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Abstract

An optical flow variational model is proposed for a sequence of images defined on a domain in R2. We
introduce a regularization term given by the L1 norm of a fractional differential operator. To solve the min-
imization problem we apply the split Bregman method. Extensive experimental results, with performance
evaluation, are presented to demonstrate the effectiveness of the new model and method and to show that
our algorithm performs favorably in comparison to another existing method. We also discuss the influence
of the order α of the fractional operator in the estimation of the optical flow, for 0 ≤ α ≤ 2. We observe
that the values of α for which the method performs better depends on the geometry and texture complexity
of the image. Some extensions of our algorithm are also discussed.
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1. Introduction

Optical flow is a tool for detecting and analyzing motion in a sequence of images. The underlying idea
is to depict the displacement of patterns in the image sequence as a vector field, named the optical flow
vector field, generating the corresponding displacement function. In their seminal paper, Horn and Schunck
[12] suggested a variational method for the computation of the optical flow vector field. In this approach
the goal is to minimise an energy functional consisting of a similarity term (or data term) and a regularity
term:

argmin
u∈H

E(u) = argmin
u∈H

(R(u) + S(u)).

The space H denotes an admissible space of vector fields, R denotes the regularity term for the vector field
u, and S denotes the similarity term that depends on the data image sequence. In particular the functional
is of the form [12]

E(u) = β2

∫
Ω

(|∇u1|2 + |∇u2|2)dΩ +

∫
Ω

(I1(x + u(x))− I0(x))2dΩ. (1)

Here, I0 and I1 is the image pair, u = (u1(x), u2(x))T is the two-dimensional displacement field and β is
a fixed parameter. The first term (regularization term) penalizes high variations in u to obtain smooth
displacement fields. The second term (data term) is also known as the optical flow constraint. It assumes,
that the intensity values of I0(x) do not change during its motion to I1(x + u(x)). Horn and Schunck [12]
observed that β2 plays a significant role only for areas where the brightness gradient is small, preventing
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1Research supported in part by the Portuguese National Funding Agency for Science, Research and Technology (FCT)
under Project PTDC/MATNAN/0593/2012 and by CMUC – UID/MAT/00324/2013, funded by the Portuguese Government
through FCT/MEC and co-funded by the European Regional Development Fund through the Partnership Agreement PT2020.

Preprint submitted to Elsevier December 3, 2015



haphazard adjustments to the estimated flow velocity. Disadvantages of this model consist of not preserving
discontinuities in the flow field and of not handling outliers efficiently. To overcome the difficulties presented
by the Horn-Schunck functional, several extensions and improvements have been developed [20].

In [21] the optical flow model proposed consists in considering an L1 norm in the regularizing term and
the similarity term is substantially changed by introducing an auxiliary variable v. The process is a result of
first changing the quadratic factors that appeared in the classical method (1), obtaining an energy functional
which is the sum of the total variation of u and an L1 term:

E(u) =

∫
Ω

|∇u|dΩ + λ

∫
Ω

|ρ(u)|dΩ, (2)

where |∇u| = |∇u1| + |∇u2| and the image residual denoted by ρ(u) (we omitted the explicit dependency
on u0 and x) is given by

ρ(u) = ∇I1(x + u0).(u− u0) + I1(x + u0)− I0(x). (3)

The vector u0 is a given disparity map and the functional was obtained for a fixed u0 and using the linear
approximation for I1(x + u) near x + u0.

Secondly, a convex relaxation term is introduced [21] in order to minimize this energy functional efficiently
obtaining

Eθ(u,v) =

∫
Ω

{
|∇u|+ 1

2θ
|u− v|2 + λ|ρ(v)|

}
dΩ, (4)

where θ is a small constant, such that v is a close approximation of u. Setting θ very small forces the
minimum of Eθ to occur when u and v are nearly equal, reducing the energy (4) to the original energy (2).

Many approaches for optical flow computation replace the nonlinearity intensity profile I1(x + u) by
a first Taylor approximation to linearize the problem locally as in the case presented above. Since such
approximations are only valid for small motions, in the presence of large displacements, the method fails
when the gradient of the image is not smooth enough. This means that additional techniques are required
to determine the optical flow correctly. Therefore an iterative warping is applied in the implementation to
compensate for image nonlinearities. A multiscale strategy is also included to allow disparities between the
images.

In this work we propose an optical flow model for a sequence of images defined on a domain in R2

which consists of a modification of the model introduced in [21], by considering for the regularization
term the L1 norm of a fractional derivative operator [9]. The numerical method developed to solve the
minimization problem involves a multiscale strategy [14] and the split Bregman method described in [11].
The effectiveness of the new model and numerical approach is shown by presenting experimental results that
use the test sequences available in the Middlebury benchmark database designed by [2]. We also compare
its performance with other existing numerical method.

In the next section we present the variational method and in Section 3 we describe the numerical approach
which includes the split Bregman method, Euler Lagrange equations, a shrinkage operator, a thresholding
operator and finite differences. In Section 4 several experiments are shown and we end with some conclusions
and general comments in Section 5.

