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ABSTRACT: In this paper we propose a variational method for image contrast enhancement, by keeping
the image details and correcting the non-uniform illumination. It is a minimization problem, where the objec-
tive functional consists of two different fitting terms: a L1 term that matches the gradients of the input and
reconstructed images, for preserving the image details, and a L2 term that measures the misfit between the re-
constructed image and the mean value of the input image, for reducing the image variance and thus correcting
the illumination. For solving this minimization problem we apply the split Bregman method, which is an ef-
ficient and fast iterative method suitable for this type of non-differentiable and convex minimization problem,
involving a L1 term. Some experimental results show the effectiveness of the method.

1 INTRODUCTION

Image contrast enhancement is an image processing
technique, whose purpose is to improve the image
quality, for human interpretation of the image con-
tents or for supplying a good input in automated im-
age processing systems.

In the literature there exists a plethora of contrast
enhancement methods, which are based, for example,
on histogram equalization, edge enhancement, edge
sharpening, filtering and restoration. For a detailed
description of these type of methods see for exam-
ple the book (Gonzalez & Woods 2008). In this pa-
per we focus on a particular variational PDE (partial
differential equation) approach for contrast enhance-
ment. We refer for example to the book (Aubert &
Kornprobst 2006) for an overview of the application
of functional analysis techniques and the theory of
partial differential equations to different image pro-
cessing problems, such as restoration of degraded im-
ages, denoising, segmentation, inpainting, decompo-
sition into cartoon and texture, optical flow and image
classification.

In the variational approach, used herein, the objec-
tive is to minimize an appropriate energy (or func-
tional), whose corresponding Euler-Lagrange equa-
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tion involves a PDE, that can be afterwards solved by
a suitable computational method. Our energy func-
tional is a modification of that proposed in (Morel,
Petro, & Sbert 2014). It is composed of two fitting
terms. One fits the gradients of the input and recon-
structed images, it is measured with the L1-norm, and
aims at preserving image details. The L1-norm is the
chosen measure because it has the property of better
preserving discontinuities, when compared to the L2-
norm. The second term fits the reconstructed image
with the mean value of the input image, in the L2-
norm, for correcting non-uniform illumination. Due
to its particular structure, we then choose the split
Bregman method (Goldstein & Osher 2009) to solve
this variational problem. This is a particular efficient
iterative method applicable to a wide class of L1-
regularized optimization problems.

After this introduction the rest of the paper includes
the description of the variational problem in Section
2, its numerical solution in Section 3, some applica-
tions in Section 4 and finally the paper ends with some
conclusions and comments.

2 DESCRIPTION OF THE MODEL

In (Morel, Petro, & Sbert 2014) it is proposed the fol-
lowing variational model for contrast enhancement

min
u

{∫
Ω

|∇u−∇f |2dx+ λ

∫
Ω

(u− ũ)2dx
}

= min
u

{
‖∇u−∇f‖2

L2(Ω) + λ‖u− ũ‖2
L2(Ω)

}
,

(1)



where f : Ω→ R is the original (grayscale) input im-
age, Ω ⊂ R2 represents the image pixel domain, x is
a point (i.e. a pixel) in Ω, ∇ denotes the gradient op-
erator, |.| is the Euclidean norm in R2, ũ is the mean
value of the reconstructed image u : Ω → R, L2(Ω)
is the space of square integrable functions in Ω, and
‖.‖L2(Ω) denotes the L2-norm. This model contains
two quadratic fitting terms. The first fits the gradients
of u and f , and consequently aims at preserving im-
age details. The second term intends to reduce the ef-
fect of nonuniform illumination by fitting u and its
mean value ũ, thus by decreasing the image variance.
The parameter λ is a positive constant that balances
the influence of the two fitting terms. After replacing
ũ by f̃ , the mean value of the input image f , it is
shown that the problem does not depend on the value
f̃ , and the problem is solved, for f̃ = 0 in the Fourier
domain, using the discrete Fourier transform.

