13(b)–15(b). The asymmetry in n x t( , ), as shown in figures 15(a)
and (b), is a consequence of the asymmetry in f x p t( , , ) in these cases; n x t( , ) is shifted
toward the left boundaries (discussed in section 4.2). While n x t( , ) is a local number density,
N(t) given by (49) can be viewed as a global density. For each of the Figures 11–13, the
values of N(t) are cited (see figure legends) for three values of time. For both absorbing BCs,

Figure 13. Plots of n x t( , ) for = − −t 2( · ) , = − −t 4( ), = −t 6( ) for =F x x( ) with:
(a) absorbing boundary conditions (43). The values of N(t) are respectively =N (0) 1,

=N (2) 0.9352, =N (4) 0.3930, =N (6) 0.1189; (b) reflecting boundary conditions
(45). The values of N(t) are respectively =N (0) 1, =N (2) 0.9989, =N (4) 0.9923,

=N (6) 0.9803.

Figure 14. Plots of n x t( , ) for = − −t 2( · ), = − −t 4( ), = −t 6( ) for
π π=F x x( ) ( 10) sin ( 10) with: (a) absorbing boundary conditions (43). The values

of N(t) are respectively =N (0) 1, =N (2) 0.9977, =N (4) 0.9280, =N (6) 0.7969;
(b) reflecting boundary conditions (45). The values of N(t) are respectively =N (0) 1,

=N (2) 0.9999, =N (4) 0.9987, =N (6) 0.9977.
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N(t) decreases in time. But for both reflecting BCs, N(t)—within numerical accuracy—
remains constant in time because the Brownian particle is now confined within the domain.

5. Conclusion and outlook

In this paper we have presented a detailed numerical study of the time-dependent Kramers
equation without and with potential fields, for finite geometries and in one spatial dimension.
The effect of finite geometries is included through absorbing and reflecting BCs due to Wang
and Uhlenbeck [41]. The emphasis in our study is a numerical solution of the Kramers
equation. The Brownian particle is assumed to be initially located at =x p( , ) (0, 0). We have
considered a finite domain ⩽ ⩽x x xL R with = −x xL R and a momentum space domain as
−∞ < < ∞p . To obtain numerical solutions at each time we have used an explicit numerical
method whose properties of convergence such as its stability conditions have been discussed
in detail. These properties allow us to successfully obtain accurate numerical solutions. For
the choice of the domain ( = −x xR L) the initial position of the particle is symmetrical with
respect to both boundaries. And we take the initial distribution to be symmetrical also in p-
space. If we envisage an initial distribution not centred at =x p( , ) (0, 0) such as one with a
shift (small compared to the length of half the domain) to the right or left of x = 0 in x-space
and with a shift up or down in p-space, then we still expect the general findings in section 4 to
hold although the additional symmetries given, respectively, by (44) for absorbing BCs and
by (46) for reflecting BCs, may not hold. We may add that the additional symmetry relations
arise when both boundaries are of the same type.

One highlight of our work is to consider a few potentials V(x) some of which are
symmetrical about x = 0 while others are not, and to numerically study an interplay between
the BCs (both absorbing and reflecting) and the type of potentials to see how this interplay
determines profiles for f x p t( , , ) and contour lines. This has also led us to find some addi-
tional symmetry relations for f x p t( , , ) in the case of potentials of certain symmetry. The

Figure 15. Plots of n x t( , ) for = − −t 2( · ), = − −t 4( ), = −t 6( ) for
π π= −F x x( ) ( 10) cos ( 10) with: (a) absorbing boundary conditions (43). The

values of N(t) are respectively =N (0) 1, =N (2) 0.9983, =N (4) 0.9462,
=N (6) 0.8459; (b) reflecting boundary conditions (45). The values of N(t) are

respectively =N (0) 1, =N (2) 0.9999, =N (4) 0.9990, =N (6) 0.9983.
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potentials we have considered are of theoretical interest and experimental relevance. For an
absorbing BC there is a conceptual element of interest regarding the vanishing of Brownian
particle density n x t( , ) at the boundary itself or a little away from it. We have illustrated this
feature with a few examples of potentials. Among physical quantities and scenarios which can
be studied with the type of numerical solutions reported in this paper, some are briefly
mentioned below. With one or both absorbing BCs and without and with potential fields, one
can consider first passage problems (see [3] for a recent review). A quantity of considerable
interest is mean-square displacement < >x t( )2 for underdamped Brownian motion in finite
geometries. A bistable potential, symmetrical and asymmetrical, with a reflecting BC, say at
the left and an absorbing BC at the right is a topic by itself and leads to escape from a well,
etc. We also mention partially absorbing and partially reflecting BCs. A time-dependent
external field in addition to a potential V(x), and a consideration of more than one spatial
dimension will extend the work beyond what has been reported here.

Recently several research papers have been appearing on the generalized Kramers
equation. This equation consists of considering a factional derivative in time [28–30]. It
would be of interest to see if and how the type of findings we report in this paper would be
affected in the case of a generalized Kramers equation. However, this problem requires a
separate study. A generalization of the numerical method presented here can be done, by
noticing that in the direction x and p the discretizations can be the same as also the treatment
of the BCs. The main change is how the iteration in time is implemented. The theoretical
convergence analysis of such numerical method is more demanding and may require a
different approach.
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