2. Problem formulation

We propose a generalised method that involves fractional derivatives in the regularisation term. Recently
fractional derivatives have been brouhgt to the field of image processing and fractional differentiation based
methods have been demonstrating advantages over already existing methods, see for instance [8, 9, 16, 22].
We start to introduce the definition of fractional derivative.

The left Riemann-Liouville derivative of order α, for a scalar function u, is defined by

Dα
−u(t) =

1

Γ(m− α)

dm

dtm

∫ t

a

u(τ)(t− τ)m−α−1dτ, m− 1 < α < m, (5)
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for a ≤ t ≤ b, where m is a positive integer and Γ denotes the Gamma function

Γ(z) =

∫ ∞
0

xz−1e−xdx,

that satisfies the property Γ(z + 1) = zΓ(z). In this work we are interested in 0 ≤ α ≤ 2. When α goes
to m the operator Dα

−u(t) becomes the integer order derivative u(m)(t). Hence, the fractional derivative is
seen as a generalization of the classical derivative.

The motivation to include the fractional operator has to do with its capability to change continuously the
regularization operator depending on the choice of the value of α. In particular, for α = 0, 1, 2 it represents
the function, the first order derivative and the second order derivative respectively. This allows to choose the
most suitable α (regularization operator) for different types of images according to its high or low texture,
the presence of motion discontinuities, flat, corners or edges.

Let u be a scalar function defined in [a, b]× [c, d]. For (x, y) ∈ (a, b)× (c, d), we define

Dα
x−u(x, y) =

1

Γ(m− α)

dm

dxm

∫ x

a

u(τ, y)(x− τ)m−α−1dτ (6)

Dα
y−u(x, y) =

1

Γ(m− α)

dm

dym

∫ y

c

u(x, τ)(y − τ)m−α−1dτ. (7)

The left Riemann-Liouville fractional operator ∇α−u denotes ∇α−u = (Dα
x−u,D

α
y−u) with euclidean norm

|∇α−u| =
√

(Dα
x−u)2 + (Dα

y−u)2.

A generalised form of the energy (4) is

Eαθ (u,v) =

∫
Ω

{
|∇α−u|+

1

2θ
|u− v|2 + λ|ρ(v)|

}
dΩ, (8)

where u(x) = (u1(x), u2(x)) and |∇α−u| = |∇α−u1| + |∇α−u2|. The minimisation of the energy Eαθ can be
performed by alternating steps [21] and updating either u or v at each iteration, that is, first we fix v, and
solve

min
u

∫
Ω

{
|∇α−u|+

1

2θ
|u− v|2

}
dΩ, (9)

and secondly we fix u and solve

min
v

∫
Ω

{
1

2θ
|u− v|2 + λ|ρ(v)|

}
dΩ. (10)

If v is fixed, the functional is convex in u. Therefore, a global minimizer u can be computed efficiently. If u
is fixed, the functional has only a pointwise dependency on v. Therefore, it can be minimized globally with
respect to v by a complete search.

Note that when α = 1 we get ∇1
−u = ∇u and in this case problem (8) reverts to problem (4). A way to

solve (9) was proposed in [7] (for the case α = 1) which uses a dual formulation of (9) to derive an efficient
and globally convergent scheme. In our work to solve this equation we use the split Bregman tecnhique [11].
Equation (10) is solved using the approach presented in [18, 21] and in Section 3.3 we report briefly this
known tecnhique.

3. Numerical method

In this section we describe our proposal on how to estimate the optical flow by solving the two minimisa-
tion problems presented in the previous section. It consists essentially in the application of the split Bregman
technique, the derivation of Euler Lagrange equations and the use of finite difference approximations. The
first minimisation problem is discussed, in section 3.1, for the particular case α = 1 and then the general
case, for 0 ≤ α ≤ 2, is described in section 3.2. The second minimization problem does not depend on α
and therefore is solved equally for all cases and presented in section 3.3. In section 3.4 we describe in detail
the implementation of the algorithm.
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3.1. Solving problem (9) with split Bregman method for α = 1

Consider the minimization problem (9) when α = 1. To find its solution we can solve the following
problem: for any fixed (v1, v2), search for u`, ` = 1, 2

min
u`

∫
Ω

{
|∇u`|+

1

2θ
|u` − v`|2

}
dΩ, ` = 1, 2. (11)

We propose to solve this problem with split Bregman method, since (11) belongs to the general class
of problems discussed in [11], min

u
{‖φ(u)‖L1(Ω) +H(u)}, where ‖ · ‖L1(Ω) denotes the L1 norm and both

‖φ(u)‖L1(Ω) and H(u) are convex functions. A brief explanation of the split Bregman method is given in
what follows.

We first replace problem (11) by the constrained optimization problem

min
u`

{
‖d`‖L1(Ω) +

1

2θ
‖u` − v`‖2L2(Ω)

}
, ` = 1, 2 (12)

subject to d` = ∇u`, ` = 1, 2. Then to get an unconstrained problem, a L2 penalty term is added

min
d`,u`

{
‖d`‖L1(Ω) +

1

2θ
‖u` − v`‖L2(Ω) +

λ`
2
‖d` −∇u`‖2L2(Ω)

}
. (13)

The problem is then modified to get exact enforcement of the constraint using a Bregman iteration [5]. This
leads to the split Bregman method that consists of solving the following problem. For k = 1, 2, . . . ; ` = 1, 2

(uk+1
` , dk+1

` ) = min
d`,u`

{
‖d`‖L1(Ω) +

1

2θ
‖u` − v`‖2L2(Ω) +

λ`
2
‖d` −∇u` − bk` ‖2L2(Ω)

}
bk+1
` = bk` − d

k+1
` +∇uk+1

` .