In this paper we modify the model (1) by replac-
ing the L2-norm by the L1-norm for measuring the
misfit between ∇u and ∇f and we also replace the
mean value ũ by f̃ . This yields the following varia-
tional model

min
u

{∫
Ω

|∇u−∇f |dx+
λ

2

∫
Ω

(u− f̃)2dx
}

= min
u

{
‖∇u−∇f‖L1(Ω) +

λ

2
‖u− f̃‖2

L2(Ω)

} (2)

where L1(Ω) is the space of absolutely integrable
functions in Ω and ‖.‖L1(Ω) denotes the L1-norm. The
reason for replacing the L2-norm by the L1-norm is
related to the fact that the L2-norm of the gradient
tends to smear image discontinuities, as opposed to
the L1-norm that tends to preserve the discontinu-
ities, which in image processing corresponds to sharp
edges. In addition to this advantage, the presence of
the L1 fitting term in (2) permits the use of fast and
effective algorithms for computing its solution. In ef-
fect, problem (2) belongs to the general class of L1-
regularized problems of the form

min
u

{
‖φ(u)‖L1(Ω) +H(u)

}
where both ‖φ(u)‖L1(Ω) and H(u) are convex func-
tions. This kind of models can be efficiently solved
with the split Bregman method of (Goldstein & Os-
her 2009). This is an appropriate algorithm for solving
non-differentiable convex minimization problems, in-
volving L1 or TV (total variation) terms. We refer
to (Fang, Li, Zhang, & Shen 2013, Getreuer 2012b,
Goldstein, Bresson, & Osher 2010, Yin, Osher, Gold-
farb, & Darbon 2008) for a few examples of different
applications of the method.

In our case φ(u) = ∇u−∇f and H(u) = λ‖u−
f̃‖L2(Ω), and in the next section we apply split Breg-
man method to solve (2).

3 NUMERICAL SOLUTION BASED ON SPLIT
BREGMAN METHOD

A critical and first aspect of the split Bregman method
is the separation of the L1 and L2 terms, which is
achieved by introducing an auxiliary variable. Thus,
we first replace (2) by the following constrained opti-
mization problem

min
u

{
‖d‖L1(Ω) +

λ

2
‖u− f̃‖L2(Ω)

}
subject to d =∇u−∇f,

and then reformulate it as an unconstrained problem,
by introducing a quadratic penalty function, that is

min
u

{
‖d‖L1(Ω) +

λ

2
‖u− f̃‖2

L2(Ω)

+
α

2
‖d− (∇u−∇f)‖2

L2(Ω)

}
.

(3)

Then, the split Bregman method consists in solving
the following sequence of problems for k = 0,1,2, . . .

(uk+1, dk+1) =

argmin
d,u

{
‖d‖L1(Ω) +

λ

2
‖u− f̃‖2

L2(Ω)

+
α

2
‖d− (∇u−∇f)− bk‖2

L2(Ω)

}
,

bk+1 = bk +∇uk+1 −∇f − dk+1.

(4)

where the new vector bk results from the Bregman
iteration (Bregman 1967), that is a strategy for en-
forcing the constraint d = ∇u − ∇f , using a fixed
penalty parameter α. This strategy is an alternative
to the conventional continuation technique to solve
(3) with an increasing sequence of penalty parame-
ters α1 < α2 < . . . < αn tending to∞, for accurately
enforcing the constraint. The minimization problem
in (4) is solved by iteratively minimizing with respect
u and d, alternatively, which means the following two
steps are performed.

Step 1- Minimization with respect to u (with d fixed)

uk+1 = argmin
u

{λ
2
‖u− f̃‖2

L2(Ω)

+
α

2
‖dk − (∇u−∇f)− bk‖2

L2(Ω)

}
,

(5)

for which the optimality condition (derived from the
Euler-Lagrange equation) is, in Ω

(λ− α∆)uk+1 = λf̃ − αdiv(dk +∇f − bk),

with ∆ and div denoting the Laplace and diver-
gence operators, respectively, along with the non-
homogeneous Neumann boundary condition on the
boundary ∂Ω of Ω

∂uk+1

∂n
= (dk −∇f − bk) · n,



where “·” denotes the inner product in R2 and n is the
unit outward normal to ∂Ω.