(14)

Problem (14) is solved by alternate iterative minimization, meaning that two steps are performed. First for
a fixed d` the minimization is done with respect to u`, that is,

uk+1
` = min

u`

{
1

2θ
‖u` − v`‖2L2(Ω) +

λ`
2
‖dk` −∇u` − bk` ‖2L2(Ω)

}
. (15)

Secondly, for a fixed u` the minimization is done with respect to d`, that is,

dk+1
` = min

d`

{
‖d`‖L1(Ω) +

λ`
2
‖d` −∇uk+1

` − bk` ‖2L2(Ω)

}
. (16)

To solve (15) we derive the optimality condition for uk+1
` , that consists on the following Euler-Lagrange

equations. For ` = 1, 2, (
1

θ
− λ`∆

)
uk+1
` =

1

θ
v` − λ` div(dk` − bk` ) in Ω (17)

and subject to the natural boundary conditions

∂u`
∂η

= (dk` − bk` ) · η on ∂Ω. (18)

Here, ∆ and div denote the Laplace and divergent operators respectively, “·” denotes the inner product in
IR2 and η is the unit outward normal to ∂Ω.

We use finite differences to approximate the derivatives and since the resulting system is diagonally
dominant, it can be solved efficiently with the Gauss-Seidel iterative method. The solution (u`)

k+1
i,j at each

pixel (i, j) in Ω is given by

(u`)
k+1
i,j =

1

1/θ + 4λ`

[
λ`(U`)

k+1
i,j +

1

θ
(v`)i,j − λ` div(dk − bk)i,j

]
, (19)
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where (U`)
k+1
i,j denotes (U`)

k+1
i,j := (u`)

k
i−1,j + (u`)

k+1
i+1,j + (u`)

k
i,j−1 + (u`)

k+1
i,j+1 and to approximate the diver-

gence operator backward finite differences have been applied leading to

div(dk − bk)i,j = 2dki,j − dki−1,j − dki,j−1 − 2bki,j + bki−1,j + bki,j−1.

To solve (16) a shrinkage operation can be used at each point (i, j) such that

dk+1
` = shrink

(
∇uk+1

` + bk` ,
1

λ`

)
, (20)

where
shrink(x, γ) =

x

|x|
max(|x| − γ, 0), z, γ ∈ IR.

3.2. Solving problem (9) with split Bregman method for 0 ≤ α ≤ 2

In this section we solve the minimization problem (9) for 0 ≤ α ≤ 2, that is, for any fixed (v1, v2), we
search for the minimizer (u1, u2) of the problem

min
u`

∫
Ω

{
|∇α−u`|+

1

2θ
|u` − v`|2

}
dΩ, ` = 1, 2. (21)

Similarly to what we have done in the previous section, we first replace (21) by the constrained optimization
problem

min
u`

{
‖d`‖L1(Ω) +

1

2θ
‖u` − v`‖2L2(Ω)

}
, ` = 1, 2 (22)

now subject to d` = ∇α−u`, ` = 1, 2. Then to get an unconstrained problem a L2 penalty term is added

min
d`,u`

{
‖d`‖L1(Ω) +

1

2θ
‖u` − v`‖L2(Ω) +

λ`
2
‖d` −∇α−u`‖2L2(Ω)

}
. (23)

The problem is then modified to get exact enforcement of the constraint using a Bregman iteration [5]. This
leads to the split Bregman method that consists of solving the following problem. For k = 1, 2, . . . ; ` = 1, 2

(uk+1
` , dk+1

` ) = min
d`,u`

{
‖d`‖L1(Ω) +

1

2θ
‖u` − v`‖2L2(Ω) +

λ`
2
‖d` −∇α−u` − bk` ‖2L2(Ω)

}
bk+1
` = bk` − d

k+1
` +∇α−uk+1

` .

(24)

A solution to problem (24) can be obtained by alternate iterative minimization. First for a fixed d` the
minimization is done with respect to u`, that is,

uk+1
` = min

u`

{
1

2θ
‖u` − v`‖2L2(Ω) +

λ`
2
‖dk` −∇α−u` − bk` ‖2L2(Ω)

}
. (25)

Secondly for a fixed u` the minimization is done with respect to d`, that is,

dk+1
` = min

d`

{
‖d`‖L1(Ω) +

λ`
2
‖d` −∇α−uk+1

` − bk` ‖2L2(Ω)

}
. (26)

For this problem, the rectangular domain [a, b]× [c, d] is an extension of the image pixels domain, obtained
by padding around the image. Dirichlet boundary conditions, for u`, ` = 1, 2, are imposed on the padding
region.