This problem can be solved efficiently with the
Gauss-Seidel method, since the system is diagonally
dominant. The solution uk+1

i,j at each pixel (i, j) in Ω
(excepting in ∂Ω) is defined by

uk+1
i,j =

1

λ+ 4α

[
αUi,j + λf̃i,j − αvki,j

]
U = (Ui,j) := (uk+1

i−1,j + uki+1,j + uk+1
i,j−1 + uki,j+1)

vk = (vki,j) := (div(dk +∇f − bk))i,j.
Here we use finite differences for approximating the
derivatives in the gradient ∇ and divergence div op-
erators, respectively. In particular the discretization
used for vki,j is obtained by applying backward finite
differences for divdk and divbk and centered finite dif-
ferences for ∆f

vki,j = 2dki,j − dki−1,j − dki,j−1 − 2bki,j + bki−1,j + bki,j−1

+fki−1,j + fki+1,j + fki,j−1 + fki,j+1 − 4fki,j.

The Neumann boundary condition is implicitly im-
posed in ∂Ω, the boundary of the rectangular pixel
domain, by using backward finite differences, in the
right and top sides, and forward finite differences in
the left and bottom sides.
Step 2- Minimization with respect to d (with u fixed)

dk+1 = argmin
d

{
‖d‖L1(Ω)

+
α

2
‖d− (∇uk+1 −∇f)− bk‖2

L2(Ω)

}
.

This problem can be explicitly solved using shrinkage
operation (known as well as soft thresholding) at each
pixel (i, j)

dk+1
i,j = shrink

(
(∇uk+1 −∇f + bk)i,j,

1

α

)
where for z, γ ∈ R

shrink(z, γ) =
z

|z|
×max(|z| − γ,0).

Summarizing, the split Bregman method for model
(2) is as follows:

Algorithm -

Input - Original image f .

Initialize - u0 = f, d0 = b0 = 0, and fix λ,α, tol.

While |uk − uk−1| > tol

uk+1 = 1
λ+4α

[
αU + λf̃ − αvk

]
, in Ω,

∂uk+1

∂n
= (dk −∇f − bk) · n, in ∂Ω,

dk+1 = shrink
(
∇uk+1 −∇f + bk, 1

α

)
,

bk+1 = bk +∇uk+1 −∇f − dk+1.
End
Output - Image uk.

4 APPLICATIONS

Some results obtained with our proposed model are
shown in this section. All the experiments were imple-
mented with the software MATLABr R2014a (The
Mathworks, Inc.)

Figure 1 shows the contrast enhancement with our
method for a standard test image (a scalar image
with 512 × 343 pixels), downloaded from the IPOL
archive (http://www.ipol.im/). As this figure demon-
strates, the details are kept and the dark regions be-
come more visible in the enhanced image. In addition,
and as expected, when λ increases (λ is the parame-
ter associated with the fitting term intended to reduce
the non-uniform illumination) the result tends to the
mean value of the input image.

Figure 1: Top left: Original image. Top right: λ = 0.005, α = 1.
Bottom left: λ = 0.01, α = 1. Bottom right: λ = 0.05, α = 1.

Figure 2 depicts the results of our method applied
to a medical (RGB - red, green, blue) image (with
536 × 536 pixels), acquired with the wireless cap-
sule Pillcam Colon 2 of Given Imaging. It displays
a colonic polyp (the reddish region in the top left
subfigure) exhibiting strong texture. We applied the
algorithm independently to each channel. The origi-
nal medical image (the top left subfigure) has a non-
uniform illumination, with low contrast in some re-
gions, that is corrected and enhanced with the pro-
posed method. The influence of the model parameters
(λ and α) is also illustrated in these results. Increasing
λ results in an averaged image, tending to the mean
value of the input image, and by increasing α the con-
trast enhancement is enforced.