We introduce now the definition of right fractional derivative and the property of integration by parts,
since they will be needed in what follows. The right Riemann-Liouville derivative or order α, for a scalar
function u, for a ≤ t ≤ b, is defined by

Dα
+u(t) =

(−1)m

Γ(m− α)

dm

dtm

∫ b

t

u(τ)(τ − t)m−α−1dτ, m− 1 ≤ α ≤ m.
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The spaces of functions Iαa+(Lp) and Iαb−(Lp) for α > 0 and 1 ≤ p <∞ are defined by

Iαa+(Lp) =

{
f : f(x) =

1

Γ(α)

∫ x

a

φ(t)

(x− t)1−α dt, x > a, φ ∈ Lp(a, b)
}

(27)

Iαb−(Lp) =

{
f : f(x) =

1

Γ(α)

∫ b

x

ψ(t)

(t− x)1−α dt, x < b, ψ ∈ Lp(a, b)

}
, (28)

where Lp denotes the space of p integrable functions in (a, b). We have the following integration by parts
result.

Theorem 1. ([13, page 76], [17, pages 34,46]): Let α > 0, p ≥ 1, q ≥ 1, and 1/p+1/q ≤ 1+α (p 6= 1, q 6= 1
in the case when 1/p+ 1/q = 1 + α). If f ∈ Iαb−(Lp) and g ∈ Iαa+(Lq) then∫ b

a

f(x)(Dα
−g)(x)dx =

∫ b

a

g(x)(Dα
+f)(x)dx.

See Theorem 2.3 of [17] on page 43, for necessary and sufficient conditions for f ∈ Iαa+(L1) and Theorem
2.4 on page 45, to see what happens if f /∈ Iαa+(L1).

Let u be a scalar function defined in [a, b]× [c, d]. For (x, y) ∈ (a, b)× (c, d), we define

Dα
x+u(x, y) =

(−1)m

Γ(m− α)

dm

dxm

∫ b

x

u(τ, y)(τ − x)m−α−1dτ (29)

Dα
y+u(x, y) =

(−1)m

Γ(m− α)

dm

dym

∫ d

y

u(x, τ)(τ − y)m−α−1dτ. (30)

The fractional derivatives Dα
x−u and Dα

y−u have been defined previously in (6) and (7) respectively.
Using the integration by parts property, the optimality condition for u`, ` = 1, 2 is given by the differential

equation

1

θ
u` + λ`

[
Dα
x+D

α
x−u` +Dα

y+D
α
y−u`

]
=

1

θ
v` + λ`

[
Dα
x+(dk1` − bk1`) +Dα

y+(dk2` − bk2`)
]
. (31)

A discussion on the solutions of the fractional Euler-Lagrange equations can be seen in [1] or for a more
recent work, we refer also, for instance, to [6].

To approximate the fractional derivatives we use a standard discretization [15]. Let (i, j) denote an
arbitrary pixel in the image domain. Then, for i = 0, 1, . . . , Nx and j = 0, 1, . . . , Ny,

Dα
x−u(i, j) ≈

i∑
k=0

w
(α)
k u(i− k, j), Dα

x+u(i, j) ≈
Nx−i∑
k=0

w
(α)
k u(i+ k, j) (32)

Dα
y−u(i, j) ≈

j∑
k=0

w
(α)
k u(i, j − k), Dα

y+u(i, j) ≈
Ny−j∑
k=0

w
(α)
k u(i, j + k), (33)

where the coefficients w
(α)
k can be obtained by the recurrence formula

w
(α)
0 = 1, w

(α)
k =

(
1− α+ 1

k

)
w

(α)
k−1, k = 1, 2, · · · , N.

A recent discussion on the order of accuracy of the previous discretizations can be seen for instance in [19].
An approximation for the composition of the operators that appear in (31) is

Dα
x+D

α
x−u(i, j) ≈

Nx∑
k=i

w
(α)
k−i

k∑
p=0

w(α)
p u(k − p, j), Dα

y+D
α
y−u(i, j) ≈

Ny∑
k=j

w
(α)
k−j

k∑
p=0

w(α)
p u(i, k − p). (34)
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Hence, a discrete version of (31) can be represented by

(u`)
k+1
i,j =

λ`
a`

Nx∑
p=i

w
(α)
p−i

p∑
`=0, 6̀=i

w
(α)
` uk`−i,j +

Ny∑
p=j

w
(α)
p−j

p∑
`=0, 6̀=j

w
(α)
` uki,`−j +

1

θλ`
(v`)i,j (35)

+

Nx−i∑
p=0

w(α)
p (dk1 − bk1)i+p,j +

Ny−j∑
p=0

w(α)
p (dk2 − bk2)i,j+p

 ,
for

a` =
1

θ
+ λ`

Nx−1∑
p=i

(w
(α)
p−i)

2 +

Ny−1∑
p=j

(w
(α)
p−j)

2

 .

To solve (26) a shrinkage operation can be used at each point (i, j), similarly to what has been done in
(20), that is,

dk+1
` = shrink

(
∇α−uk+1

` + bk` ,
1

λ`

)
. (36)

3.3. Solving problem (10)

The second minimization problem (10) is solved by the same method presented in [18, 21], where the
solution is given by the following thresholding step:

vk+1 = uk+1 + TH(uk+1,u0), (37)

with the thresholding operator

TH(u,u0) =


λθ∇I1(x + u0) if ρ(u) < −λθ|∇I1(x + u0)|2
−λθ∇I1(x + u0) if ρ(u) > λθ|∇I1(x + u0)|2

−ρ(u)
∇I1(x + u0)

|∇I1(x + u0)|2
if ρ(u) ≤ λθ|∇I1(x + u0)|2.

(38)

The input of the algorithm is a pair of images I0(x) and I1(x) with x = (i, j) the pixel index. The output
is a vector field u(x) = (u1(x), u2(x)). The residual ρ(u) is a scalar field, that is, a gray valued image. The
vector field u0 must be close to u. It is given by the enclosing multiscale procedure and it is zero at the
coarsest level. The gradient of the image ∇I1 is approximated with central differences along each direction
and at the borders Neumann boundary conditions are assumed. To warp the image I1 by a flow field u0, we
evaluate I1(x + u0(x)) using bicubic interpolation. A more detailed information about the implementation
of the algorithm is given in the next section.

3.4. Implementation of the proposed algorithm

A variety of approaches have been used to improve the convergence rate of optical flow algorithms. We
apply a coarse to fine strategy, common to many optical flow algorithms, that consists of building image
pyramids [4, 10, 18]. The optical flow is first computed on the top level (fewest pixels) and then upsampled
and used to initialize the estimate at the next level. Computation at the higher levels in the pyramid
involves fewer unknows and therefore is faster. The initialization at each level from the previous level also
means that fewer iterations are required at each level to reach a certain accuracy. Incremental warping of
the flow between pyramid levels helps to keep the flow update at any given level small (fewer pixels) and
when combined with incremental warping and updating within a level, the method becomes very effective.

To create the pyramid of images we follow a standard strategy [14]. The pyramid is built by convolving
the images with a Gaussian with standard deviation σ(η), Gσ(η), that is,

Is(ηx) = Gσ(η) ∗ Is−1(x), (39)
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where we assume σ(η) = σ0

√
η−2 − 1, σ0 = 0.6 and s = 1, . . . , Nscales (the number of scales). After the

convolution, the images are sampled using bicubic interpolation.
We recall that the input of the algorithm is a pair of images I0(x) and I1(x), with x = (i, j) the pixel

index and the output is a vector field u(x) = (u1(x), u2(x)). The computation of ρ(u) involves a warping of
I1 and ∇I1, by the deformation u0, and the approximation field u0 is computed by the multiscale scheme
being zero at the coarsest level. A stopping criterion, for successive values of u, uk+1 and uk, is used for
cessation of the algorithm before the default number of iterations, that is,

1

NxNy

∑
i,j

(uk+1
1 (i, j)− uk1(i, j))2 + (uk+1

2 (i, j)− uk2(i, j))2 < ε2, (40)

where ε is the stopping criteria threshold.
We describe the main algorithm in Algorithm 1, where the pyramidal structure is handled and calls

the function described in Algorithm 2. Algorithm 2 computes the optical flow at different scales by calling
Algorithm 3 or Algorithm 4. Algorithm 3 is the function split-Bregman-1, related to the model that has the
gradient as the regularising term and Algorithm 4 is the function split-Bregman-alpha, related to the model
that considers the fractional operator as the regularising term. The method that calls the algorithm split-
Bregman-1 is hereafter denoted by TV-L1-SB method and the one that calls the algorithm split-Bregman-
alpha named the TV-L1-SB-alpha method.

Algorithm 1 Main Algorithm – Create the Pyramidal Structure

Input: I0, I1, λ, θ, ε, η,Nscales, Nwarps, Nmaxitr
Output: Optical flow u = (u1, u2).
Normalize images between 0 and 255 and convolve the images with a Gaussian of σ0 = 0.6
Create the pyramid of images Is using η (with s = 1, ..., Nscales)
(uNscales

1 , uNscales
2 ) = (0, 0)

for s = Nscales to 1 do
Optical-Flow-SB (I0, I1,u

0, θ, λ`, ε,Nwarps, Nmaxitr)
if s > 1 then
us−1(x) = 1

ηu
s(x/η)

end
end

Algorithm 2 Optical-Flow-SB (I0, I1,u
0, θ, λ`, ε,Nwarps, Nmaxitr)

Compute the optical flow at different scales
for w = 1 to Nwarps do
Compute I1(x + u0),∇I1(x + u0) using bicubic interpolation

while n < Nmaxitr and stopping criterion > ε do
v = u + TH(u,u0)
u1 = split-Bregman-alpha (v1, θ, λ1, α) or split-Bregman-1 (v1, θ, λ1)
u2 = split-Bregman-alpha (v2, θ, λ2, α) or split-Bregman-1 (v2, θ, λ2)

end
end

The algorithm depends on several parameters. Therefore for a better understanding of the algorithm
written in this section, we give a brief overview of the role of each parameter.