In Figure 3 we can see the results for an-
other medical image (with size 536 × 536 pix-
els). It is an inhomogeneous illuminated retinal fun-
dus image, provided by the company Retmarker
(http://www.retmarker.com/), and obtained from a pa-
tient screened according to the Diabetic Retinopa-
thy Screening Program of Portugal. We have pro-
cessed with our method the grayscale version (sec-



Figure 2: Top left: Polyp image obtained with Pillcam Colon 2,
by courtesy of University Hospital of Coimbra, Portugal. Top
right: λ = 1, α = 150. Bottom left: λ = 1, α = 200. Bottom
right: λ = 2, α = 200.

Figure 3: First column: Original (RGB) retinal fundus image and
results with (λ = 1, α = 5) in 2nd row and (λ = 5, α = 5) in 3rd
row. Second column: Grayscale version and results with (λ = 1,
α = 5) in 2nd row and (λ = 5, α = 5) in 3rd row.

ond column) as well as each color channel separately

(first column). Again these results show the good con-
trast enhancement improvement achieved with our
method.

Figure 4 shows the result of the proposed method-
ology for a MRI image, downloaded from the IPOL
archive (http://www.ipol.im/), and also a comparison
to the result obtained with the online demo of (Morel,
Petro, & Sbert 2014). We remark that our method op-
erates directly on the input image (exhibiting intensity
inhomogeneities) whereas the displayed result with
the technique of (Morel, Petro, & Sbert 2014) involve
pre and post processing steps that consist on the appli-
cation of a simplest color balance technique (Limare,
Lisani, Morel, Petro, & Sbert 2011). We can notice
that our method performs slightly better in the dark
down region on the left part of the image. We also
emphasize that our method doesn’t use any pre or post
processing methodology.

Figure 4: Top left: Original MRI and input for the proposed
method. Top right: Original MRI with 2% saturation and in-
put for the model solved with the screened Poisson equation
(Morel, Petro, & Sbert 2014). Bottom left: Result for the pro-
posed method with (λ= 1, α = 10). Bottom right: Result apply-
ing a simplest color balance with 2% saturation to the solution
obtained with the screened Poisson equation and with λ = 0.05.

5 CONCLUSIONS

In this paper we propose an inverse variational model
for image contrast enhancement. It is a modification
of the screened Poisson equation for image contrast
enhancement as proposed by (Morel, Petro, & Sbert
2014). The difference with respect to this latter model
is in the term that matches the gradients of the input
and reconstructed images, that is now measured in the
L1-norm (instead of the L2-norm as in (Morel, Petro,
& Sbert 2014)), because the former has the advantage
of better preserving edges in image processing appli-
cations. The presence of this L1-norm term enables



the proposed model to be solved by the split Bregman
technique, which is an efficient procedure that has the
advantage of not requiring regularization, continua-
tion, or the enforcement of inequality constraints.

Applications of the proposed method to different
types of images show its good performance. We also
remark that our methodology does not include pre and
post processing steps as it happens in the method-
ology presented in (Morel, Petro, & Sbert 2014),
where the best reconstructed images have been ob-
tained with pre and post processing steps, involving
the application of a simplest color balance technique
(Limare, Lisani, Morel, Petro, & Sbert 2011) applied
before and after solving the model with the screened
Poisson equation.

The model we propose involves some parameters
that are tuned and fixed manually. In the future an au-
tomatic or self-adapting method for choosing these
parameters will be studied. Moreover an additional
analysis concerning the comparison of the results ob-
tained with the present method with those obtained
with the original model in (Morel, Petro, & Sbert
2014) will be performed, as well as a comparison with
the ACE method (Getreuer 2012a), which is one of
the most effective contrast enhancement methods.
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