The data attachment weight λ is a relevant parameter and it determines the smoothness of the output.
The smaller this parameter is, the smoother the solutions we obtain. It depends on the range of motions of
the images, so its value should be adapted to each image sequence. The tightness θ serves as a link between
the attachment and the regularization terms. It should have a small value in order to maintain both parts
in correspondence. The penalty parameters in split Bregman iteration λ`, ` = 1, 2 are used in order to
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Algorithm 3 split-Bregman-1 (v, θ, λ`)

Compute the split-Bregman iteration for the gradient regularization term
Fix TOL and u0 = v, d0 = b0 = 0
while |uk − uk−1| >TOL do

uk+1 =
1

1
θ + 4λ`

[
λ`U

k +
1

θ
v − λ`div(dk − bk)

]
∂uk+1

∂n = (dk − bk) · n in ∂Ω,

dk+1 = shrink
(
∇uk+1 + bk, 1

λSB

)
,

bk+1 = bk +∇uk+1 − dk+1.
end

Algorithm 4 split-Bregman-alpha (v, θ, λ`, α)

Compute the split-Bregman iteration for the fractional regularization term
Fix TOL and u0 = v, d0 = b0 = 0
while |uk − uk−1| > TOL do

uk+1
i,j =

λ`
a`

Nx∑
p=i

w
(α)
p−i

p∑
`=0, 6̀=i

w
(α)
` uk`−i,j +

Ny∑
p=j

w
(α)
p−j

p∑
`=0, 6̀=j

w
(α)
` uki,`−j

+
1

θλ`
(v`)i,j +

Nx−i∑
p=0

w(α)
p (dk1 − bk1)i+p,j +

Ny−j∑
p=0

w(α)
p (dk2 − bk2)i,j+p

,
uk+1 = 0 in ∂Ω
dk+1 = shrink

(
Dα
−u

k+1 + bk, 1
λSB

)
bk+1 = bk +Dα

−u
k+1 − dk+1

end

holding the penalty constraint. The choice of these parameters are related with the value choosen for θ in
order to reach a faster convergence. The stopping criteria threshold ε is a trade-off between precision and
running time. A small value will yield more accurate solutions at the expense of a slower convergence. The
downsampling factor η is used in order to downscale the original images to create the pyramidal structure
and ranges values between 0 and 1. The number of scales Nscales is used to create the pyramid of images.
The number of warps Nwarps represents the number of times that I1(x+u0) and ∇I1(x+u0) are computed
per scale. It affects the running time. The parameter α of the fractional operator affects the regularisation
operator and ranges values between 0 and 2.

4. Experimental results

The numerical method has been implemented and applied to different image sequences and all the results
presented here uses two frames of a sequence of images as input. First we discuss the TV-L1-SB method by
comparing the resulting computing flow with the one obtained by a method given in [18] and, based in an
evaluation methodology well established by now, we notice that in general the TV-L1-SB method performs
better. The second section discusses the effect of the fractional regularisation operator. It is shown that the
parameter α should be adjusted depending on the geometry or texture complexity of the various regions of
the image.

There are several parameters involved in the algorithm, that we list in Table 1 with a short explanation
and the range of the best values discussed in the next section.

4.1. Performance of the TV-L1-SB method

In this section the goal is to show the advantage of applying the split Bregman technique in the deter-
mination of the optical flow. To that end, we consider a very recent numerical method, used to solve the

9



Parameter Description Range of values
λ data attachment weight [0.1 1]
θ tightness [0.1 1]
ε stopping threshold 0.01
η zoom factor 0.5
Nscales number of scales [3 5]
Nwarps number of warps [3 5]
λSB split-Bregman parameter λSB = λ1 = λ2 [1 10]
α order of fractional operator [0 2]

Table 1: Parameters involved in the numerical methods

same optical flow model, presented in [18]. The method of [18] is hereafter named the TV-L1 method and
we compare its performance with the TV-L1-SB method. The TV-L1-SB method, described in section 3.1
and 3.3, differs essentially from the TV-L1 method in the application of the split Bregman method to solve
the first minimisation problem (9).

To show the performance of both numerical methods we use a test sequence of different images from the
Middlebury database, displayed in Figure 1.

Figure 1: Image sequences from the Middlebury database. One frame of each sequence is displayed. Top and from left to right:
Venus, Urban2, Urban3, Rubber Whale; Bottom and from left to right: Grove3, Grove2, Hydrangea, Dimetrodon.

The most common used measure of performance for optical flow is the angular error (AE) between a flow
vector (u1, u2) and the ground truth flow (gt1, gt2). It is the angle in 3D between (u1, u2, 1) and (gt1, gt2, 1).
The AE is calculated by the following formula:

AE = arccos

(
1 + u1 × gt1 + u2 × gt2√
1 + u2

1 + u2
2

√
1 + gt21 + gt22

)
. (41)

The popularity of this measure is due to the seminal work by Barron et al [3]. This measure provides a
relative measure of performance that avoids the divide by zero problem for zero flows. Errors in large flows
are penalized less in AE than errors in small flows. The AE also contains an arbitrary scaling constant 1 to
convert the units from pixels to degrees.

A complementar measure is usually used, which is, the End Point Error (EPE) defined by

EPE =
√

(u1 − gt1)2 + (u2 − gt2)2. (42)
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This measure may be more appropriate for some applications. Therefore we report both herein.
These measures are computed at each pixel and consequently the corresponding averages of AE (AAE)

and of EPE (AEPE) are used. In some cases the standard deviations of AE (SDAE) will be also presented.
In the next experiments some of the values of the parameters in our model are chosen to be the values

for which the TV-L1 method performs better, according to [18], in order to compare its performance with
the performance of the TV-L1-SB method. Regarding the choice of the parameters λ`, ` = 1, 2, associated
with split Bregman method, we assume

λSB = λ1 = λ2.

Note that the parameters λ`, ` = 1, 2 are related, respectively, with the flow velocity u`, ` = 1, 2. In [11] the
authors have found that for a faster convergence a good choice for the split Bregman parameter, λSB , can
be λSB = 2/θ. For the TV-L1-SB method this seems to be also a suitable choice.

We start with some discussion about the choice of the split Bregman parameter λSB . Figure 2 displays
the results of the experiments done for the Rubber-Whale sequence (see Figure 1). It shows the performance
of the TV-L1-SB method for different values of λSB when θ = 0.4 and for different data attachment weights
λ. The tightness parameter θ = 0.4 is chosen according to [18] as mentioned previously. It can be seen that
the TV-L1-SB method performs better for the set of split Bregman values, 1 ≤ λSB ≤ 10, reaching its best
between 3 and 10.

λ
SB

0 50 100 150 200

A
A

E

0.1

0.2

0.3

0.4

0.5

0.6

0.7

λ
SB

0 50 100 150 200

A
E

P
E

0.2

0.4

0.6

0.8

1

1.2

Figure 2: Performance of the TV-L1-SB method for the Rubber Whale sequence: θ = 0.4 and Nwraps = Nscales = 5.
The method performs better for values of the split Bregman parameter 3 ≤ λSB ≤ 10. Plots for different values of the data
attachment weight λ: λ = 0.03(−∗); λ = 0.05(−o); λ = 0.1(−×); λ = 0.3(−−); λ = 0.5(−); λ = 1(− · −).

In Table 2 we compare the TV-L1-SB method with the TV-L1 method for the image sequences presented
in Figure 1. For each image sequence we have chosen the parameters λ (data attachment weight) and θ
(tightness) for which the TV-L1 method performs better. The split Bregman parameter λSB needed in the
TV-L1-SB method is assumed to be 10 for all image sequences. The results point out the TV-L1-SB method
performs better than the TV-L1 method.

To have a more complete perspective between the differences on the performance of both methods we
exhibit in Figures 3 and 4 additional results, with different values of θ and λ in the Rubber Whale case and
for λSB = 10. The results confirm the TV-L1-SB method presents smaller errors in general. By running
these experiments we have observed that the TV-L1-SB method is slower if the split Bregman parameter
λSB is very far away from the estimate 2/θ. We have executed the algorithm for a fixed λSB = 10 and as
θ becomes larger the method becomes slower, suggesting the parameter λSB should be adjusted depending
on θ, for a faster convergence. We did not adjust the parameter λSB to plot Figures 3 and 4 to emphasize
the effect of only changing the data attachment weight parameter λ and tightness parameter θ.

4.2. The effect of the fractional regularization operator

The main purpose of this section is to present the effect of the parameter α in the estimation of the
optical flow. Only partial regions of the image are used in order to show efficiently the influence of α. Three
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Method AAE AEPE SDAE Data Method AAE AEPE SDAE Data
Grove2 6 scales RubberWhale 4 scales
TV-L1 0.7070 2.1876 0.4351 λ = 0.3 TV-L1 0.2281 0.4155 0.2724 λ = 0.4
TV-L1-SB 0.5443 1.7974 0.4283 θ = 0.3 TV-L1-SB 0.1530 0.2905 0.2406 θ = 0.4
Grove3 4 scales Hydrangea 4 scales
TV-L1 0.5856 2.8451 0.4803 λ = 0.5 TV-L1 0.4185 2.1619 0.2798 λ = 0.1
TV-L1-SB 0.4198 2.4920 0.3984 θ = 0.4 TV-L1-SB 0.3107 1.9487 0.2049 θ = 0.8
Urban2 6 scales Dimetrodon 5 scales
TV-L1 0.6623 7.4200 0.5477 λ = 0.5 TV-L1 0.4282 1.1511 0.3109 λ = 0.3
TV-L1-SB 0.5319 7.1988 0.4941 θ = 0.3 TV-L1-SB 0.3356 1.0051 0.2724 θ = 0.3
Urban3 5 scales Venus 4 scales
TV-L1 0.9403 6.4110 0.6624 λ = 0.9 TV-L1 0.6693 2.8136 0.4318 λ = 0.4
TV-L1-SB 0.7890 5.9711 0.6606 θ = 0.7 TV-L1-SB 0.4629 2.4105 0.3757 θ = 0.6

Table 2: Errors AAE, AEPE and SDAE for the TV-L1 method and the TV-L1-SB method for the sequence of images presented
in Figure 1.
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Figure 3: Errors AAE and AEPE for the Rubber Whale sequence. The tightness parameter θ changes and Nwraps = 5,
Nscales = 4. The TV-L1 method is represented by the dashed lines (−−) and the TV-L1-SB method by the solid lines (−).
The different values of the data attachment weight λ are marked by different symbols: λ = 0.01(o), λ = 0.05(∗), λ = 0.1(×),
λ = 0.2(�), λ = 0.3(ˆ).

main regions are considered: with edges, corners and flat that can also present high or low texture and
motion discontinuities.

We start to discuss the results for the image sequences considered the most difficult from the Middleburry
database, which are Grove and Urban. For these data images the optical flow methods usually perform
worst. As described in [2] Grove contains a close up view of a tree, with a substantial parallax and motion
discontinuities and Urban contains the image of a city with substantial motion discontinuities, a large motion
range and an independently moving object. We consider the image sequences Grove2 and Urban3 displayed
in Figure 5.

For the sequence Grove2 we have selected two types of regions for discussion: one represents a flat region
(marked as region B) and the other one represents a region with edges and a parallax effect (marked as
region A). We assume Nwraps = 5, Nscales = 5 and the tightness parameter θ and the data attachment
weight parameter λ are chosen according to Table 2, that is, θ = 0.3 and λ = 0.3. In Figures 6(a) and 6(b)
we report the errors for the optical flow computed in the two regions of Grove2 for different values of α.
We have also done tests for different values of the split Bregman parameter, λSB , in particular with values
between 1 and 10. In Figure 6(a), related to the region A marked in Figure 5, we only plot the results for
the split Bregman parameter λSB = 5, the value for which we have obtained the best results. It is shown
the best result, represented by the smallest errors, have been reached at α = 1.2 for the error AAE and at
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Figure 4: Errors AAE and AEPE for the Rubber Whale sequence: The data attachment weight parameter λ changes and
Nwraps = 5, Nscales = 4. The TV-L1 method is represented by the dashed lines (−−) and the TV-L1-SB method by the
solid lines (−). The different values of the tightness parameter θ are marked with different symbols: θ = 0.01(o), θ = 0.02(∗),
θ = 0.05(×), θ = 0.1(�), θ = 0.5(ˆ), θ = 1( + ).

Figure 5: The regions considered for each image sequence are marked as regions A (red) or B (blue). From left to right: Grove2
(Regions A and B), Urban3 (Region A), Hydrangea (Regions A and B) and Rubber Whale (Region A).

α = 1.4 for the error AEPE. In general, the best results are for values of α between 1 and 1.5. In Figure
6(b), we show what happens for the flat region, region B of Grove2. The best results in this case have been
obtained for λSB = 7 and the errors AAE and AEPE are smaller for α = 0.

We turn now to the image sequence Urban3. In this image we have selected only a region, region A,
with corners and edges. In Figure 6(c) we plot the results for this region, when λ = 0.9 and θ = 0.7. The
best λSB value is in this case 1. We remind the value of λSB seems to be related to the value of θ, that
is, it should be close to 2/θ. The best results are attained for α between 1.5 and 2 and in particular for
α = 1.5. The variations of the errors in terms of α are not smooth as in the case of the sequence Grove2 for
the region A shown in Figure 6(a).

In Figure 7 we present the results for two other sequences: Hydrangea, Figures 7(a) and 7(b), and Rubber
Whale, Figure 7(c). The regions analysed are marked in Figure 5. For Hydrangea, regions A and B, the
errors are smaller for values of α around 1 and for Rubber Whale, region A, the smaller errors are for 1.4. In
the Rubber Whale case although the best value is reached at α = 1.4 and not α = 1, we note that for these
values of α the differences between the errors are less relevant than for the sequences Grove2 and Urban3.

We have seen that for flat regions the best α is close to 0, see Figure 6(b), for edges is between 1 and
1.5, see Figures 6(a) and 7(c), and for corners between 1.5 and 2, see Figure 6(c). Additionally the results
for the most difficult datasets, Grove2 and Urban3, highlights the advantage of using the fractional order α,
by presenting significantly smaller errors for values of α that are different from 1.
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Figure 6: (a) Grove2 – Part A. For λ = 0.3 and θ = 0.3. Best results for λSB = 5. AAE: best result for α = 1.2. AEPE: best
result for α = 1.4; (b) Grove2 – Part B. For λ = 0.3 and θ = 0.3. Best results for λSB = 7. AAE: best result for α = 0. AEPE:
best result for α = 0; (c) Urban3 – Part A. For λ = 0.9 and θ = 0.7. Best results for λSB = 1. AAE: best result for α = 1.5.
AEPE: best result for α = 1.5.

5. Final Remarks

We have presented and tested a new algorithm to solve an optical flow model. The novelty of this
work is twofold: there is the inclusion of a regularisation operator which uses fractional derivatives and the
application of the split Bregman technique.

It is difficult to recover accurately motion fields and these difficulties arise from scene geometry and
texture complexity. We have seen that the parameter α, related to the order of the fractional regularisation
operator, can be adjusted to deal with different regions. This motivates a future work, to further explore
the potential of the proposed approach, that is to build a feature based algorithm. This algorithm would
present a robust approach that integrates region tracking, that is, it would be able to detect a priori the type
of structures the image presents and to adjust the parameter α accordingly. Additionally, faster iterative
methods can be developed to solve the iterative system related to the fractional Euler-Lagrange equation.
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